JPH01144525A - Manufacture of ceramic-based superconductive wire - Google Patents

Manufacture of ceramic-based superconductive wire

Info

Publication number
JPH01144525A
JPH01144525A JP62301791A JP30179187A JPH01144525A JP H01144525 A JPH01144525 A JP H01144525A JP 62301791 A JP62301791 A JP 62301791A JP 30179187 A JP30179187 A JP 30179187A JP H01144525 A JPH01144525 A JP H01144525A
Authority
JP
Japan
Prior art keywords
ceramic
fiber
wire
superconducting wire
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62301791A
Other languages
Japanese (ja)
Other versions
JP2573506B2 (en
Inventor
Etsuo Hosokawa
細川 悦雄
Takeo Shiono
武男 塩野
Takayo Hasegawa
隆代 長谷川
Toshio Kasahara
敏夫 笠原
Masatada Fukushima
福島 正忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP62301791A priority Critical patent/JP2573506B2/en
Publication of JPH01144525A publication Critical patent/JPH01144525A/en
Application granted granted Critical
Publication of JP2573506B2 publication Critical patent/JP2573506B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a wire material of excellent flexibility and stability by covering the outer side of a ceramic fiber with a mixed solution of a ceramic superconductive material, sintering the material and covering them with a stabi lizing member of metal or alloy. CONSTITUTION:An application device 3 and a baking oven 4 are arranged between a reel out bobbin 1 wound with ceramic fiber W and a winding bobbin 2 so that the fiber W is routed via the guide reels 5-8. Then, octylic acid yttrium, octylic acid barium, and naphthenic acid copper are uniformly mixed and held in an application tub 3b for Y-Ba-Cu-O-based ceramic. The SiC-based fiber is then passed through the device 3 and the oven 4 for six times to form a primary sintered layer on the fiber W. The wire material is then heated at a high temperature for a long time to form a sintered layer, on the outer circumference of which is deposited copper by evaporation. This makes it pos sible to obtain long-sized, stabilized wire material having excellent flexibility and a high specified current density.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は超電導線の製造方法に係り、特にセラミックス
系超電導線の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a superconducting wire, and particularly to a method for manufacturing a ceramic superconducting wire.

(従来の技術) 近年、特に昨年の秋以降、セラミックス超電導体の開発
が世界中で急ピッチで進められている。
(Conventional Technology) In recent years, especially since last fall, the development of ceramic superconductors has been progressing at a rapid pace all over the world.

この超電導体は、従来の最高の臨界温度を示すNb1G
eの23Kを大巾に越えるもので、Ba−La−Cu−
0系セラミンクス(臨界温度35K) 、La−8r−
Cu−0系セラミックス(超電導開始温度37に以上)
、La−Ca−Cu−0系セラミックス、Y−Ba−C
u−Q系セラミックス(ゼロ抵抗温度93K)等のほか
、本年に入って233にあるいは300に以上の臨界温
度を示すセラミックスも報告されている。
This superconductor is Nb1G, which has the highest conventional critical temperature.
It greatly exceeds 23K of e, and is Ba-La-Cu-
0 series ceramics (critical temperature 35K), La-8r-
Cu-0 ceramics (superconductivity starting temperature 37 or higher)
, La-Ca-Cu-0 ceramics, Y-Ba-C
In addition to u-Q ceramics (zero resistance temperature of 93K), ceramics that exhibit a critical temperature of 233 or more than 300 have been reported this year.

このようにセラミックス超電導材料は臨界温度が液体窒
素温度以上や室温で用いることができる可能性があり、
この場合、高価な液体ヘリウムを使用しなくて済むため
、経済的に極めて有利となるほか、超電導発電機等に使
用されると構造がシンプルで熱機関の効率も向上する等
の利点を有する。
In this way, it is possible that ceramic superconducting materials can be used at critical temperatures higher than the liquid nitrogen temperature or at room temperature.
In this case, there is no need to use expensive liquid helium, which is extremely advantageous economically, and when used in a superconducting generator or the like, the structure is simple and the efficiency of the heat engine is improved.

しかしながら、セラミックスは硬くて、かつ脆いため、
現在実用化されているNb−Ti系やNbz Sn系超
電導線のように曲げたり、あるいはコイル巻きすること
ができず、この点を克服することが実用化への第1歩と
なる。
However, since ceramics are hard and brittle,
Unlike the Nb-Ti and Nbz Sn superconducting wires that are currently in practical use, it cannot be bent or coiled, and overcoming this point is the first step toward practical use.

現在線材の製造方法として、 ■アモルファスのテープあるいは線材を酸素雰囲気下で
加熱処理する方法、 0合金管(たとえばCu−Ni合金)の内部に原料の粉
末を充填し、両端を引張って線材やテープ状に成形する
方法、 ■銅系合金管内にセラミックスを充填し、熱処理および
圧延加工等を施して線材やテープ状に成形する方法、等
が提案されている。
Currently, there are two methods for manufacturing wire rods: 1) A method of heat-treating amorphous tape or wire in an oxygen atmosphere; 2) A method of filling raw material powder inside a 0 alloy tube (for example, Cu-Ni alloy) and pulling both ends to produce wire or tape. 2) A method of filling a copper alloy tube with ceramics, subjecting it to heat treatment, rolling, etc., and forming it into a wire or tape shape, etc. have been proposed.

しかしながら、上記■の方法においては、極めて息速な
冷却を必要とする上、極めて細い線材や薄膜のテープし
か得られず、実用線材を得る方法としては、難点を有し
ており、上記■の方法では長尺の線材を連続的に製造す
ることが困難であり、上記■の方法では線材の定長が当
初の銅合金管の外径によって制限される上、加工工程が
?!雑となる難点がある。この場合、セラミックス超電
導体生成の熱処理は、超電導特性向上の観点から成形後
、すなわち最終線径近傍で施すことが望ましいが、銅系
合金管で被覆されているため成形後に内部に酸素を供給
することが極めて困難であり、実際上不可能である。
However, method (2) above requires extremely rapid cooling and can only yield extremely thin wire or thin film tape, which is problematic as a method for obtaining practical wires. It is difficult to continuously manufacture long wire rods using this method, and in method (2) above, the fixed length of the wire rod is limited by the outer diameter of the initial copper alloy tube, and the processing process is difficult. ! There is a problem with it being complicated. In this case, it is desirable that the heat treatment for producing the ceramic superconductor be performed after forming, that is, near the final wire diameter, from the perspective of improving superconducting properties, but since it is covered with a copper alloy tube, oxygen is supplied inside after forming. This is extremely difficult and practically impossible.

(発明が解決しようとする問題点) 本発明は、上記の難点を解決するためになされたもので
、アモルファス化のための急速冷却を必要とせず、長尺
の線材を容易に製造することができる上、酸化性雰囲気
中での熱処理を長尺の線材の状態で施すことができ、か
つ高い臨界電流密度の実用線材を製造することが可能な
セラミックス系超電導線の製造方法を提供することをそ
の目的とする。
(Problems to be Solved by the Invention) The present invention was made to solve the above-mentioned difficulties, and it is possible to easily manufacture a long wire rod without requiring rapid cooling to make it amorphous. It is an object of the present invention to provide a method for producing a ceramic superconducting wire, which can be heat-treated in an oxidizing atmosphere in the form of a long wire, and which can produce a practical wire with a high critical current density. That purpose.

[発明の構成] (問題点を解決するための手段) 本発明のセラミックス系超電導線の製造方法は、 (イ)セラミックファイバの外周に、酸素を除くセラミ
ックス超電導物質の構成元素を含む金属塩あるいは該金
属塩を溶媒中に分散した混合溶液を被着する工程と、 (ロ)次いで前記被着物質を焼結する工程と、(ハ)こ
の焼結層の外周に金属またはその合金よりなる安定化材
を被覆する工程とからなることを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The method for manufacturing a ceramic superconducting wire of the present invention includes (a) adding a metal salt or a metal salt containing a constituent element of a ceramic superconducting material excluding oxygen to the outer periphery of a ceramic fiber; a step of depositing a mixed solution of the metal salt dispersed in a solvent; (b) a step of sintering the deposited material; and (c) a stable layer made of a metal or an alloy thereof on the outer periphery of the sintered layer. The method is characterized by comprising a step of covering the chemical material.

上記のセラミックファイバとしては炭化ケイ素(SiC
)系あるいは酸化物系のものを用いることができる。
The above ceramic fiber is made of silicon carbide (SiC
) type or oxide type can be used.

これらのファイバは連続長繊維で、1000〜1300
℃以上の高い耐熱性と200〜250ka/−以上の引
張強さを有しており、その平均直径はたとえば10〜1
3μlφと極めて小さいものがあり、もちろんこれより
大径のものを用いることもできる。前者のSiC系ファ
イバとしては、たとえばチラノ繊維(宇部興産株式会社
製5i−Ti−C−0系ファイバ商品名)やニカロン(
日本カーボン株式会社製SiC系ファイバ商品名)をあ
げることができ、後者の酸化物系ファイバとしてはサフ
ィル(英国1nperialChe1cal Indu
stries PLC−ICI製Al2O3ファイバ商
品名)等の他Si02系フアイバを用いることができる
These fibers are continuous filaments, with a diameter of 1000 to 1300
It has high heat resistance of ℃ or more and tensile strength of 200 to 250 ka/- or more, and its average diameter is, for example, 10 to 1
There is one as small as 3 μlφ, and of course one with a larger diameter can also be used. Examples of the former SiC fiber include Tyranno fiber (trade name of 5i-Ti-C-0 fiber manufactured by Ube Industries, Ltd.) and Nicalon (
Examples of the latter oxide fiber include SiC fiber (product name of Nippon Carbon Co., Ltd.), and examples of the latter oxide fiber include Safil (trade name of
Other Si02 fibers such as Stries PLC-ICI Al2O3 fiber (trade name) can also be used.

上記のファイバはその体積固有抵抗が106Ωcm以下
であることが好ましい4体積固有抵抗が上記の範囲であ
ると臨界温度以上に超電導線の温度が上昇したとき、に
、電流がファイバ内を流れ易くなり破壊し難くなるため
である0体積固有抵抗が高いと臨界温度以上になったと
きに端子電圧が上昇し破壊し易くなる。体積固有抵抗が
小さければロスの発生も少なく好都合である。
It is preferable that the above-mentioned fiber has a volume resistivity of 106 Ωcm or less. 4. If the volume resistivity is within the above range, when the temperature of the superconducting wire rises above the critical temperature, current will easily flow within the fiber. If the zero volume resistivity is high, the terminal voltage will rise when the temperature exceeds the critical temperature, making it difficult to break down. If the volume resistivity is small, loss will occur less, which is advantageous.

セラミックス超電導物質としては、たとえばYBa2 
Cu30x (x <14 :ペロブスカイト)やこれ
にF等を添加したものがあり、この場合、酸素を除く超
電導物質の構成元素はY、 BaおよびCuである。
Examples of ceramic superconducting materials include YBa2
There are Cu30x (x < 14: perovskite) and those to which F, etc. are added, and in this case, the constituent elements of the superconducting material excluding oxygen are Y, Ba, and Cu.

上記の構成元素を含む金属塩としては、脂肪酸。Examples of metal salts containing the above constituent elements include fatty acids.

樹脂酸、ナフテン酸等のアルカリ塩以外の金属塩、すな
わち金属石けんが用いられる他、硝酸塩や蓚酸塩を用い
ることができる。
In addition to metal salts other than alkali salts such as resin acids and naphthenic acids, that is, metal soaps, nitrates and oxalates can also be used.

前者の金属石けんは常態の液状でセラミックファイバの
外周に被着するか、あるいはキシレン。
The former metal soap is either in a normal liquid state and coats the outer periphery of the ceramic fiber, or it is made of xylene.

トルエン、ナフサ等の溶媒に均一に分散せしめてこれを
被着する。一方後者の金属塩は通常溶媒中に均一に分散
せしめた混合溶液として用いられる。
It is uniformly dispersed in a solvent such as toluene or naphtha, and then applied. On the other hand, the latter metal salt is usually used as a mixed solution uniformly dispersed in a solvent.

セラミックファイバの外周に被着せしめられる液状物質
中の各構成元素の原子数比はセラミックス超電導物質を
構成する原子数比に一致するように配合される。
The atomic ratio of each constituent element in the liquid material coated on the outer periphery of the ceramic fiber is blended so as to match the atomic ratio of the components constituting the ceramic superconducting material.

セラミックス超電導物質の焼結層の生成は、酸素気流中
あるいは酸素加圧下で酸化調整しながら700〜100
0℃に加熱して、特性の改善が図られる。
The generation of a sintered layer of ceramic superconducting material is carried out at a temperature of 700 to 100 while adjusting oxidation in an oxygen stream or under oxygen pressure.
The properties are improved by heating to 0°C.

この焼結層の外側に安定化材が被覆されるが、この安定
化材としては、たとえば銀、銅、アルミニウムまたはこ
れらの合金をメツキや蒸着により、たとえば0.1〜1
0μmの厚さに施すことができ、この外側に通常絶縁被
膜が施される。絶縁被膜としては有機あるいは無機材料
が用いられ、前者の有機絶縁被膜としてはuv硬化ウレ
タン樹脂やPVFエナメルを、一方後者の無機絶縁被膜
としてはアルミナやポリボロシロキサン樹脂等をあげる
ことができる。
A stabilizing material is coated on the outside of this sintered layer, and as this stabilizing material, for example, silver, copper, aluminum, or an alloy thereof is plated or vapor-deposited in a concentration of, for example, 0.1 to 1.
It can be applied to a thickness of 0 μm, and an insulating coating is usually applied on the outside. Organic or inorganic materials are used as the insulating coating, and the former organic insulating coating includes UV-curable urethane resin and PVF enamel, while the latter inorganic insulating coating includes alumina, polyborosiloxane resin, and the like.

(作用) 本発明の方法においては、セラミックファイバの外側に
、酸素を除くセラミックス超電導物質の構成元素を含む
金属塩あるいはこのような金属塩の混合溶液を被着した
後、焼結するため、長尺の線材を容易に製造することが
でき、かつファイバがセラミックスよりなるため超電導
物質との熱膨張の差も小さく、かつ密着性も良好である
(Function) In the method of the present invention, a metal salt containing constituent elements of the ceramic superconducting material excluding oxygen or a mixed solution of such metal salts is deposited on the outside of the ceramic fiber, and then sintered. It is possible to easily produce long wire rods, and since the fiber is made of ceramics, the difference in thermal expansion with the superconducting material is small, and the adhesion is also good.

すなわち上記の良好な密着性の達成とセラミックスの加
工を不要としたことにより、長尺線材の製造を可能にす
る。また液状の金属塩や金属塩を含む混合溶液を用いる
ことにより、エナメル線の製造工程と同様の方法を採用
することができる。
That is, by achieving the above-mentioned good adhesion and eliminating the need for processing ceramics, it is possible to manufacture long wire rods. Further, by using a liquid metal salt or a mixed solution containing a metal salt, a method similar to the manufacturing process of enamelled wire can be adopted.

(実施例) 以下本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

図は本発明によるセラミックス超電導線を製造するため
の装置の概略を示したもので、セラミックファイバWを
巻回した送出しボビン1と巻取りボビン2との間に塗布
装置3および焼付炉4が順に配置され、ファイバWはガ
イドリール5〜8を介して塗布装置3と焼付炉4を所定
回数通過することにより、塗布ロール3aを介して塗布
槽3b内に収容された液状の金属塩あるいは金属塩を含
む混合溶液りが複数層に亘って塗布焼付けされる。
The figure schematically shows an apparatus for manufacturing a ceramic superconducting wire according to the present invention, in which a coating device 3 and a baking furnace 4 are installed between a delivery bobbin 1 on which ceramic fiber W is wound and a winding bobbin 2. The fibers W pass through the coating device 3 and the baking furnace 4 a predetermined number of times via the guide reels 5 to 8, so that the liquid metal salt or metal contained in the coating tank 3b is coated via the coating roll 3a. A mixed solution containing salt is applied and baked in multiple layers.

なお9は絞りダイスである。Note that 9 is a drawing die.

実施例1 オクチル酸イツトリウム(Y分8wt%)を100g。Example 1 100g of yttrium octylate (Y content 8wt%).

オクチル酸バリウム(Ba分8wt%)を310(lお
よびナフテン酸銅(Cu分5wt%)を3429を均一
に混合し塗布槽3b内に収容した。セラミックファイバ
Wは外径10μmφSiC系ファイバ(ニカロン;日本
カーボン株式会社製商品名)を用い、上記の塗布装置お
よび炉長51、炉温300〜400℃の焼付炉4に6回
通過せしめてセラミックファイバW上にg!厚7μmの
一次焼結層を形成した。次いでこのようにして得られた
線材を950℃で2時間加熱し焼結層を形成した。この
焼結層の膜厚は1.8μmであった。さらにこの焼結層
の外周に銅を蒸着した線材の1000本を集合撚りして
その特性を測定した結果、臨界温度(Tc )は85K
、臨界電流密度(Jc )は(0,5〜1.0)x 1
0’ Aid (at77K)であった。
Barium octylate (Ba content 8wt%) 310 (l) and copper naphthenate (Cu content 5wt%) 3429 were uniformly mixed and housed in the coating tank 3b.The ceramic fiber W was a SiC fiber (Nicalon; Nippon Carbon Co., Ltd. (trade name)) was passed through the above-mentioned coating device and the baking furnace 4 with a furnace length 51 and a furnace temperature of 300 to 400°C six times to form a primary sintered layer with a thickness of 7 μm on the ceramic fiber W. The wire thus obtained was then heated at 950°C for 2 hours to form a sintered layer.The thickness of this sintered layer was 1.8 μm.The outer periphery of this sintered layer was The critical temperature (Tc) was found to be 85K by twisting together 1000 wires with copper deposited on them and measuring their properties.
, the critical current density (Jc) is (0,5~1.0) x 1
0' Aid (at77K).

なお上記の実施例では銅を蒸着した後、これらの多数本
を集合撚りしたが、これを集合撚りした後に銅を蒸着し
てもよい。
In the above embodiment, a large number of these fibers were twisted together after copper was vapor-deposited, but copper may be vapor-deposited after these fibers were twisted together.

実施例2 実施例1と同一のセラミックファイバを用い、予めこの
ファイバの外周にナフテン酸マグネシウム(M(]分3
vt% )を2回塗布焼付けした後、800℃で焼結し
て酸化マグネシウム層を形成しな。
Example 2 The same ceramic fiber as in Example 1 was used, and magnesium naphthenate (M() 3
vt%) twice and baked, and then sintered at 800°C to form a magnesium oxide layer.

以下焼結条件を900°Cで4時間とした以外は実施例
1と同様の方法で超電導線を製遺し、これらの1000
本を集合撚りしてその特性を測定した結果、Tc=87
に、Jc =(1〜2)x10’八八j (at77K
)であった。
Superconducting wires were produced in the same manner as in Example 1 except that the sintering conditions were 900°C for 4 hours, and 1000 of these
As a result of collectively twisting books and measuring their properties, Tc = 87
, Jc = (1~2)x10'88j (at77K
)Met.

この場合、実施例1に比叙してJCが増加したのはベロ
ブスカイ!・結晶の成長の差によるものと考えられる。
In this case, compared to Example 1, the JC increased because of Belovsky! - This is thought to be due to differences in crystal growth.

実施例3 硝酸イットリ、ラム(Y(N(h ) a ・XlI2
0;Y分27wt% )を329g、硝酸バリウム(B
a(No 3 ) 2 ;Ba分52.5wtX )を
523gおよび硝酸@ (Cu(No 3 ) 2−3
H20HCu分26.3wt%)を6259を蓚酸水溶
液中に溶解してpH=7に調整した混合液を塗布槽3b
内に収容し、この塗布槽と焼付炉4との間にpH=8.
5に自動調整された稀アンモニア水を収容した槽を配置
して、以下実施例1と同様の方法で外径10μmφのS
iC系ファイバ上にY、 Ba、 cuを含有する固型
物を沈澱させた後、焼付ける工程を6回繰返してファイ
バ上に7.3μlの厚さの被膜を形成した。これの10
00本を集合撚りした後、850℃で2時間焼結した。
Example 3 Yttri nitrate, rum (Y(N(h) a ・XlI2
0; Y content 27 wt%), 329 g of barium nitrate (B
523 g of a(No 3 ) 2 ; Ba content 52.5 wtX) and nitric acid @ (Cu(No 3 ) 2-3
A mixed solution prepared by dissolving 6259 (H20HCu content: 26.3 wt%) in an oxalic acid aqueous solution and adjusting the pH to 7 was applied to coating tank 3b.
Between this coating tank and the baking furnace 4, a pH of 8.
A tank containing automatically adjusted dilute ammonia water was placed in No.
After precipitating a solid substance containing Y, Ba, and cu on the iC-based fiber, the baking process was repeated six times to form a film with a thickness of 7.3 μl on the fiber. 10 of these
After 00 pieces were twisted together, they were sintered at 850°C for 2 hours.

この時の焼結層の膜厚は3.1μl″Cあった。さらに
この焼結層の外側にA(+を蒸着した線材の特性を測定
した結果、Tc =86K 、 J c = (0,5
〜1)x 10’ AIcd (at77K)であった
The film thickness of the sintered layer at this time was 3.1 μl''C.Furthermore, as a result of measuring the characteristics of the wire with A(+ deposited on the outside of this sintered layer), Tc = 86K, Jc = (0, 5
~1) x 10' AIcd (at77K).

[発明の効果] 以上述べたように本発明のセラミックス系超電導線の製
造方法によれば、セラミックファイバの外側にセラミッ
クス超電導物質の焼結層を形成することにより、長尺の
機械的および電気的に安定した線材を容易に製造するこ
とができるとともに、高い電流密度の超電導線を得るこ
とができる。
[Effects of the Invention] As described above, according to the method for manufacturing a ceramic superconducting wire of the present invention, by forming a sintered layer of a ceramic superconducting material on the outside of a ceramic fiber, long mechanical and electrical It is possible to easily produce a wire rod that is stable in terms of properties, and also to obtain a superconducting wire with a high current density.

本発明によって製造された超電導線は可撓性に優れるた
め、これらの複数本を用いて集合線、撚線あるいは編組
線を容易に形成することができ、このようにして得られ
た線材をコイル巻きした後、エナメルワニスを含浸して
超電導マグネットを製作することができる。
Since the superconducting wire manufactured according to the present invention has excellent flexibility, a plurality of these wires can be used to easily form an assembled wire, a stranded wire, or a braided wire, and the wire obtained in this way can be used to form a coil. After winding, it can be impregnated with enamel varnish to create a superconducting magnet.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明のセラミックス系超電導線の製造方法に用い
られる装置の一実施例を示す概略図である。 3・・・・・・・・・塗布装置 4・・・・・・・・・焼付炉 W・・・・・・・・・セラミックファイバL・・・・・
・・・・液状の金属塩あるいは金属塩を含む混合溶液 出願人     昭和電線電纜株式会社代理人 弁理士
 須 山 佐 − (ほか1名)
The figure is a schematic diagram showing an embodiment of an apparatus used in the method of manufacturing a ceramic superconducting wire of the present invention. 3... Coating device 4... Baking furnace W... Ceramic fiber L...
...Liquid metal salt or mixed solution containing metal salt Applicant: Showa Cable and Wire Co., Ltd. Representative Patent attorney: Satoshi Suyama - (1 other person)

Claims (6)

【特許請求の範囲】[Claims] (1)(イ)セラミックファイバの外周に、酸素を除く
セラミックス超電導物質の構成元素を含む金属塩あるい
は該金属塩を溶媒中に分散した混合溶液を被着する工程
と、 (ロ)次いで前記被着物質を焼結する工程と、(ハ)こ
の焼結層の外周に金属またはその合金よりなる安定化材
を被覆する工程とからなることを特徴とするセラミック
ス系超電導線の製造方法。
(1) (a) A step of coating the outer periphery of the ceramic fiber with a metal salt containing constituent elements of the ceramic superconducting material excluding oxygen or a mixed solution of the metal salt dispersed in a solvent; A method for manufacturing a ceramic superconducting wire, comprising the steps of: sintering a deposited material; and (c) coating the outer periphery of the sintered layer with a stabilizing material made of a metal or an alloy thereof.
(2)セラミックファイバは、、炭化ケイ素系あるいは
酸化物系ファイバである特許請求の範囲第1項記載のセ
ラミックス系超電導線の製造方法。
(2) The method for manufacturing a ceramic superconducting wire according to claim 1, wherein the ceramic fiber is a silicon carbide fiber or an oxide fiber.
(3)超電導物質は、Y−Ba−Cu−O系セラミック
スである特許請求の範囲第1項あるいは第2項記載のセ
ラミックス系超電導線の製造方法。
(3) The method for manufacturing a ceramic superconducting wire according to claim 1 or 2, wherein the superconducting material is a Y-Ba-Cu-O ceramic.
(4)金属塩は、金属石けんである特許請求の範囲第1
項ないいし第3項のいずれか1項記載のセラミックス系
超電導線の製造方法。
(4) The first claim is that the metal salt is a metal soap.
A method for manufacturing a ceramic superconducting wire according to any one of Items 1 to 3.
(5)金属塩は、硝酸塩あるいは蓚酸塩である特許請求
の範囲第1項ないいし第3項のいずれか1項記載のセラ
ミックス系超電導線の製造方法。
(5) The method for producing a ceramic superconducting wire according to any one of claims 1 to 3, wherein the metal salt is a nitrate or an oxalate.
(6)セラミックファイバは、その体積固有抵抗が10
^5Ωcm以下である特許請求の範囲第2項記載のセラ
ミックス系超電導線の製造方法。
(6) Ceramic fiber has a volume resistivity of 10
The method for manufacturing a ceramic superconducting wire according to claim 2, wherein the ceramic superconducting wire has a resistance of ^5 Ωcm or less.
JP62301791A 1987-11-30 1987-11-30 Manufacturing method of ceramic superconducting wire Expired - Lifetime JP2573506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62301791A JP2573506B2 (en) 1987-11-30 1987-11-30 Manufacturing method of ceramic superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62301791A JP2573506B2 (en) 1987-11-30 1987-11-30 Manufacturing method of ceramic superconducting wire

Publications (2)

Publication Number Publication Date
JPH01144525A true JPH01144525A (en) 1989-06-06
JP2573506B2 JP2573506B2 (en) 1997-01-22

Family

ID=17901220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62301791A Expired - Lifetime JP2573506B2 (en) 1987-11-30 1987-11-30 Manufacturing method of ceramic superconducting wire

Country Status (1)

Country Link
JP (1) JP2573506B2 (en)

Also Published As

Publication number Publication date
JP2573506B2 (en) 1997-01-22

Similar Documents

Publication Publication Date Title
US6344287B1 (en) High temperature compatible insulation for superconductors and method of applying insulation to superconductors
JPH01144525A (en) Manufacture of ceramic-based superconductive wire
JPH01144526A (en) Manufacture of ceramic-based superconductive wire
JPH01149319A (en) Manufacture of ceramic superconductive wire
JPH02270222A (en) Ceramic superconducting wire and manufacture thereof
JPH01149320A (en) Manufacture of ceramic superconductive wire
JP2651018B2 (en) High magnetic field magnet
JPH01149321A (en) Manufacture of ceramic superconductive wire
JP2604379B2 (en) Manufacturing method of ceramic superconducting wire
JPH01144524A (en) Manufacture of ceramic-based superconductive wire
JPH01143108A (en) Manufacture of ceramics superconductive wire
JP4373683B2 (en) Method for manufacturing Bi-based oxide superconducting coil
JPH01149306A (en) Ceramic superconductive wire
JPH01144527A (en) Manufacture of ceramic-based superconductive wire
JPH01149322A (en) Manufacture of ceramic superconductive wire
JPH01144515A (en) Ceramic-based superconductive cable
JPS63274017A (en) Superconductive wire material
JPH0362905A (en) Manufacture of superconducting coil
JPH01149316A (en) Manufacture of ceramic superconductive wire
JPH01144528A (en) Manufacture of ceramic-base superconductive wire
JPH01144514A (en) Ceramic-based superconductive cable
JPH01149317A (en) Manufacture of ceramic superconductive wire
JPH05266730A (en) Manufacture of ceramic superconducting wire
JPH01149307A (en) Ceramic superconductive wire
JP2670362B2 (en) Method for manufacturing conductor for current lead