JPH01149307A - Ceramic superconductive wire - Google Patents

Ceramic superconductive wire

Info

Publication number
JPH01149307A
JPH01149307A JP62308272A JP30827287A JPH01149307A JP H01149307 A JPH01149307 A JP H01149307A JP 62308272 A JP62308272 A JP 62308272A JP 30827287 A JP30827287 A JP 30827287A JP H01149307 A JPH01149307 A JP H01149307A
Authority
JP
Japan
Prior art keywords
ceramic
wire
sintered layer
fiber
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62308272A
Other languages
Japanese (ja)
Inventor
Etsuo Hosokawa
細川 悦雄
Takeo Shiono
武男 塩野
Takayo Hasegawa
隆代 長谷川
Toshio Kasahara
敏夫 笠原
Masatada Fukushima
福島 正忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP62308272A priority Critical patent/JPH01149307A/en
Publication of JPH01149307A publication Critical patent/JPH01149307A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To form easily a long wire having good flexibility and high strength by furnishing a sintered layer of ceramic superconductive substance and an insulating layer one over the other on the periphery of a ceramic fiber strand. CONSTITUTION:A sintered layer 12 consisting of ceramic superconductive substance is formed on the periphery of a strand 11 made from a plurality of long ceramic fibers, and outside it an insulating layer 13 is furnished. The ceramic fiber shall Consi of silicon carbide(SiC) or some oxide, while the sintered layer formed on the periphery of the ceramic fiber strand consist of YBa2Cu3Ox of Y-Ba-Cu-Ox type (x<14; perovskite) or a one with such an element as F as additive. Examples of the insulating film 13 applied to the outside of this sintered layer are UV hardened urethane resin or alumina. This allows easily making in long stretching form, provided with high strength and good flexibility.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はセラミックス系の超電導物質を用いた超電導線
に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a superconducting wire using a ceramic superconducting material.

(従来の技術) 近年、特に昨年の秋以降、セラミックス超電導体の開発
が世界中で急ピッチで進められている。
(Conventional Technology) In recent years, especially since last fall, the development of ceramic superconductors has been progressing at a rapid pace all over the world.

この超電導体は、従来の最高の臨界温度を示すNb3 
Geの23Kを大巾に越えるもので、Ba−La−Cu
−0系セラミックス(臨界温度35K) 、La−5r
−Cu−0系セラミックス(超電導開始温度37に以上
)、La−Ca−Cu−0系セラミックス、Y−Ba−
Cu−0系セラミックス(ゼロ抵抗温度93K)等のほ
か、本年に入って233にあるいは常温以上の臨界温度
を示すセラミックスも報告されている。
This superconductor exhibits the highest conventional critical temperature of Nb3
It greatly exceeds Ge's 23K, and Ba-La-Cu
-0 series ceramics (critical temperature 35K), La-5r
-Cu-0 ceramics (superconducting starting temperature 37 or higher), La-Ca-Cu-0 ceramics, Y-Ba-
In addition to Cu-0 ceramics (zero resistance temperature of 93K), ceramics that exhibit a critical temperature of 233 degrees or higher than room temperature have been reported this year.

このようにセラミックス超電導材料は臨界温度が液体窒
素温度以上や室温で用いることができる可能性があり、
この場合、高価な液体ヘリウムを使用しなくても済むた
め、経済的に極めて有利となるほか、超電導発電機等に
使用されると構造がシンプルで熱機関の効率も向上する
等の利点を有する。
In this way, it is possible that ceramic superconducting materials can be used at critical temperatures higher than the liquid nitrogen temperature or at room temperature.
In this case, there is no need to use expensive liquid helium, which is extremely economical, and when used in superconducting generators, etc., the structure is simple and the efficiency of the heat engine is improved. .

しかしながら、セラミックスは硬くて、がっ脆いなめ、
現在実用化されているNb−Ti系やNb3Sn系超電
導線のように曲げなり、あるいはコイル巻きすることが
できず、この点を克服することが実用化への第1歩とな
る。
However, ceramics are hard and brittle,
Unlike the Nb-Ti and Nb3Sn superconducting wires that are currently in practical use, it cannot be bent or coiled, and overcoming this point is the first step toward practical use.

現在線材の製造方法として、アモルファスのテープある
いは線材を酸素雰囲気下で加熱処理する方法や銅系合金
管内にセラミックスを充填し、熱処理および圧延加工等
を施して線材やテープ状に成形する方法等が提案されて
いる。
Currently, methods for manufacturing wire rods include heat-treating amorphous tapes or wire rods in an oxygen atmosphere, and filling ceramics into copper-based alloy tubes, then heat-treating and rolling them to form wire rods or tapes. Proposed.

しかしながら、前者の方法による線材は。その製造時に
極めて急速の冷却を必要とする上、熱処理後の線材は脆
いため、これをコイル状に成形する際に電磁力に対抗す
るなめ高張力で巻回することができないという難点を有
し、後者の方法による線材は、その定長が銅系合金管の
外径によって制限される上、加工工程が複雑となる難点
がある。
However, the wire rod made by the former method. In addition, extremely rapid cooling is required during manufacturing, and the wire after heat treatment is brittle, so when forming it into a coil, it is difficult to wind it with high tension to resist electromagnetic force. However, the wire produced by the latter method has the drawback that its fixed length is limited by the outer diameter of the copper-based alloy tube, and the processing process is complicated.

この場合セラミックス超電導物質生成の熱処理は銅系合
金管で被覆されているなめ、成形後に施すことができず
十分な特性が得られない。さらに前者と同様にコイル巻
き時に必要な強度が得られないという難点も有する。
In this case, the heat treatment for producing the ceramic superconducting material cannot be performed after molding because the tube is covered with a copper-based alloy tube, and sufficient characteristics cannot be obtained. Furthermore, like the former, it also has the disadvantage that the necessary strength cannot be obtained during coil winding.

(発明が解決しようとする問題点) 本発明は上記の難点を解決するためになされたもので、
アモルファス化のための急速冷却を必要とせず、長尺化
を容易に図ることができる上、高強度でかつ良好な可撓
性を有するセラミックス系超電導線を提供することをそ
の目的とする。
(Problems to be solved by the invention) The present invention has been made to solve the above-mentioned difficulties.
The object of the present invention is to provide a ceramic superconducting wire that does not require rapid cooling to become amorphous, can be easily made into a long length, and has high strength and good flexibility.

[発明の構成] (問題点を解決するための手段) 本発明のセラミックス系超電導線は、長尺の複数本のセ
ラミックファイバを撚合せた撚線外周に、セラミックス
超電導物質よりなる焼結層を形成し、その外側に絶縁層
を順に設けたことを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The ceramic superconducting wire of the present invention has a sintered layer made of a ceramic superconducting material on the outer periphery of the stranded wire made by twisting a plurality of long ceramic fibers. The feature is that an insulating layer is sequentially provided on the outer side of the insulating layer.

本発明におけるセラミックファイバとしては炭化ケイ素
(SiC)系あるいは酸化物系のものを用いることがで
きる。
As the ceramic fiber in the present invention, silicon carbide (SiC)-based or oxide-based ceramic fibers can be used.

これらのファイバは連続長繊維で、1000〜1300
℃以上の高い耐熱性と200〜250k(1/−以上の
引張強さを有しておりζその平均直径は、たとえば10
〜13μmφと極めて小さいものがあり、もちろんこれ
より大径のものを用いることもできる。前者のSiC系
ファイバとしては、たとえばチラノ繊維(宇部興゛産株
式会社製S i −T 1−C−0系ファイバ商品名)
やニカロン(日本カーボン株式会社IJsic系ファイ
バ商品名)をあげることができ、後者の酸化物系ファイ
バとしてはサフィル(英国Imper;atCheli
cal Industries PLC−ICI製Al
2O3ファイバ商品名)等の他5102系ファイバを用
いることができる。
These fibers are continuous filaments, with a diameter of 1000 to 1300
It has a high heat resistance of ℃ or more and a tensile strength of 200 to 250K (1/- or more), and its average diameter is, for example, 10
There is one with an extremely small diameter of ~13 μmφ, and of course one with a larger diameter can also be used. Examples of the former SiC fiber include Tyranno fiber (trade name of Si-T 1-C-0 fiber manufactured by Ube Industries, Ltd.).
and Nicalon (trade name of IJsic fiber by Nippon Carbon Co., Ltd.), and examples of the latter oxide fiber include Safil (Imper, UK; at Cheli).
cal Industries PLC-ICI Al
In addition to 2O3 fiber (trade name), 5102 series fiber can be used.

上記のファイバはその体積固有抵抗が105ΩC1以下
であることが好ましい0体積固有抵抗が上記の範囲であ
ると臨界温度以上に超電導線の温度が上昇したときに、
電流がファイバ内を流れ易くなり破壊し難くなるためで
ある。体積固有抵抗が高いと臨界温度以上になったとき
に端子電圧が上昇し破壊し易くなる0体積固有抵抗が小
さければロスの発生も少なく好都合である。
It is preferable that the above-mentioned fiber has a volume resistivity of 105ΩC1 or less.If the zero volume resistivity is within the above range, when the temperature of the superconducting wire rises above the critical temperature,
This is because current flows through the fiber more easily and it becomes difficult to break it. If the volume resistivity is high, the terminal voltage will rise when the temperature exceeds the critical temperature, making it easy to break down.If the zero volume resistivity is small, loss will occur less, which is advantageous.

上記のセラミックファイバは、その複数本により撚線構
造に形成して用いら九る。このようにして良好な可撓性
と著しく大きな強度を得ることができる。
The above ceramic fibers are used by forming a plurality of them into a twisted wire structure. Good flexibility and significantly greater strength can be achieved in this way.

セラミックファイバ撚線の外周に形成される焼結層とし
ては、たとえばY−Ba−Cu−0系のYBa 2 C
ut ox (x <14:ペロブスカイト)やこれに
F等の元素を添加したものをあげることができる。この
焼結層は超電導物質あるいはこの微粉末を分散せしめた
溶液をセラミックファイバ撚線上に被着せしめた後、焼
結するか、あるいは酸化性雰囲気中での熱処理により超
電導物質を生成する幇成物質をセラミックファイバ撚線
上に被着した後、これを焼結することにより形成される
。これらの被着方法の主なものをあげれば、 ■Y−Ba−Cu合金を溶融状態で被着する方法、■Y
、 Ba、 Cuの酸化物、炭酸塩を混合、溶解して、
これを被着する方法、 ■プラズマ放電、蒸着、溶射、スパッタリング等により
気相あるいはイオン状態で被着する方法、■Y、 Ba
、 Cuをそれぞれ含む脂肪酸、樹脂酸、ナフテン酸等
のアルカリ塩以外の金属塩、すなわち金属石けんを被着
する方法、 ■Y、 Ba、 Cuの硝酸塩、蓚酸塩を溶媒に分散せ
しめた混合溶液を被着する方法、 ■YBa2 Cu30xの微粉末を溶媒中に分散せしめ
た混合溶液を被着する方法 等がある。もちろん上記の方法は他のセラミックス系超
電導物質にも適用される。この場合、超電導物質そのも
のを被着する方法以外は、それぞれの構成物質を所定原
子数比で配合することが望ましい。
The sintered layer formed on the outer periphery of the ceramic fiber strands is, for example, Y-Ba-Cu-0 based YBa 2 C.
Examples include ut ox (x<14: perovskite) and those to which an element such as F is added. This sintered layer is formed by depositing a superconducting material or a solution containing this fine powder on the ceramic fiber strands and then sintering it, or by heat-treating it in an oxidizing atmosphere to produce a superconducting material. It is formed by depositing on ceramic fiber strands and then sintering them. The main methods of deposition are: ■Method of depositing Y-Ba-Cu alloy in a molten state;■Method of depositing Y-Ba-Cu alloy in a molten state;
, Ba, Cu oxides and carbonates are mixed and dissolved,
Methods for depositing this: ■Methods for depositing in a vapor phase or ion state by plasma discharge, vapor deposition, thermal spraying, sputtering, etc., ■Y, Ba
, A method of depositing metal salts other than alkali salts such as fatty acids, resin acids, and naphthenic acids containing Cu, i.e., metal soap, ■ A mixed solution in which nitrates and oxalates of Y, Ba, and Cu are dispersed in a solvent. (2) A method of depositing a mixed solution in which fine powder of YBa2 Cu30x is dispersed in a solvent. Of course, the above method can also be applied to other ceramic superconducting materials. In this case, except for the method of depositing the superconducting material itself, it is desirable to mix the respective constituent materials in a predetermined atomic ratio.

上記の焼結層の形成にあたっては、撚線の最外層の素線
間隙を除く撚線外周にこれを形成することにより、より
可撓性を向上させることができる。
In forming the above-mentioned sintered layer, flexibility can be further improved by forming the sintered layer on the outer periphery of the stranded wire excluding the strand gaps in the outermost layer of the stranded wire.

このような方法としては、たとえば上記の液状物質を撚
線外周に塗布する際に、予め最外層の素線間隙に焼結温
度で揮散する塗料を塗布するか、あるいは合成樹脂繊維
等を撚合せておく方法等をあげることができる。
For example, when applying the above-mentioned liquid substance to the outer periphery of the stranded wires, a paint that volatilizes at the sintering temperature may be applied in advance to the gaps between the strands in the outermost layer, or synthetic resin fibers or the like may be twisted together. I can tell you how to keep it.

セラミックス超電導物質の焼結層の生成は、酸素気流中
あるいは酸素加圧下で酸化調整しながら700〜100
0℃に加熱して、特性の改善が図られる。
The generation of a sintered layer of ceramic superconducting material is carried out at a temperature of 700 to 100 while adjusting oxidation in an oxygen stream or under oxygen pressure.
The properties are improved by heating to 0°C.

上記の焼結層の外側に絶縁被膜が施される。絶縁液、膜
としては有機あるいは無機材料が用いられ、前者の有機
絶縁被膜としてはUv硬化ウレタン樹脂やPVFエナメ
ル樹脂を、一方後者の無機絶縁被膜としてはアルミナや
ポリボロシロキサン樹脂等をあげることができる。
An insulating coating is applied to the outside of the sintered layer. Organic or inorganic materials are used for the insulating liquid and film, and the former organic insulating film can be UV-cured urethane resin or PVF enamel resin, while the latter inorganic insulating film can be alumina, polyborosiloxane resin, etc. can.

(作用) 本発明においては、セラミックファイバ撚線の外側にセ
ラミックス超電導物質の焼結層および絶縁層を順に設け
た構造を有するため、良好な可撓性と高強度の長尺の線
材を容易に製造することができ、かつファイバ撚線がセ
ラミックスよりなるため超電導物質との熱膨張の差も小
さく、かつ密着性も良好である。
(Function) Since the present invention has a structure in which a sintered layer of ceramic superconducting material and an insulating layer are sequentially provided on the outside of the stranded ceramic fiber wire, long wire rods with good flexibility and high strength can be easily manufactured. Since the fiber strands are made of ceramic, the difference in thermal expansion with the superconducting material is small, and the adhesion is good.

(実施例) 以下本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

実施例1 外径12μmφのSiC系セラミックファイバ(チラノ
繊維:宇部興産株式会社製5i−Ti−C−0系ファイ
バ商品名)の7本を撚合せた撚線を、第3図に示すよう
に白金または石英よりなる溶融ルツボ1巾に通過せしめ
てその外周にYBa2 Cua合金を被着する。このル
ツボ1は外部ヒータ2により加熱されており、内部に収
容されたYBa 2 Cu 3合金3を溶融状態に保持
する。被着後の厚さは5〜6μmである。
Example 1 A strand of seven SiC ceramic fibers (Tyranno fiber: 5i-Ti-C-0 fiber trade name manufactured by Ube Industries, Ltd.) with an outer diameter of 12 μmφ was twisted as shown in FIG. The melt is passed through one width of a melting crucible made of platinum or quartz, and YBa2 Cua alloy is coated on the outer periphery of the melting crucible. This crucible 1 is heated by an external heater 2 to maintain the YBa 2 Cu 3 alloy 3 housed inside in a molten state. The thickness after application is 5-6 μm.

上記のセラミックファイバ撚線4は下部ガイドリール5
を介してルツボ1の下部に配置されたインサート6の通
孔を通ってルツボ内を通過せしめられ、ダイス7により
その外周に所定厚さの融液が被着される。上記のインサ
ート6およびダイス7はNoまたはNi−Cr−^1系
合金等で作成されている。
The above ceramic fiber strands 4 are connected to the lower guide reel 5
The melt is passed through the inside of the crucible through a hole in an insert 6 disposed at the lower part of the crucible 1, and a predetermined thickness of melt is applied to the outer periphery of the crucible by a die 7. The insert 6 and die 7 are made of No or Ni-Cr-^1 alloy.

次いで2 k gf / d以下の酸素気流中で700
〜1000°Cに加熱してセラミックス超電導物質の焼
結層を形成する。この焼結工程は上記の被着工程に続い
て連続的に行う、ことも可能である。
700 in an oxygen flow of no more than 2 kg gf/d.
Heating to ~1000°C forms a sintered layer of ceramic superconducting material. This sintering step can also be carried out continuously following the deposition step described above.

焼結後の線材はその外周に有機絶縁塗料、/:とえばホ
ルマールワニスの塗布焼付層が形成される。
After sintering, a coated and baked layer of an organic insulating paint, such as formal varnish, is formed on the outer periphery of the wire.

このようにして製造されたセラミックス超電導線10は
第1図に示すように、セラミックファイバ撚線11の外
周にセラミックス超電導物質の焼結層12および絶縁層
13が順次形成された構造を有する。
As shown in FIG. 1, the ceramic superconducting wire 10 manufactured in this manner has a structure in which a sintered layer 12 of a ceramic superconducting material and an insulating layer 13 are sequentially formed around the outer periphery of the ceramic fiber strands 11.

実施例2 外径10μmφのSiCファイバ(二カロン;日本カー
ボン株式会社製商品名)の7本を撚合せた撚線外周に、
YBa2 Cu30x (x <14)からなるセラミ
ックスをスパッタリング法により5〜6μmの厚さに被
覆した0次いで950°Cの酸化性雰囲気中で加熱して
上記のセラミックスを焼結した後、この外周にPVFエ
ナメル樹脂を被覆した。このようにして得られた撚線を
150本束ねた集合線の臨界温度(Tc )を測定した
結果を第2図に示す、さらに上記の集合線の臨界電流密
度(Jc )を測定した結果はJ c =200OA/
c/ (77K )を示した。
Example 2 On the outer periphery of a stranded wire made by twisting seven SiC fibers (Nicalon; trade name manufactured by Nippon Carbon Co., Ltd.) with an outer diameter of 10 μmφ,
Ceramics consisting of YBa2Cu30x (x < 14) was coated to a thickness of 5 to 6 μm by sputtering.Then, the above ceramics were sintered by heating in an oxidizing atmosphere at 950°C, and then PVF was applied around the outer periphery of the ceramics. Covered with enamel resin. Figure 2 shows the results of measuring the critical temperature (Tc) of the bundle of 150 stranded wires obtained in this way, and the results of measuring the critical current density (Jc) of the bundle of wires described above are shown in Figure 2. J c =200OA/
c/(77K).

[発明の効果コ 以上述べたように本発明のセラミックス系超電導線は、
セラミックファイバ撚線の外周にセラミックス超電導物
質の焼結層および絶縁層を順に形成したことにより、高
温長時間の焼結条件下でもファイバが’tlRmするこ
となく長尺の機械的および電気的に安定した線材を容易
に製造することができるとともに、高強度の、かつ高い
電流密度の超電導線を得ることができる。
[Effects of the invention As described above, the ceramic superconducting wire of the present invention has
By sequentially forming a sintered layer of ceramic superconducting material and an insulating layer around the outer periphery of the stranded ceramic fiber, the fiber remains mechanically and electrically stable even under high-temperature and long-term sintering conditions without causing 'tlRm. It is possible to easily produce a wire with high strength, and also to obtain a superconducting wire with high strength and high current density.

本発明による超電導線は可撓性に優れるため、これらの
複数本を用いてさらに集合線、撚線あるいは編組線を容
易に形成することができ、このようにして得られた線材
を高張力でコイル巻きした後、エナメルフェスを含浸し
て超電導マグネットを製作することができる。
Since the superconducting wire according to the present invention has excellent flexibility, multiple wires can be used to easily form aggregated wires, stranded wires, or braided wires, and the wires obtained in this way can be used at high tension. After coiling, the enamel face can be impregnated to produce a superconducting magnet.

【図面の簡単な説明】 第1図は本発明のセラミックス超電導線の一実施例を示
す断面図、第2図はその一実施例の臨界温度を示すグラ
フ、第3図はその製造装置の概略図である。 1・・・・・・・・・溶融ルツボ 3・・・・・・・・・YBa2 Cut合金融液4.1
1・・・セラミックファイバ撚線7・・・・・・・・・
ダイス 10・・・・・・・・・セラミックス超電導線12・・
・・・・・・・セラミックス超電導物質の焼結石13・
・・・・・・・・絶縁層 第1図 、]JT(K) 第2図
[Brief Description of the Drawings] Fig. 1 is a cross-sectional view showing an embodiment of the ceramic superconducting wire of the present invention, Fig. 2 is a graph showing the critical temperature of the embodiment, and Fig. 3 is a schematic diagram of the manufacturing equipment thereof. It is a diagram. 1・・・・・・・・・Melting crucible 3・・・・・・・・・YBa2 Cut alloy liquid 4.1
1... Ceramic fiber strand 7...
Dice 10... Ceramic superconducting wire 12...
... Ceramic superconducting material sintered stone 13.
・・・・・・Insulating layer Fig. 1, ]JT(K) Fig. 2

Claims (5)

【特許請求の範囲】[Claims] (1)複数本のセラミックファイバを撚合せた撚線外周
に、セラミックス超電導物質よりなる焼結層を形成し、
その外側に絶縁層を設けたことを特徴とするセラミック
ス系超電導線。
(1) A sintered layer made of a ceramic superconducting material is formed on the outer periphery of a twisted wire of multiple ceramic fibers,
A ceramic superconducting wire characterized by having an insulating layer provided on the outside.
(2)セラミックファイバは、炭化ケイ素あるいは酸化
物系ファイバである特許請求の範囲第1項記載のセラミ
ックス系超電導線。
(2) The ceramic superconducting wire according to claim 1, wherein the ceramic fiber is a silicon carbide or oxide fiber.
(3)超電導物質は、Y−Ba−Cu−O系セラミック
スである特許請求の範囲第1項あるいは第2項記載のセ
ラミックス系超電導線。
(3) The ceramic superconducting wire according to claim 1 or 2, wherein the superconducting material is a Y-Ba-Cu-O ceramic.
(4)セラミックファイバは、その体積固有抵抗が10
^5Ωcm以下である特許請求の範囲第2項記載のセラ
ミックス系超電導線。
(4) Ceramic fiber has a volume resistivity of 10
The ceramic superconducting wire according to claim 2, which has a resistance of ^5 Ωcm or less.
(5)焼結層は、撚線を構成する最外層の素線間隙を除
く撚線外周に形成されてなる特許請求の範囲第1項ない
し第4項のいずれか1項記載のセラミックス系超電導線
(5) The ceramic superconductor according to any one of claims 1 to 4, wherein the sintered layer is formed on the outer periphery of the stranded wire excluding the strand gaps in the outermost layer constituting the stranded wire. line.
JP62308272A 1987-12-04 1987-12-04 Ceramic superconductive wire Pending JPH01149307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62308272A JPH01149307A (en) 1987-12-04 1987-12-04 Ceramic superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62308272A JPH01149307A (en) 1987-12-04 1987-12-04 Ceramic superconductive wire

Publications (1)

Publication Number Publication Date
JPH01149307A true JPH01149307A (en) 1989-06-12

Family

ID=17979026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62308272A Pending JPH01149307A (en) 1987-12-04 1987-12-04 Ceramic superconductive wire

Country Status (1)

Country Link
JP (1) JPH01149307A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271816A (en) * 1987-04-28 1988-11-09 Fujikura Ltd Superconductive wire
JPS6412414A (en) * 1987-07-06 1989-01-17 Fujikura Ltd Superconducting wire or oxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271816A (en) * 1987-04-28 1988-11-09 Fujikura Ltd Superconductive wire
JPS6412414A (en) * 1987-07-06 1989-01-17 Fujikura Ltd Superconducting wire or oxide

Similar Documents

Publication Publication Date Title
EP0401461B1 (en) Oxide superconductor and method of manufacturing the same
US20030130128A1 (en) Method of fabricating fine high temperature superconducting composites
JP2002075080A (en) Oxide superconducting wire material and method for manufacturing the same
KR101051139B1 (en) Superconducting Cable Conductors with RECCO-Coated Conductor Elements
JPH01149307A (en) Ceramic superconductive wire
JPH01144515A (en) Ceramic-based superconductive cable
JPH01143108A (en) Manufacture of ceramics superconductive wire
JPH01149306A (en) Ceramic superconductive wire
JPH01144524A (en) Manufacture of ceramic-based superconductive wire
JPS63284720A (en) Superconducting wire
JPH01144514A (en) Ceramic-based superconductive cable
JPH01149316A (en) Manufacture of ceramic superconductive wire
JPH01149317A (en) Manufacture of ceramic superconductive wire
JP2651018B2 (en) High magnetic field magnet
JP2573506B2 (en) Manufacturing method of ceramic superconducting wire
JPH01149321A (en) Manufacture of ceramic superconductive wire
KR100821209B1 (en) Manufacturing method of high temperature superconductor thick films by using cu-free precursors on ni substrates
JPH01149320A (en) Manufacture of ceramic superconductive wire
JPH01149318A (en) Manufacture of ceramic superconductive wire
JPH01144526A (en) Manufacture of ceramic-based superconductive wire
JP2817162B2 (en) Manufacturing method of oxide superconductor
JP2746881B2 (en) Superconducting material manufacturing method
JPH06119829A (en) Superconductive wire and manufacture thereof
JPH01149319A (en) Manufacture of ceramic superconductive wire
JPH01149322A (en) Manufacture of ceramic superconductive wire