JPH01144514A - Ceramic-based superconductive cable - Google Patents

Ceramic-based superconductive cable

Info

Publication number
JPH01144514A
JPH01144514A JP62301795A JP30179587A JPH01144514A JP H01144514 A JPH01144514 A JP H01144514A JP 62301795 A JP62301795 A JP 62301795A JP 30179587 A JP30179587 A JP 30179587A JP H01144514 A JPH01144514 A JP H01144514A
Authority
JP
Japan
Prior art keywords
ceramic
layer
fiber
circumference
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62301795A
Other languages
Japanese (ja)
Inventor
Etsuo Hosokawa
細川 悦雄
Takeo Shiono
武男 塩野
Takayo Hasegawa
隆代 長谷川
Toshio Kasahara
敏夫 笠原
Masatada Fukushima
福島 正忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP62301795A priority Critical patent/JPH01144514A/en
Publication of JPH01144514A publication Critical patent/JPH01144514A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a ceramic-based superconductive cable having a high strength and facilitating making itself of a long size by disposing a sintered layer and a stabilizing layer made of a ceramic superconductive material in this order on the circumference of a long-sized ceramic fiber. CONSTITUTION:An SiC-based ceramic fiber 4 is passed over a lower guide reel 5 through a passage hole of an insert 6, passes through a melting crucible 1, and its circumference is applied by means of a die 7 with a molten liquid of YBa2Cu3 alloy 3 of a Y-Ba-Cu-O family contained in the crucible 1. A sintered layer of ceramic superconductive material is then formed by heating in an oxygen flow at 700-1000 deg.C. After sintering, the circumference of the wire is plated with silver or copper. Finally, an organic insulation paint, formal varnish for example, is applied and baked on the circumference of the plated layer. The plated layer is applied as a stabilization material and for mechanical protection and for facilitating terminal attachment. The ceramic superconductive cable 10 obtained has a construction in which a sintered layer 12, stabilization layer 13, and an insulation layer 14 in this order are formed on the circumference of the fiber 11.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はセラミックス系の超電導物質を用いた超電導線
に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a superconducting wire using a ceramic superconducting material.

(従来の技術) 近年、特に昨年の秋以降、セラミックス超電導体の開発
が世界中で急ピッチで進められている。
(Conventional Technology) In recent years, especially since last fall, the development of ceramic superconductors has been progressing at a rapid pace all over the world.

この超電導体は、従来の最高の臨界温度を示すNb、G
eの23Kを大巾に越えるもので、Ba−La−Cu−
0系セラミックス(臨界温度35K > 、La−3r
−Cu−0系セラミックスく超電導開始温度37に以上
)、La−Ca−Cu−0系セラミックス、Y−Ba−
Cu−0系セラミックス(ゼロ抵抗温度93K)等のほ
か、本年に入って233にあるいは常温以上の臨界温度
を示すセラミックスも報告されている。
This superconductor exhibits the highest critical temperature of Nb, G
It greatly exceeds 23K of e, and is Ba-La-Cu-
0 series ceramics (critical temperature 35K > , La-3r
-Cu-0 series ceramics (superconductivity starting temperature 37 or higher), La-Ca-Cu-0 series ceramics, Y-Ba-
In addition to Cu-0 ceramics (zero resistance temperature of 93K), ceramics that exhibit a critical temperature of 233 degrees or higher than room temperature have been reported this year.

このようにセラミックス超電導材料は臨界温度が液体窒
素温度以上や室温で用いることができる可能性があり、
この場合、高価な液体ヘリウムを使用しなくても済むた
め、経済的に極めて有利となるほか、超電導発電機等に
使用されると構造がシンプルで熱機関の効率も向上する
等の利点を有する。
In this way, it is possible that ceramic superconducting materials can be used at critical temperatures higher than the liquid nitrogen temperature or at room temperature.
In this case, there is no need to use expensive liquid helium, which is extremely economical, and when used in superconducting generators, etc., the structure is simple and the efficiency of the heat engine is improved. .

しかしながら、セラミックスは硬くて、かつ脆いため、
現在実用化されているNb−Ti系やNb3Sn系超電
導線のように曲げたり、あるいはコイル巻きすることが
できず、この点を克服することが実用化への第1歩とな
る。
However, since ceramics are hard and brittle,
Unlike the Nb-Ti and Nb3Sn superconducting wires that are currently in practical use, it cannot be bent or coiled, and overcoming this point is the first step toward practical use.

現在線材の製造方法として、アモルファスのテープある
いは線材を酸素雰囲気下で加熱処理する方法や銅系合金
管内にセラミックスを充填し、熱処理および圧延加工等
を施して線材やテープ状に成形する方法等が提案されて
いる。
Currently, methods for manufacturing wire rods include heat-treating amorphous tapes or wire rods in an oxygen atmosphere, and filling ceramics into copper-based alloy tubes, then heat-treating and rolling them to form wire rods or tapes. Proposed.

しかしながら、前者の方法による線材は。その製造時に
極めて急速の冷却を必要とする上、熱処理後の線材は脆
いため、これをコイル状に成形する際に電磁力に対抗す
るため高張力で巻回することができないという器点を有
し、後者の方法による線材は、その定長が銅系合金管の
外径によって制限される上、加工工程が複雑となる難点
がある。
However, the wire rod made by the former method. In addition, extremely rapid cooling is required during manufacturing, and the wire after heat treatment is brittle, so when forming it into a coil, it cannot be wound with high tension to resist electromagnetic force. However, the wire produced by the latter method has the disadvantage that its fixed length is limited by the outer diameter of the copper alloy tube and that the processing process is complicated.

この場合セラミックス超電導物質生成の熱処理は銅系合
金管で被覆されているため、成形後に施すことができず
十分な特性が得られない。さらに前者と同様にコイル巻
き時に必要な強度が得られないという難点も有する。
In this case, the heat treatment for producing the ceramic superconducting material cannot be performed after molding because the tube is covered with a copper-based alloy tube, and sufficient characteristics cannot be obtained. Furthermore, like the former, it also has the disadvantage that the necessary strength cannot be obtained during coil winding.

(発明が解決しようとする問題点) 本発明は上記の難点を解決するためになされたもので、
アモルファス化のための急速冷却を必要とせず、長尺化
を容易に図ることができる上、高強度のセラミックス系
超電導線を提供することをその目的とする。
(Problems to be solved by the invention) The present invention has been made to solve the above-mentioned difficulties.
The object of the present invention is to provide a ceramic superconducting wire that does not require rapid cooling to become amorphous, can be easily made into a long length, and has high strength.

[発明の構成] (問題点を解決するための手段) 本発明のセラミックス系超電導線は、長尺のセラミック
ファイバの外周に、セラミ−ツクス超電導物質よりなる
焼結層および安定化層を順に設けたことを特徴としてい
る。
[Structure of the Invention] (Means for Solving the Problems) The ceramic superconducting wire of the present invention includes a sintered layer and a stabilizing layer made of a ceramic superconducting material, which are sequentially provided around the outer periphery of a long ceramic fiber. It is characterized by

本発明におけるセラミックファイバとしては炭化ケイ素
(SiC)系あるいは酸化物系のものを用いることがで
きる。
As the ceramic fiber in the present invention, silicon carbide (SiC)-based or oxide-based ceramic fibers can be used.

これらのファイバは連続長繊維で、1000〜1300
℃以上の高い耐熱性と200〜250ka/−以上の引
張強さを有しており、その平均直径は、たとえば10〜
13μlφと極めて小さいものがあり、もちろんこれよ
り大径のものを用いることもできる。前者のSiC系フ
ァイバとしては、たとえばチラノ11I維(宇部興産株
式会社製5i−Ti−C−0系ファイバ商品名)やニカ
ロン(日本カーボン株式会社製SiC系ファイバ商品名
)をあげることができ、後者の酸化物系ファイバとして
はサフィル(英国ImperialChelical 
Industries PLC−ICI製^12037
フイバ°商品名)等の他SiO2系フアイバを用いるこ
とができる。
These fibers are continuous filaments, with a diameter of 1000 to 1300
It has a high heat resistance of ℃ or more and a tensile strength of 200 to 250 ka/- or more, and its average diameter is, for example, 10 to 250 ka/- or more.
There is one as extremely small as 13 μlφ, but of course one with a larger diameter can also be used. Examples of the former SiC fiber include Tyrano 11I fiber (5i-Ti-C-0 fiber trade name manufactured by Ube Industries, Ltd.) and Nicalon (SiC fiber trade name manufactured by Nippon Carbon Co., Ltd.). The latter oxide fiber is manufactured by Safil (Imperial Chemical Co., Ltd., UK).
Industries PLC-ICI ^12037
In addition to fiber (trade name), SiO2-based fibers can be used.

上記のファイバはその体積固有抵抗が105ΩC1以下
であることが好ましい0体積固有抵抗が上記の範囲であ
ると臨界温度以上に超電導線の温度が上昇したときに、
電流がファイバ内を流れ易くなり破壊し難くなるためで
ある。体積固有抵抗が高いと臨界温度以上になったとき
に端子電圧が上昇し破壊し易くなる9体積固有抵抗が小
さければロスの発生も少なく好都合である。
It is preferable that the above-mentioned fiber has a volume resistivity of 105ΩC1 or less.If the zero volume resistivity is within the above range, when the temperature of the superconducting wire rises above the critical temperature,
This is because current flows through the fiber more easily and it becomes difficult to break it. If the volume resistivity is high, the terminal voltage will increase when the temperature exceeds the critical temperature, making it easier to break down.9 If the volume resistivity is low, less loss will occur, which is advantageous.

セラミックファイバの外周に形成される焼結層−とじて
は、たとえばY−Ba−Cu−0系のYBa2 Cu3
0x(x<14;ペロブスカイト)やこれにF等の元素
を添加したものをあげることができる。この焼結層は超
電導物質あるいはこの微粉末を分散せしめた溶液をセラ
ミックファイバ上に被着せしめた後、焼結するか、ある
いは酸化性雰囲気中での熱処理により超電導物質を生成
する構成物質をセラミックファイバ上に被着した後、こ
れを焼結することにより形成される。これらの被着方法
の主なものをあげれば、 ■Y−Ba−Cu合金を溶融状態で被着する方法、■Y
、 Ba、 Cuの酸化物、炭酸塩を混合、溶解して、
これを被着する方法、 ■プラズマ放電、蒸着、溶射、スパッタリング等により
気相あるいはイオン状態で被着する方法、■Y、Ba、
 Cuをそれぞれ含む脂肪酸、樹脂酸、ナフテン酸等の
アルカリ塩以外の金属塩、すなわち金属石けんを被着す
る方法、 ■Y、 Ba、 GOの硝酸塩、?g酸塩を溶媒に分散
せしめた混合溶液を被着する方法、 ■vBa2 Cul Oxの微粉末を溶媒中に分散せし
めた混合溶液を被着、する方法 等がある。もちろん上記の方法は他のセラミックス系超
電導物質にも適用される。この場合、超電導物質そのも
のを被着する方法以外は、それぞれの構成物質を所定原
子数比で配合することが望ましい。
The sintered layer formed on the outer periphery of the ceramic fiber is, for example, Y-Ba-Cu-0 based YBa2 Cu3.
Examples include 0x (x<14; perovskite) and those to which an element such as F is added. This sintered layer is made by coating a ceramic fiber with a superconducting material or a solution in which the fine powder is dispersed, and then sintering it, or by applying heat treatment in an oxidizing atmosphere to a ceramic material that produces a superconducting material. It is formed by depositing it on the fiber and then sintering it. The main methods of deposition are: ■Method of depositing Y-Ba-Cu alloy in a molten state;■Method of depositing Y-Ba-Cu alloy in a molten state;
, Ba, Cu oxides and carbonates are mixed and dissolved,
Methods for depositing this: ■Methods for depositing in a gas phase or ion state by plasma discharge, vapor deposition, thermal spraying, sputtering, etc.;■Y, Ba,
A method of depositing metal salts other than alkali salts such as fatty acids, resin acids, and naphthenic acids containing Cu, that is, metal soaps, ■Nitrates of Y, Ba, and GO? There are two methods: a method of depositing a mixed solution in which g-acid salts are dispersed in a solvent, and a method of depositing a mixed solution in which fine powder of vBa2 Cul Ox is dispersed in a solvent. Of course, the above method can also be applied to other ceramic superconducting materials. In this case, except for the method of depositing the superconducting material itself, it is desirable to mix the respective constituent materials in a predetermined atomic ratio.

セラミックス超電導物質の焼結層の生成は、酸素気流中
あるいは酸素加圧下で酸化調整しながら700〜100
0℃に加熱して、特性の改善が図られる。
The generation of a sintered layer of ceramic superconducting material is carried out at a temperature of 700 to 100 while adjusting oxidation in an oxygen stream or under oxygen pressure.
The properties are improved by heating to 0°C.

この焼結層の外側に安定化材が被覆されるが、この安定
化材としては、たとえば銀、銅、アルミニウムまたはこ
れらの合金をメツキや蒸着により、たとえば0.1〜1
0μmの厚さに施すことができる。
A stabilizing material is coated on the outside of this sintered layer, and as this stabilizing material, for example, silver, copper, aluminum, or an alloy thereof is plated or vapor-deposited in a concentration of, for example, 0.1 to 1.
It can be applied to a thickness of 0 μm.

この場合、高温で酸化物を生成しない金属、たとえば^
9、AU、 Ptあるいはこれらの合金を安定化材とし
て用いた場合には、この安定化材を被覆後にセラミック
ス超電導e1M生成の熱処理を施すことができる。これ
らの安定化材は熱処理時に内部のセラミックスと反応せ
ず、外部からの酸素の供給を適度に制限して急激な反応
による粉末化と燃焼を防止し、ち密な結晶を長時間かけ
て生成することができる。
In this case, metals that do not form oxides at high temperatures, e.g.
When 9, AU, Pt, or an alloy thereof is used as a stabilizing material, heat treatment for producing ceramic superconducting e1M can be performed after coating with this stabilizing material. These stabilizing materials do not react with the internal ceramics during heat treatment, moderately restrict the supply of oxygen from the outside, prevent powdering and combustion due to rapid reactions, and generate dense crystals over a long period of time. be able to.

さらに安定化材して導電性セラミックスや導電性高分子
材料が用いられる。前者の導電性セラミックスとしては
、TiC,NbC,WC5TaC,ZrB、BN、 Z
rN等の炭化物、ホウ化物や窒化物があり、一方後者の
導電性高分子材料としてはポリアセチレンやポリピロー
ル等をあげることができる。これらの安定化材はその体
積固有抵抗が105ΩC1l以下であることが好ましい
。その理由はセラミックファイバの場合と同様であるが
、特に導電性セラミックスを用いた場合には線材の構成
部材の熱膨張の差を小さくすることができ熱的影響に対
して極めて有利となる。
Furthermore, conductive ceramics and conductive polymer materials are used as stabilizing materials. The former conductive ceramics include TiC, NbC, WC5TaC, ZrB, BN, Z
There are carbides such as rN, borides, and nitrides, and examples of the latter conductive polymer materials include polyacetylene and polypyrrole. It is preferable that these stabilizing materials have a volume resistivity of 10 5 ΩC1l or less. The reason for this is the same as in the case of ceramic fibers, but especially when conductive ceramics are used, the difference in thermal expansion of the constituent members of the wire can be reduced, which is extremely advantageous against thermal effects.

これらの安定化材の被覆は、超電導物質の被着と同様に
溶融、気相あるいはイオン状態で施すことができる。
Coatings with these stabilizing materials can be applied in the melt, gas phase or ionic state, similar to the deposition of superconducting materials.

上記の安定化材の外側に通常絶縁被膜が施される。絶縁
波膜としては有機あるいは無機材料が用いられ、n者の
有機絶縁被膜としてはuv硬化ウレタン樹脂やPvFエ
ナメル樹脂を、一方後者の無機絶縁液、1mとしてはア
ルミナやポリボロシロキサン樹脂等をあげることができ
る。
An insulating coating is usually applied to the outside of the above-mentioned stabilizing material. Organic or inorganic materials are used as the insulating wave film, and the organic insulating film is UV-cured urethane resin or PvF enamel resin, while the latter is an inorganic insulating liquid, and the 1m material is alumina, polyborosiloxane resin, etc. be able to.

(作用) 本発明においては、セラミックファイバの外側にセラミ
ックス超電導物質の焼結層および安定化層を順に設けた
構造を有するため、長尺の線材を容易に製造することが
でき、かつファイバがセラミックスよりなるため超電導
物質との熱膨張の差も小さく、かつ密着性も良好である
(Function) Since the present invention has a structure in which a sintered layer and a stabilizing layer of a ceramic superconducting material are sequentially provided on the outside of a ceramic fiber, a long wire can be easily manufactured, and the fiber is made of ceramic. Therefore, the difference in thermal expansion with the superconducting material is small, and the adhesion is also good.

(実施例) 以下本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

実施例1 外径12μtφのSiC系セラミックファイバ(チラノ
繊維;宇部興産株式会社製5i−Ti−C−0系ファイ
バ商品名)を、第3図に示すように白金または石英より
なる溶融ルツボ1中に通過せしめてその外周にYBa 
2 Cu を合金を被着する。このルツボ1は外部ヒー
タ2により加熱されており、内部に収容されたYBa2
 Cu3合金3を溶融状態に保持する。
Example 1 A SiC ceramic fiber (Tyranno fiber; 5i-Ti-C-0 fiber trade name manufactured by Ube Industries, Ltd.) with an outer diameter of 12 μtφ was placed in a melting crucible 1 made of platinum or quartz as shown in FIG. YBa on the outer periphery of the
2 Cu is deposited on the alloy. This crucible 1 is heated by an external heater 2, and the YBa2 contained therein is heated by an external heater 2.
Cu3 alloy 3 is maintained in a molten state.

被着後の厚さは5〜6μlである。The thickness after deposition is 5-6 μl.

上記のセラミックファイバ4は下部ガイドリール5を介
してルツボ1の下部に配置されたインサート6の通孔を
通ってルツボ内を通過せしめられ、ダイス7によりその
外周に所定厚さの融液が被着される。上記のインサート
6およびダイス7はN。
The ceramic fiber 4 is passed through the crucible through a hole in an insert 6 disposed at the bottom of the crucible 1 via a lower guide reel 5, and a die 7 covers the outer periphery of the crucible with a predetermined thickness of melt. It will be worn. The above insert 6 and die 7 are N.

または旧−C「−^1系合金等で作成されている。Or it is made of old -C "-^1 series alloy etc.

次いで2kc+r/ct以下の酸素気流中で700〜1
000℃に加熱してセラミックス超電導物質の焼結層を
形成する。この焼結工程は上記の被着工程に続いて連続
的に行うことも可能である。
Then, in an oxygen flow of 2kc+r/ct or less, 700 to 1
000° C. to form a sintered layer of ceramic superconducting material. This sintering step can also be carried out continuously following the above-described deposition step.

焼結後の線材はその外周に銀あるいは銅がメツキされた
後、最後にこのメツキ層の外側に有機絶縁塗料、たとえ
ばホルマールワニスの塗布焼付層が形成される。上記の
メツキ層は安定化材として機能させるためと機械的保護
および端子付けを容易にする目的で施されるものである
The outer periphery of the sintered wire is plated with silver or copper, and finally, a coated and baked layer of an organic insulating paint, such as formal varnish, is formed on the outside of this plating layer. The above-mentioned plating layer is provided for the purpose of functioning as a stabilizing material, providing mechanical protection, and facilitating terminal attachment.

このようにして製造されたセラミックス超電導1110
は第1図に示すように、セラミックファイバ11の外周
にセラミックス超電導物質の焼結層12、安定1ヒ層1
3および絶縁層14が順次形成された構造を有する。
Ceramic superconductor 1110 manufactured in this way
As shown in FIG. 1, a sintered layer 12 of a ceramic superconducting material, a stable layer 1,
3 and an insulating layer 14 are formed in this order.

実施例2 外径10μmφのSiCファイバにカロン;日本カーボ
ン株式会社製商品名)の外周に、YBa2Cu30x 
(x <14)からなるセラミックスをスパッタリング
法により5〜6μmの厚さに被覆した1次いで950℃
の酸化性雰囲気中で加熱して上記のセラミックスを焼結
した後、この外周に銅を蒸着した。このようにして得ら
れた線材を1000本束ねた集合線の臨界温度(Tc 
)を測定した結果を第2図に示す、さらに上記の集合線
の臨界電流密度(Jc )を測定した結果はJ C= 
200OA/cぜ(77に)を示した。
Example 2 A SiC fiber with an outer diameter of 10 μmφ was coated with YBa2Cu30x on the outer periphery of Charon (trade name manufactured by Nippon Carbon Co., Ltd.).
(x < 14) was coated to a thickness of 5 to 6 μm by sputtering method and then heated at 950°C.
After the ceramic was sintered by heating in an oxidizing atmosphere, copper was deposited on the outer periphery of the ceramic. The critical temperature (Tc
) is shown in Figure 2.Furthermore, the result of measuring the critical current density (Jc) of the above-mentioned collective line is JC=
It showed 200OA/cze (at 77).

[発明の効果コ 以上述べたように本発明のセラミックス系超電導線は、
セラミックファイバの外側にセラミックス超電導物質の
焼結層および安定化層を順に形成したことにより、長尺
の機械的および電気的に安定した線材を容易に製造する
ことができるとともに、高強度の、かつ高い電流密度の
超電導線を得ることができる。
[Effects of the invention As described above, the ceramic superconducting wire of the present invention has
By sequentially forming a sintered layer and a stabilizing layer of ceramic superconducting material on the outside of the ceramic fiber, it is possible to easily manufacture a long mechanically and electrically stable wire rod, and it also has high strength and A superconducting wire with high current density can be obtained.

本発明による超電導線は可撓性に優れるため、これらの
複数本を用いて集合線、撚線あるいは編組線を容易に形
成することができ、このようにして得られた線材をコイ
ル巻きした後、エナメルワニスを含浸して超電導マグネ
ットを製作することができる。
Since the superconducting wire according to the present invention has excellent flexibility, a plurality of these wires can be used to easily form an assembled wire, a stranded wire, or a braided wire, and after the wire obtained in this way is wound into a coil, , a superconducting magnet can be fabricated by impregnating it with enamel varnish.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のセラミックス超電導線の一実施例を示
す断面図、第2図はその一実施例の臨界温度を示すグラ
フ、第3図はその製造装置の概略図である。 l・・・・・・・・・溶融ルツボ 3・・・・・・・・・YBa2 Cu3合金社液4.1
1・・・セラミックファイバ 7・・・・・・・・・ダイス 10・・・・・・・・・セラミックス超電導線12・・
・・・・・・・セラミックス超電導物質の焼結層13・
・・・・・・・・安定化層 14・・・・・・・・・絶縁層 出願人     昭和電線電纜株式会社代理人 弁理士
 須 山 佐 − (ほか1名) 第1図 J/1TtK> 第2図
FIG. 1 is a cross-sectional view showing an embodiment of the ceramic superconducting wire of the present invention, FIG. 2 is a graph showing the critical temperature of the embodiment, and FIG. 3 is a schematic diagram of an apparatus for manufacturing the same. l・・・・・・Melting crucible 3・・・・・・YBa2 Cu3 alloy company liquid 4.1
1...Ceramic fiber 7...Dice 10...Ceramic superconducting wire 12...
...... Ceramic superconducting material sintered layer 13.
......Stabilizing layer 14...Insulating layer Applicant Showa Cable and Wire Co., Ltd. Agent Patent attorney Suyama Sa - (1 other person) Figure 1 J/1TtK> Figure 2

Claims (7)

【特許請求の範囲】[Claims] (1)セラミックファイバの外周に、セラミックス超電
導物質よりなる焼結層および安定化層を順に設けたこと
を特徴とするセラミックス系超電導線。
(1) A ceramic superconducting wire characterized in that a sintered layer and a stabilizing layer made of a ceramic superconducting material are sequentially provided on the outer periphery of a ceramic fiber.
(2)セラミックファイバは、炭化ケイ素あるいは酸化
物系ファイバである特許請求の範囲第1項記載のセラミ
ックス系超電導線。
(2) The ceramic superconducting wire according to claim 1, wherein the ceramic fiber is a silicon carbide or oxide fiber.
(3)超電導物質は、Y−Ba−Cu−O系セラミック
スである特許請求の範囲第1項あるいは第2項記載のセ
ラミックス系超電導線。
(3) The ceramic superconducting wire according to claim 1 or 2, wherein the superconducting material is a Y-Ba-Cu-O ceramic.
(4)安定化層は、金属あるいは合金よりなる特許請求
の範囲第1項ないし第3項のいずれか1項記載のセラミ
ックス系超電導線。
(4) The ceramic superconducting wire according to any one of claims 1 to 3, wherein the stabilizing layer is made of a metal or an alloy.
(5)安定化層は、導電性セラミックスあるいは導電性
高分子材料よりなる特許請求の範囲第1項ないし第3項
のいずれか1項記載のセラミックス系超電導線。
(5) The ceramic superconducting wire according to any one of claims 1 to 3, wherein the stabilizing layer is made of a conductive ceramic or a conductive polymer material.
(6)セラミックファイバは、その体積固有抵抗が10
^5Ωcm以下である特許請求の範囲第2項記載のセラ
ミックス系超電導線。
(6) Ceramic fiber has a volume resistivity of 10
The ceramic superconducting wire according to claim 2, which has a resistance of ^5 Ωcm or less.
(7)導電性セラミックスあるいは導電性高分子材料は
、その体積固有抵抗が10^5Ωcm以下である特許請
求の範囲第5項記載のセラミックス系超電導線。
(7) The ceramic superconducting wire according to claim 5, wherein the conductive ceramic or conductive polymer material has a volume resistivity of 10^5 Ωcm or less.
JP62301795A 1987-11-30 1987-11-30 Ceramic-based superconductive cable Pending JPH01144514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62301795A JPH01144514A (en) 1987-11-30 1987-11-30 Ceramic-based superconductive cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62301795A JPH01144514A (en) 1987-11-30 1987-11-30 Ceramic-based superconductive cable

Publications (1)

Publication Number Publication Date
JPH01144514A true JPH01144514A (en) 1989-06-06

Family

ID=17901268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62301795A Pending JPH01144514A (en) 1987-11-30 1987-11-30 Ceramic-based superconductive cable

Country Status (1)

Country Link
JP (1) JPH01144514A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299012A (en) * 1987-05-29 1988-12-06 Hitachi Cable Ltd Superconductive fiber and its manufacture
JPS63299011A (en) * 1987-05-29 1988-12-06 Hitachi Cable Ltd Optical fiber coated with oxide ceramic superconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299012A (en) * 1987-05-29 1988-12-06 Hitachi Cable Ltd Superconductive fiber and its manufacture
JPS63299011A (en) * 1987-05-29 1988-12-06 Hitachi Cable Ltd Optical fiber coated with oxide ceramic superconductor

Similar Documents

Publication Publication Date Title
US5104849A (en) Oxide superconductor and method of manufacturing the same
JP2754564B2 (en) Method for producing superconducting composite
US5168127A (en) Oxide superconducting wire
US6344287B1 (en) High temperature compatible insulation for superconductors and method of applying insulation to superconductors
US4990491A (en) Insulation for superconductors
KR910009198B1 (en) Method of manufacturing superconductive products
JPH01144514A (en) Ceramic-based superconductive cable
US5049539A (en) Low cost, formable, high TC superconducting wire
JPH01143108A (en) Manufacture of ceramics superconductive wire
JPS63284720A (en) Superconducting wire
JPH01149306A (en) Ceramic superconductive wire
JPH01144515A (en) Ceramic-based superconductive cable
JPH01144524A (en) Manufacture of ceramic-based superconductive wire
JPH01149316A (en) Manufacture of ceramic superconductive wire
JPH01149307A (en) Ceramic superconductive wire
JP2651018B2 (en) High magnetic field magnet
JPH01149317A (en) Manufacture of ceramic superconductive wire
JP2573506B2 (en) Manufacturing method of ceramic superconducting wire
JPH01144523A (en) Manufacture of ceramic-base superconductive wire
JPH01144526A (en) Manufacture of ceramic-based superconductive wire
JPS63271816A (en) Superconductive wire
JP4039049B2 (en) Multi-core oxide superconducting wire manufacturing method
JPH01149318A (en) Manufacture of ceramic superconductive wire
JP3928304B2 (en) Manufacturing method of oxide superconducting wire
JPH01149321A (en) Manufacture of ceramic superconductive wire