JPH01279507A - Manufacture of ceramic superconductor - Google Patents

Manufacture of ceramic superconductor

Info

Publication number
JPH01279507A
JPH01279507A JP63108217A JP10821788A JPH01279507A JP H01279507 A JPH01279507 A JP H01279507A JP 63108217 A JP63108217 A JP 63108217A JP 10821788 A JP10821788 A JP 10821788A JP H01279507 A JPH01279507 A JP H01279507A
Authority
JP
Japan
Prior art keywords
wire
ceramic
powder
alloy
produce
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63108217A
Other languages
Japanese (ja)
Inventor
Hidemoto Suzuki
鈴木 英元
Masamitsu Ichihara
市原 政光
Yoshimasa Kamisada
神定 良昌
Nobuo Aoki
伸夫 青木
Tomoyuki Kumano
智幸 熊野
Ichiro Noguchi
一朗 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP63108217A priority Critical patent/JPH01279507A/en
Publication of JPH01279507A publication Critical patent/JPH01279507A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide a superconductive wire with high current density by mixing a powder consisting of such a constituent as to produce ceramic type superconductive substance when heated with a powder of an alloy which does not produce oxide at the baking temp., and by heating it in oxidative atmosphere. CONSTITUTION:A powder consisting of ceramic type superconductive substance and/or such a constituent as to produce ceramic type superconductive substance when heated in oxidative atmosphere is mixed with powder of a metal or alloy which does not produce oxide at the baking temp. of the ceramic type superconductive substance. This mixture is accommodated in a tube of metal or alloy which does not produce oxide at the baking temp. This undergoes area reduction process or form into a wire or a tape. This is subjected to heat treatment at 700-1000 deg.C while oxidation adjustment is made in oxygen stream or under oxygen pressurization. This allows easy manufacture of electrically stable wires in long size.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は超電導体の製造方法に係り、特にセラミックス
系超電導体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a superconductor, and particularly to a method for manufacturing a ceramic superconductor.

〔従来の技術] 近年、特に−昨年の秋以降、セラミックス超電導体の開
発が世界中で急ピッチで進められている。
[Prior Art] In recent years, especially since last fall, the development of ceramic superconductors has been progressing at a rapid pace all over the world.

この超電導体は、従来の最高の臨界温度を示すNb3G
eの23Kを大巾に越えるもので、Ba−La−Cu−
0系セラミツクス(臨界温度35K ) 、La−8r
−Cu−0系セラミツクス(超電導開始温度37に以上
)、La−Ca−Cu−0系セラミツクス、Y−Ba−
Cu−0系セラミツクス(ゼロ抵抗温度93K)等のほ
か、233にあるいは室温の臨界温度を示すセラミック
スも報告されている。
This superconductor is Nb3G, which has the highest conventional critical temperature.
It greatly exceeds 23K of e, and is Ba-La-Cu-
0 series ceramics (critical temperature 35K), La-8r
-Cu-0 ceramics (superconductivity starting temperature 37 or higher), La-Ca-Cu-0 ceramics, Y-Ba-
In addition to Cu-0 ceramics (zero resistance temperature of 93 K), ceramics that exhibit a critical temperature of 233 or room temperature have also been reported.

このようにセラミックス超電導材料は臨界温度が液体窒
素温度以上や室温で用いることができる可能性があり、
この場合、高価な液体ヘリウムを使用しなくて済むため
、経済的に極めて有利となるほか、超電導発電機等に使
用されると構造がシンプルで熱機関の効率も向上する等
の利点を有する。
In this way, it is possible that ceramic superconducting materials can be used at critical temperatures higher than the liquid nitrogen temperature or at room temperature.
In this case, there is no need to use expensive liquid helium, which is extremely advantageous economically, and when used in a superconducting generator or the like, the structure is simple and the efficiency of the heat engine is improved.

しかしながら、セラミックスは硬くて、かつ脆いため、
現在実用化されているNb−Tl系やNb3 Sn系超
電導線のように曲げたり、あるいはコイル巻きすること
ができず、この点を克服することが実用化への第1歩と
なる。
However, since ceramics are hard and brittle,
Unlike the Nb-Tl and Nb3Sn superconducting wires currently in practical use, it cannot be bent or coiled, and overcoming this point is the first step toward practical use.

現在線材の製造方法として、 ■アモルファスのテープあるいは線材を酸素雰囲気下で
加熱処理する方法、 ■合金管(たとえばCu−Ni合金)の内部に原料の粉
末を充填し、両端を引張って線材やテープ状に成形する
方法、 ■銅系合金管内にセラミックスを充填し、熱処理および
圧延加工等を施して線材やテープ状に成形する方法、等
が提案されている。
Currently, there are two ways to manufacture wire rods: 1. Heat-treating amorphous tape or wire in an oxygen atmosphere; 2. Filling an alloy tube (for example, Cu-Ni alloy) with raw material powder and pulling both ends to produce wire or tape. 2) A method of filling a copper alloy tube with ceramics, subjecting it to heat treatment, rolling, etc., and forming it into a wire or tape shape, etc. have been proposed.

しかしながら、上記■の方法においては、極めて急速な
冷却を必要とする上、極めて細い線材や薄膜のテープし
か得られず、実用線材を得る方法としては、難点を有し
ており、上記■の方法では長尺の線材を連続的に製造す
ることが困難であり、上記■の方法では加工工程が複雑
となる上、超電導体の連続性に難点がある。この場合、
セラミックス超電導体生成の熱処理は、tii電導特性
向上の観点から成形後、すなわち最終線径近傍で施すこ
とが望ましいが、銅系合金管で被覆されているため成形
後に内部に酸素を供給することが極めて困難であり、実
際上不可能である。
However, the above method (■) requires extremely rapid cooling and can only yield extremely thin wire rods or thin film tapes, so it has disadvantages as a method for obtaining practical wire rods. In this method, it is difficult to continuously manufacture long wire rods, and in the above method (2), the processing steps are complicated and there are problems in the continuity of the superconductor. in this case,
Heat treatment for producing ceramic superconductors is preferably performed after forming, that is, near the final wire diameter, from the perspective of improving electrical conductivity, but since the wire is covered with a copper alloy tube, it is difficult to supply oxygen inside the wire after forming. This is extremely difficult and practically impossible.

[発明が解決しようとする課8] 本発明は、上記の難点を解決するためになされたもので
、アモルファス化のための急速冷却を必要とせず、長尺
の線条の加工を容易に行うことができる上、超電導物質
の焼結層形成の熱処理を長尺の線材の状態で施すことが
でき、かつ高い臨界電流密度の実用線材を製造すること
が可能なセラミックス系超電導体の製造方法を提供する
ことをその目的とする。
[Issue 8 to be solved by the invention] The present invention has been made to solve the above-mentioned difficulties, and facilitates the processing of long filaments without requiring rapid cooling for amorphization. We have developed a method for manufacturing ceramic superconductors that not only allows the superconducting material to be heat-treated to form a sintered layer in the form of a long wire, but also allows the production of practical wires with high critical current density. Its purpose is to provide.

[課題を解決するための手段] 本発明のセラミックス系超電導体の製造方法は、(イ)
セラミックス系超電導物質および/または酸化性雰囲気
中で加熱することによりセラミックス系超電導物質を生
成する構成物質からなる粉末と、セラミックス系超電導
物質の焼成温度で酸化物を生成しない金属あるいは合金
よりなる粉末を混合する工程と、 (ロ)この混合粉末をセラミックス系超電導物質の焼成
温度で酸化物を生成しない金属あるいは合金管中に収容
する工程と、 (ハ)断面減少加工を施して線状あるいはテープ状に成
形する工′程と、 (ニ)酸化性雰囲気中で加熱処理を施す工程とからなる
ことを特徴とする。
[Means for Solving the Problems] The method for manufacturing a ceramic superconductor of the present invention includes (a)
A powder made of a ceramic superconducting material and/or a component that produces a ceramic superconducting material by heating in an oxidizing atmosphere, and a powder made of a metal or alloy that does not produce oxides at the firing temperature of the ceramic superconducting material. (b) A step of housing this mixed powder in a metal or alloy tube that does not produce oxides at the firing temperature of the ceramic superconducting material; (c) A process of reducing the cross section to form a wire or tape shape. (iv) heat treatment in an oxidizing atmosphere.

本発明において用いられるセラミックス系の超電導物質
としては、たとえばY−Ba−Cu−0系のYBa2C
ux OX (x< 14 :ペロブスカイト)やこれ
にF等を添加したものが、一方、酸化性雰囲気中での熱
処理によりセラミックス超電導物質を生成する構成物質
しては、たとえばY−Ba−Cu系合金(Y:Ba:C
u −1:2:3 、原子数比)やY 1Bas Cu
あるいはこれらの酸化物等の混合粉末が用いられる。
Ceramic superconducting materials used in the present invention include, for example, Y-Ba-Cu-0 based YBa2C
ux OX (x < 14: perovskite) and those to which F etc. are added, while constituent materials that produce ceramic superconducting materials by heat treatment in an oxidizing atmosphere include, for example, Y-Ba-Cu alloys. (Y:Ba:C
u −1:2:3, atomic ratio) or Y 1Bas Cu
Alternatively, a mixed powder of these oxides or the like may be used.

もちろん、他のセラミックス系の超電導物質、たとえば
La−3r−Cu−0系のセラミックスやそれを生成す
る構成物質を用いることもできる。
Of course, other ceramic-based superconducting materials, such as La-3r-Cu-0-based ceramics and constituent materials that produce them, can also be used.

またセラミックス系超電導物質の焼成温度で酸化物を生
成しない金属、合金としてはAgs Pt5Auあるい
はこれらの合金が用いられ、この粉末は加工性を改善す
るとともに超電導体の連続性を維持する効果を有し、か
つ安定化材としても機能する。
In addition, AgsPt5Au or an alloy thereof is used as a metal or alloy that does not generate oxides at the firing temperature of ceramic superconducting materials, and this powder has the effect of improving workability and maintaining the continuity of the superconductor. , and also functions as a stabilizing agent.

さらにこのような材料からなる管体は加工性を収容し、
高加工度の加工を可能にするとともに安定化材としての
役割を果す上、酸化性雰囲気中での加熱によりセラミッ
クス超電導物質を適度な速度で微細に生成させる働きを
有する。
Furthermore, tubes made of such materials accommodate workability,
In addition to enabling high-speed processing and acting as a stabilizing material, it also has the function of generating fine ceramic superconducting materials at an appropriate rate by heating in an oxidizing atmosphere.

上記の焼成温度で酸化物を生成しない金属等の粉末は全
粉末量に対して1〜80 vo1%の間で選択すること
ができる。
Powders such as metals that do not produce oxides at the above firing temperature can be selected in an amount of 1 to 80 vol% based on the total amount of powder.

混合粉末を金属管内へ収容するに際しては、予め室温に
おいて静水圧加圧処理を施すことが望ましい。これによ
りその後の断面減少加工が容易となる。この断面減少加
工としては静水圧押出加工、スウェージング加工、圧延
および伸線加工が適宜選択される。
When housing the mixed powder in a metal tube, it is desirable to perform hydrostatic pressure treatment at room temperature in advance. This facilitates the subsequent cross-section reduction process. As this cross-section reducing process, hydrostatic extrusion, swaging, rolling, and wire drawing are appropriately selected.

セラミックス超電導物質の焼成は、酸素気流中あるいは
酸素加圧下で酸化調整しながら700〜1000℃に加
熱して、特性の改善が図られる。超電導体の外側には通
常絶縁被膜が施される。絶縁被膜としては何機あるいは
無機材料が用いられ、前者の有機絶縁被膜としてはUv
硬化ウレタン樹脂やPvFエナメルを、一方、後者の無
機絶縁被膜としてはアルミナやポリボロシロキサン樹脂
等を挙げることができる。
Ceramic superconducting materials are fired by heating to 700 to 1000° C. in an oxygen stream or under oxygen pressure while controlling oxidation to improve their properties. An insulating coating is usually applied to the outside of the superconductor. Some organic or inorganic materials are used as the insulating film, and the former organic insulating film is UV
Examples of the inorganic insulating coating include cured urethane resin and PvF enamel, while examples of the latter inorganic insulating coating include alumina and polyborosiloxane resin.

[実施例] 実施例 外径5μIφ以下のYBa2 Cul  07〜8セラ
ミツクスの粉末70vo1%と外径100μ■φ以下の
Ag粉末30vo1%を均一に混合した後、10.00
0kg/cjj圧力で静水圧加圧処理を10分間施し、
外径40■φ、長さ300amの形状に成型した。
[Example] After uniformly mixing 70 vol % of YBa2 Cul 07-8 ceramic powder with an exception diameter of 5 μIφ or less and 30 vol 1% of Ag powder with an outer diameter of 100 μιφ or less, 10.00
Hydrostatic pressure treatment was applied for 10 minutes at 0 kg/cjj pressure,
It was molded into a shape with an outer diameter of 40 mm and a length of 300 am.

この成型体を外径50■φ、内径41+a+φのAg管
中に収容して、この両端をエレクトロンビームで密封し
て得たビレットに2回の静水圧押出加工を施して外径1
8+mφのロッドを製造した後、スウエージング加工、
圧延加工および伸線加工を順次施して外径1.hiφの
線材を製造した。
This molded body was housed in an Ag tube with an outer diameter of 50 mm and an inner diameter of 41 mm, and both ends of the molded body were sealed with an electron beam.The resulting billet was subjected to hydrostatic extrusion twice.
After manufacturing a rod of 8+mφ, swaging process,
Rolling and wire drawing are performed sequentially to reduce the outer diameter to 1. A hiφ wire rod was manufactured.

このようにして得られた線材に酸素雰囲気中で900℃
×72時間の熱処理を施してセラミックス超電導線を裂
地した。この超電導線の臨界電流密度(」C)は77K
 、 OTで30OA/cdであった。
The wire rod thus obtained was heated to 900°C in an oxygen atmosphere.
The ceramic superconducting wire was subjected to heat treatment for 72 hours to tear the ceramic superconducting wire. The critical current density ('C) of this superconducting wire is 77K
, OT was 30OA/cd.

比較例 上記の実施例のAg粉末を用いずに YBa2 Cu307 Bセラミックス粉末のみとし、
他は同様の条件で線材を製造した場合の伸線加工限界は
外囲2 、0m+gφであった。この線材に実施例と同
一の条件で熱処理を施した超電導線の臨界電流密度(J
c)は77K 、 OTで5A/ ci/であった。
Comparative Example Using only YBa2 Cu307 B ceramic powder without using the Ag powder of the above example,
When the wire rod was manufactured under the same conditions, the wire drawing limit was 2 mm, 0 m + gφ. The critical current density (J
c) was 77K, 5A/ci/ in OT.

上記の実施例で得られたセラミックス超電導線は銀が安
定化材として作用する上、高い臨界電流密度を有し、か
つ細線化が可能なため容易に編組構造や撚線構造とする
ことができ、大サイズ導体や交流用導体を製造すること
ができる。
The ceramic superconducting wire obtained in the above example has silver acting as a stabilizing material, has a high critical current density, and can be made into a thin wire, so it can be easily made into a braided or stranded structure. , large-sized conductors and AC conductors can be manufactured.

以上述べたように上記の実施例は銀の酸素に対する特殊
な働きを利用したもので、銀と酸素が高温 2Ag02二 2AgO 低温 の関係を有すること、銀を通して酸素が拡散すること、
銀がAgoの形で酸素を運び容易に解離して合金を酸化
することを利用したもので、同様の働きを有するものと
して銀合金や金、白金およびこれらの合金を用いること
ができる。
As mentioned above, the above embodiment utilizes the special action of silver on oxygen; silver and oxygen have a high-temperature relationship with low-temperature, and oxygen diffuses through silver.
This method utilizes the fact that silver carries oxygen in the form of Ago and easily dissociates to oxidize the alloy. Silver alloys, gold, platinum, and alloys thereof can be used as materials having similar functions.

[発明の効果] 以上述べたように本発明のセラミックス系超電導体の製
造方法によれば、長尺の電気的に安定した線材を容易に
製造することができるとともに、高い電流密度の超電導
線を得ることができる。
[Effects of the Invention] As described above, according to the method for manufacturing a ceramic superconductor of the present invention, a long electrically stable wire can be easily manufactured, and a superconducting wire with a high current density can be manufactured. Obtainable.

すなわち、混合粉末中に焼成温度で酸化物を生成しない
金属等の粉末を有し、かつ外側が焼成温度で酸化物を生
成しない金属等で被覆されているため、加工性に優れる
上、最終形状で熱処理を施すことができ、この熱処理時
の酸素の供給を適当に制限してセラミックス生成時の粉
末化や燃焼を防止することができ、かつセラミックス焼
成時の体積膨張を安定化材のクリープで抑えることによ
り、加圧下でセラミックスを生成することができる。し
たがって微細なペロブスカイト結晶を生成することがで
き、高電流密度の超電導線を製造することができる。
In other words, the mixed powder contains powder of a metal that does not produce oxides at the firing temperature, and the outside is coated with a metal that does not produce oxides at the firing temperature. The oxygen supply during this heat treatment can be appropriately restricted to prevent powdering and combustion during ceramic formation, and the volume expansion during ceramic firing can be suppressed by creep of the stabilizing material. By holding down, ceramics can be produced under pressure. Therefore, fine perovskite crystals can be produced, and superconducting wires with high current density can be manufactured.

本発明によって製造された超電導体は可撓性に優れるた
め、これらの複数本を用いて集合線、撚線あるいは編組
線を容易に形成することができ、このようにして得られ
た線材をコイル巻きした後、エナメルフェスを含浸して
超電導マグネットを製作することができる。
Since the superconductor manufactured by the present invention has excellent flexibility, a plurality of these can be used to easily form an assembled wire, a stranded wire, or a braided wire, and the wire obtained in this way can be formed into a coil. After winding, the enamel face can be impregnated to create a superconducting magnet.

Claims (1)

【特許請求の範囲】[Claims] (1)(イ)セラミックス系超電導物質および/または
酸化性雰囲気中で加熱することによりセラミックス系超
電導物質を生成する構成物質からなる粉末と、セラミッ
クス系超電導物質の焼成温度で酸化物を生成しない金属
あるいは合金よりなる粉末を混合する工程と、 (ロ)この混合粉末をセラミックス系超電導物質の焼成
温度で酸化物を生成しない金属あるいは合金管中に収容
する工程と、 (ハ)断面減少加工を施して線状あるいはテープ状に成
形する工程と、 (ニ)酸化性雰囲気中で加熱処理を施す工程とからなる
ことを特徴とするセラミックス系超電導体の製造方法。
(1) (a) Powder consisting of a ceramic superconducting material and/or a component that produces a ceramic superconducting material when heated in an oxidizing atmosphere, and a metal that does not produce oxides at the firing temperature of the ceramic superconducting material. Alternatively, a step of mixing a powder made of an alloy, (b) a step of housing this mixed powder in a metal or alloy tube that does not produce oxides at the firing temperature of the ceramic superconducting material, and (c) a process of reducing the cross section. 1. A method for producing a ceramic superconductor, comprising the steps of: forming a ceramic superconductor into a wire or tape shape; and (d) heat-treating in an oxidizing atmosphere.
JP63108217A 1988-04-30 1988-04-30 Manufacture of ceramic superconductor Pending JPH01279507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63108217A JPH01279507A (en) 1988-04-30 1988-04-30 Manufacture of ceramic superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63108217A JPH01279507A (en) 1988-04-30 1988-04-30 Manufacture of ceramic superconductor

Publications (1)

Publication Number Publication Date
JPH01279507A true JPH01279507A (en) 1989-11-09

Family

ID=14479001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63108217A Pending JPH01279507A (en) 1988-04-30 1988-04-30 Manufacture of ceramic superconductor

Country Status (1)

Country Link
JP (1) JPH01279507A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256108A (en) * 1988-10-17 1990-10-16 Fmc Corp Surperconductive metal matrix complex and its manufacture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285155A (en) * 1987-05-15 1988-11-22 Hitachi Ltd Oxide type superconductive material and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285155A (en) * 1987-05-15 1988-11-22 Hitachi Ltd Oxide type superconductive material and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256108A (en) * 1988-10-17 1990-10-16 Fmc Corp Surperconductive metal matrix complex and its manufacture

Similar Documents

Publication Publication Date Title
JP2815091B2 (en) Manufacturing method of slender superconductor
JP2571574B2 (en) Oxide superconductor and method of manufacturing the same
JPH01279507A (en) Manufacture of ceramic superconductor
JP2604379B2 (en) Manufacturing method of ceramic superconducting wire
JP3049314B1 (en) Manufacturing method of oxide superconducting composite wire
JPH0577602B2 (en)
JPH07282659A (en) Manufacture of high temperature superconducting wire rod
JPH01281611A (en) Ceramic superconducting wire
JPH05211013A (en) Oxide superconductor and manufacture thereof
JP2670362B2 (en) Method for manufacturing conductor for current lead
JPH04262308A (en) Oxide superconductive wire rod
JPH01144524A (en) Manufacture of ceramic-based superconductive wire
JPH01143108A (en) Manufacture of ceramics superconductive wire
JP2727565B2 (en) Superconductor manufacturing method
JPH01144527A (en) Manufacture of ceramic-based superconductive wire
JPH06349348A (en) Oxide superconductive wire material and manufacture thereof
JPH01149307A (en) Ceramic superconductive wire
JPH01149321A (en) Manufacture of ceramic superconductive wire
JPH01149317A (en) Manufacture of ceramic superconductive wire
JPH04259203A (en) Manufacture of ceramic superconductor coil
JPH01144525A (en) Manufacture of ceramic-based superconductive wire
JPH01149318A (en) Manufacture of ceramic superconductive wire
JPH01144515A (en) Ceramic-based superconductive cable
JPH01149316A (en) Manufacture of ceramic superconductive wire
JP2006165342A (en) Method for manufacturing superconductive coil