JPH01149319A - Manufacture of ceramic superconductive wire - Google Patents
Manufacture of ceramic superconductive wireInfo
- Publication number
- JPH01149319A JPH01149319A JP62308267A JP30826787A JPH01149319A JP H01149319 A JPH01149319 A JP H01149319A JP 62308267 A JP62308267 A JP 62308267A JP 30826787 A JP30826787 A JP 30826787A JP H01149319 A JPH01149319 A JP H01149319A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- wire
- metal salt
- manufacturing
- superconducting wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000000835 fiber Substances 0.000 claims abstract description 36
- 229910052751 metal Inorganic materials 0.000 claims abstract description 24
- 239000002184 metal Substances 0.000 claims abstract description 24
- 150000003839 salts Chemical class 0.000 claims abstract description 20
- 239000000463 material Substances 0.000 claims abstract description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000001301 oxygen Substances 0.000 claims abstract description 9
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 9
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 7
- 239000000956 alloy Substances 0.000 claims abstract description 7
- 239000002904 solvent Substances 0.000 claims abstract description 5
- 230000000087 stabilizing effect Effects 0.000 claims abstract description 5
- 239000000126 substance Substances 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 19
- 239000011248 coating agent Substances 0.000 claims description 16
- 238000000576 coating method Methods 0.000 claims description 16
- 239000011259 mixed solution Substances 0.000 claims description 9
- 239000000470 constituent Substances 0.000 claims description 6
- 238000005245 sintering Methods 0.000 claims description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical group [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 5
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- 239000000344 soap Substances 0.000 claims description 3
- 229910002651 NO3 Inorganic materials 0.000 claims 1
- 229910009203 Y-Ba-Cu-O Inorganic materials 0.000 claims 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N nitrate group Chemical group [N+](=O)([O-])[O-] NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract description 2
- 230000001590 oxidative effect Effects 0.000 abstract description 2
- 239000010949 copper Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- 239000002887 superconductor Substances 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical compound [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 210000003298 dental enamel Anatomy 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 229910001338 liquidmetal Inorganic materials 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- -1 that is Substances 0.000 description 2
- NGDQQLAVJWUYSF-UHFFFAOYSA-N 4-methyl-2-phenyl-1,3-thiazole-5-sulfonyl chloride Chemical compound S1C(S(Cl)(=O)=O)=C(C)N=C1C1=CC=CC=C1 NGDQQLAVJWUYSF-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 229910002482 Cu–Ni Inorganic materials 0.000 description 1
- 229910020012 Nb—Ti Inorganic materials 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229940120693 copper naphthenate Drugs 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- SEVNKWFHTNVOLD-UHFFFAOYSA-L copper;3-(4-ethylcyclohexyl)propanoate;3-(3-ethylcyclopentyl)propanoate Chemical compound [Cu+2].CCC1CCC(CCC([O-])=O)C1.CCC1CCC(CCC([O-])=O)CC1 SEVNKWFHTNVOLD-UHFFFAOYSA-L 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- OFUAIAKLWWIPTC-UHFFFAOYSA-L magnesium;naphthalene-2-carboxylate Chemical compound [Mg+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 OFUAIAKLWWIPTC-UHFFFAOYSA-L 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 125000005608 naphthenic acid group Chemical group 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的コ
(産業上の利用分野)
本発明は超電導線の製造方法に係り、特にセラミックス
系超電導線の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing a superconducting wire, and particularly to a method for manufacturing a ceramic superconducting wire.
(従来の技術)
近年、特に昨年の秋以降、セラミックス超電導体の開発
が世界中で急ピッチで進められている。(Conventional Technology) In recent years, especially since last fall, the development of ceramic superconductors has been progressing at a rapid pace all over the world.
この超電導体は、従来の最高の臨界温度を示すNb、G
eの23Kを大巾に越えるもので、Ba−La−Cu−
0系セラミックス(臨界温度35K ) 、La−8r
−Cu−0系セラミックス(超電導開始温度37に以上
)、La−Ca−Cu−0系セラミックス、Y−Ba−
Cu−0系セラミックス(ゼロ抵抗温度93K)等のほ
か、本年に入って233にあるいは室温以上の臨界温度
を示すセラミックスも報告されている。This superconductor exhibits the highest critical temperature of Nb, G
It greatly exceeds 23K of e, and is Ba-La-Cu-
0 series ceramics (critical temperature 35K), La-8r
-Cu-0 ceramics (superconducting starting temperature 37 or higher), La-Ca-Cu-0 ceramics, Y-Ba-
In addition to Cu-0 ceramics (zero resistance temperature of 93K), ceramics that exhibit a critical temperature of 233 degrees or higher than room temperature have been reported this year.
このようにセラミックス超電導材料は臨界温度が液体窒
素温度以上や室温で用いることができる可能性があり、
この場合、高価な液体ヘリウムを使用しなくて済むため
、経済的に極めて有利となるほか、超電導発電機等に使
用されると構造がシンプルで熱機関の効率も向上する等
の利点を有する。In this way, it is possible that ceramic superconducting materials can be used at critical temperatures higher than the liquid nitrogen temperature or at room temperature.
In this case, there is no need to use expensive liquid helium, which is extremely advantageous economically, and when used in a superconducting generator or the like, the structure is simple and the efficiency of the heat engine is improved.
しかしながら、セラミックスは硬くて、かつ脆いため、
現在実用化されているNb−Ti系やNbg Sn系超
電導線のように曲げたり、あるいはコイル巻きすること
ができず、この点を克服することが実用化への第1歩と
なる。However, since ceramics are hard and brittle,
Unlike the Nb-Ti and Nbg Sn-based superconducting wires that are currently in practical use, it cannot be bent or coiled, and overcoming this point is the first step toward practical use.
現在線材の製造方法として、
■アモルファスのテープあるいは線材を酸素雰囲気下で
加熱処理する方法、
■合金管(たとえばCu−N i合金)の内部に原料の
粉末を充填し、両端を引張って線材やテープ状に成形す
る方法、
■銅系合金管内にセラミックスを充填し、熱処理および
圧延加工等を施して線材やテープ状に成形する方法、等
が提案されている。Currently, there are two ways to manufacture wire rods: 1) Heat-treating amorphous tape or wire in an oxygen atmosphere; 2) Filling an alloy tube (for example, Cu-Ni alloy) with raw material powder and pulling both ends to produce wire or wire rods. The following methods have been proposed: (1) Filling a copper-based alloy tube with ceramics, subjecting it to heat treatment, rolling, etc., and forming it into a wire or tape shape.
しかしながら、上記■の方法においては、極めて急速な
冷却を必要とする上、極めて細い線材や’filWAの
テープしか得られず、実用線材を得る方法としては、難
点を有しており、上記■の方法では長尺の線材を連続的
に製造することが困難であり、上記■の方法では線材の
定長が当初の銅合金管の外径によって制限される上、加
工工程が複雑となる難点がある。この場合、セラミック
ス超電導体生成の熱処理は、超電導特性向上の観点から
成形後、すなわち最終線径近傍で施すことが望ましいが
、銅系合金管で被覆されているため成形後に内部に酸素
を供給することが極めて困難であり、実際上不可能であ
る。However, method (2) above requires extremely rapid cooling and can only yield extremely thin wire or 'filWA tape, so it is difficult to obtain a practical wire. With this method, it is difficult to continuously manufacture long wire rods, and with method ① above, the fixed length of the wire rod is limited by the outer diameter of the initial copper alloy tube, and the processing process is complicated. be. In this case, it is desirable that the heat treatment for producing the ceramic superconductor be performed after forming, that is, near the final wire diameter, from the perspective of improving superconducting properties, but since it is covered with a copper alloy tube, oxygen is supplied inside after forming. This is extremely difficult and practically impossible.
さらに上記いずれの方法によって製造された線材におい
ても強度上問題があり、コイル形成の際に電磁力に対抗
するため、高張力で巻回することができないという難点
がある。Furthermore, wire rods manufactured by any of the above methods have problems in terms of strength, and have the disadvantage that they cannot be wound with high tension in order to counter electromagnetic force when forming a coil.
(発明が解決しようとする問題点)
本発明は、上記の難点を解決するためになされたもので
、アモルファス化のための急速冷却を必要とせず、長尺
の線材を容易に製造することができる上、酸化性雰囲気
中での熱処理を長尺の線材の状態で施すことができ、か
つ高い強度と臨界電流密度の実用線材を製造することが
可能なセラミックス系超電導線の製造方法を提供するこ
とをその目的とする・。(Problems to be Solved by the Invention) The present invention was made to solve the above-mentioned difficulties, and it is possible to easily manufacture a long wire rod without requiring rapid cooling to make it amorphous. To provide a method for producing a ceramic superconducting wire, which can be heat-treated in an oxidizing atmosphere in the form of a long wire, and which can produce a practical wire with high strength and critical current density. Its purpose is to...
[発明の構成]
(問題点を解決するための手段)
本発明のセラミックス系超電導線の製造方法は、
(イ)複数本のセラミックファイバを撚合せた撚線外周
に、酸素を除くセラミックス超電導物質の構成元素を含
む金属塩あるいは該金属塩を溶媒中に分散した混合溶液
を被着する工程と、(ロ)次いで前記被着物質を焼結す
る工程と、(ハ)この焼結層の外側に金属またはその合
金よりなる安定化材を被覆する工程とからなることを特
徴としている。[Structure of the Invention] (Means for Solving the Problems) The method for manufacturing a ceramic superconducting wire of the present invention includes: (a) A ceramic superconducting material excluding oxygen is added to the outer periphery of a stranded wire made by twisting a plurality of ceramic fibers. a step of depositing a metal salt containing the constituent elements or a mixed solution of the metal salt dispersed in a solvent, (b) a step of sintering the deposited material, and (c) a step of depositing the material on the outside of this sintered layer. The method is characterized in that it consists of a step of coating the stabilizer with a stabilizing material made of metal or its alloy.
上記のセラミックファイバとしては炭化ケイ素(SiC
)系あるいは酸化物系のものを用いることができる。The above ceramic fiber is made of silicon carbide (SiC
) type or oxide type can be used.
これらのファイバは連続長繊維で、1000〜1300
°C以上の高い耐熱性と200〜250 k a /
u(以上の引張強さを有しており、その平均直径はたと
えば10〜13μlφと極めて小さいものがあり、もち
ろんこれより大径のものを用いることもできる。前者の
SiC系ファイバとしては、たとえばチラノ繊維(宇部
興産株式会社製5i−Ti−C−0系ファイバ商品名)
やニカロン(日本カーボン株式会社製SiC系ファイバ
商品名)をあげることができ、後者の酸化物系ファイバ
としてはサフイル(英国11perialChenic
al Industries PLC−ICI製^12
03ファイバ商品名)等の他SiO2系フアイバを用い
ることができる。These fibers are continuous filaments, with a diameter of 1000 to 1300
High heat resistance above °C and 200-250 ka/
There are some fibers that have a tensile strength of more than u (and have an extremely small average diameter of, for example, 10 to 13 μlφ, but of course those with a larger diameter can also be used. As the former SiC fiber, for example, Tyranno fiber (product name of 5i-Ti-C-0 fiber manufactured by Ube Industries, Ltd.)
Examples of the latter oxide fiber include SAFIL (trade name of SiC fiber manufactured by Nippon Carbon Co., Ltd.)
Made by al Industries PLC-ICI ^12
Other SiO2 fibers such as 03 fiber (trade name) can also be used.
上記のファイバはその体積固有抵抗が105ΩC11以
下であることが好ましい。体積固有抵抗が上記の範囲で
あると臨界温度以上に超電導線の温度が上昇したときに
、電流がファイバ内を流れ易くなり破壊し難くなるため
である。体積固有抵抗が高いと臨界温度以上になったと
きに端子電圧が上昇し破壊し易くなる0体積固有抵抗が
小さければロスの発生も少なく好都合である。It is preferable that the above-mentioned fiber has a volume resistivity of 10 5 ΩC11 or less. This is because if the volume resistivity is within the above range, when the temperature of the superconducting wire rises above the critical temperature, current will easily flow through the fiber and it will be difficult to break. If the volume resistivity is high, the terminal voltage will rise when the temperature exceeds the critical temperature, making it easy to break down.If the zero volume resistivity is small, loss will occur less, which is advantageous.
上記のセラミックファイバは、その複数本により撚線構
造に形成して用いられる。このようにして良好な可撓性
と著しく大きな強度を得ることができる。The above ceramic fibers are used by forming a plurality of them into a twisted wire structure. Good flexibility and significantly greater strength can be achieved in this way.
セラミックス超電導物質としては、たとえばYBa2
Cu、 Ox (x <14 :ペロブスカイト)やこ
れにF等を添加したものがあり、この場合、酸素を除く
超電導物質の構成元素はY、 BaおよびCuである。Examples of ceramic superconducting materials include YBa2
There are Cu, Ox (x < 14: perovskite), and those to which F and the like are added. In this case, the constituent elements of the superconducting material other than oxygen are Y, Ba, and Cu.
上記の構成元素を含む金属塩としては、脂肪酸、樹脂酸
、ナフテン酸等のアルカリ塩以外の金属塩、すなわち金
属石けんが用いられる他、硝酸塩や蓚酸塩を用いること
ができる。As the metal salt containing the above constituent elements, metal salts other than alkali salts such as fatty acids, resin acids, and naphthenic acids, that is, metal soaps, as well as nitrates and oxalates, can be used.
前者の金属石けんは常態の液状でセラミックファイバ撚
線の外周に被着するか、あるいはキシレン、トルエン、
ナフサ等の溶媒に均一に分散せしめてこれを撚線外周に
被着する。一方後者の金属塩は通常溶媒中に均一に分散
せしめた混合溶液として用いられる。The former metal soap is either in a normal liquid state and coats the outer periphery of the ceramic fiber strands, or it is made of xylene, toluene,
It is uniformly dispersed in a solvent such as naphtha and coated on the outer periphery of the stranded wire. On the other hand, the latter metal salt is usually used as a mixed solution uniformly dispersed in a solvent.
セラミックファイバ撚線の外周に被着せしめられる液状
物質中の各構成元素の原子数比はセラミックス超電導物
質を構成する原子数比に一致するように配合される。The atomic ratio of each constituent element in the liquid material coated on the outer periphery of the stranded ceramic fibers is blended so as to match the atomic ratio constituting the ceramic superconducting material.
上記の液状物質を撚線外周に塗布する際に、予め最外層
の素線間隙に焼結温度で揮散する塗料を塗布するか、あ
るいは合成樹脂繊維を撚合せておくことにより、最外層
の素線間隙に焼結層が形成されるのを防ぎ、より可撓性
を向上させることができる。When applying the above liquid substance to the outer periphery of the stranded wires, it is possible to apply a paint that volatilizes at the sintering temperature to the gaps between the strands of the outermost layer, or to twist synthetic resin fibers in advance. It is possible to prevent the formation of a sintered layer in the line gaps and further improve flexibility.
セラミックス超電導物質の焼結層の生成は、酸素気流中
あるいは酸素加圧下で酸化調整しながら700〜100
0℃に加熱して、特性の改善が図られる。The generation of a sintered layer of ceramic superconducting material is carried out at a temperature of 700 to 100 while adjusting oxidation in an oxygen stream or under oxygen pressure.
The properties are improved by heating to 0°C.
この焼結層の外側に安定化材が被覆されるが、この安定
化材としては、たとえば銀、銅、アルミニウムまたはこ
れらの合金をメツキや蒸着により、たとえば0.1〜1
0μmの厚さに施すことができ、この外側に通常絶縁被
膜が施される。絶縁被膜としては有機あるいは無機材料
が用いられ、前者の有機絶縁被膜としてはUv硬化ウレ
タン樹脂やPVFエナメルを、一方後者の無機絶縁被膜
としてはアルミナやポリボロシロキサン樹脂等をあげる
ことができる。A stabilizing material is coated on the outside of this sintered layer, and as this stabilizing material, for example, silver, copper, aluminum, or an alloy thereof is plated or vapor-deposited in a concentration of, for example, 0.1 to 1.
It can be applied to a thickness of 0 μm, and an insulating coating is usually applied on the outside. Organic or inorganic materials are used as the insulating coating, and the former organic insulating coating includes UV-cured urethane resin and PVF enamel, while the latter inorganic insulating coating includes alumina, polyborosiloxane resin, and the like.
(作用)
本発明の方法においては、セラミックファイバのよりな
る撚線の外周に、酸素を除くセラミックス超電導物質の
構成元素を含む金属塩あるいはこのような金属塩の混合
溶液を被着した後、焼結するため、良好な可撓性と高強
度の長尺の線材を容易に製造することができ、かつファ
イバがセラミックスよりなるため超電導物質との熱膨脹
の差も小さく、かつ密着性も良好である。(Function) In the method of the present invention, a metal salt containing constituent elements of a ceramic superconducting material excluding oxygen or a mixed solution of such metal salts is coated on the outer periphery of a stranded wire made of ceramic fibers, and then a mixed solution of such metal salts is applied. This makes it possible to easily produce long wire rods with good flexibility and high strength, and since the fiber is made of ceramics, the difference in thermal expansion with the superconducting material is small, and the adhesion is also good. .
すなわち上記の良好な密着性の達成とセラミックスの加
工を不要としたことにより、長尺線材の製造を可能にす
る。また液状の金属塩や金属塩を含む混合溶液を用いる
ことにより、エナメル線の製造工程と同様の方法を採用
することができる。That is, by achieving the above-mentioned good adhesion and eliminating the need for processing ceramics, it is possible to manufacture long wire rods. Further, by using a liquid metal salt or a mixed solution containing a metal salt, a method similar to the manufacturing process of enamelled wire can be adopted.
(実施例) 以下本発明の実施例について説明する。(Example) Examples of the present invention will be described below.
図は本発明によるセラミックス超電導線を製造するため
の装置の概略を示したもので、セラミックファイバ撚線
Wを巻回した送出しボビン1と巻取りボビン2との間に
塗布装置3および焼付炉4が順に配置され、ファイバ撚
線Wはガイドリール5〜8を介して塗布装置3と焼付炉
4を所定回数通過することにより、塗布ロール3aを介
して塗布槽3b内に収容された液状の金属塩あるいは金
属塩を含む混合溶液りが複数層に亘って塗布焼付けされ
る。なお9は絞りダイスである。The figure schematically shows an apparatus for manufacturing a ceramic superconducting wire according to the present invention, in which a coating device 3 and a baking furnace are provided between a delivery bobbin 1 on which ceramic fiber strands W are wound and a winding bobbin 2. The fiber strands W pass through the coating device 3 and the baking furnace 4 a predetermined number of times via the guide reels 5 to 8, thereby applying the liquid contained in the coating tank 3b via the coating roll 3a. A metal salt or a mixed solution containing a metal salt is applied and baked in multiple layers. Note that 9 is a drawing die.
実施例1
オクチル酸イツトリウム(Y分8vtt% )を100
g、オクチル酸バリウム(Ba分分wtX)を310g
およびナフテン酸銅(Cu分5wt% )を342gを
均一に混合し塗布槽3b内に収容した。セラミックファ
イバ撚線Wは外径10μmφSiC系ファイバにカロン
;日本カーボン株式会社製商品名)の1000本を集合
撚りした撚線を用い、上記の塗布装置および炉長釦、炉
温300〜400°Cの焼付炉4に6回通過せしめてセ
ラミックファイバ撚線W上に膜厚7μlの一次焼結層を
形成した0次いでこのようにして得られた線材を950
℃で2時間加熱し焼結層を形成した。Example 1 Yttrium octylate (Y content 8vtt%) was added to 100%
g, 310 g of barium octylate (Ba content wtX)
and 342 g of copper naphthenate (Cu content: 5 wt%) were mixed uniformly and placed in the coating tank 3b. Ceramic fiber strands W are made by twisting 1000 pieces of Charon (product name manufactured by Nippon Carbon Co., Ltd.) into SiC fibers with an outer diameter of 10 μm, using the above-mentioned coating device, furnace length button, and furnace temperature of 300 to 400°C. A primary sintered layer with a film thickness of 7 μl was formed on the stranded ceramic fiber wire W by passing it through the baking furnace 4 six times.
It was heated at ℃ for 2 hours to form a sintered layer.
この焼結層の膜厚は1.8μlであった。さらにこの焼
結層の外周に銅を蒸着した線材の特性を測定した結果、
臨界温度(Tc )は85K、臨界電流密度(Jc )
は(0,3〜0.5)X 1G’^/d (at77に
)であった。The thickness of this sintered layer was 1.8 μl. Furthermore, as a result of measuring the characteristics of the wire rod with copper vapor-deposited on the outer periphery of this sintered layer,
Critical temperature (Tc) is 85K, critical current density (Jc)
was (0,3-0.5)X 1G'^/d (at77).
実施例2
実施例1と同一のセラミックファイバ撚線を用い、予め
このファイバ撚線の外周にナフテン酸マグネシウム(H
(1分3wt%)を2回塗布焼付けした後、800℃で
焼結して酸化マグネシウム層を形成した。Example 2 Using the same ceramic fiber strands as in Example 1, magnesium naphthenate (H
(3wt% for 1 minute) was applied twice and baked, and then sintered at 800°C to form a magnesium oxide layer.
以下焼結条件を900℃で4時間とした以外は実施例1
と同様の2方法で超電導線を製造した結果、T c=8
7K 、 J C= (0,7〜1.0)x 10”
Arc! (at77K)であった。Example 1 except that the sintering conditions were 900°C for 4 hours.
As a result of manufacturing superconducting wire using the same two methods, T c = 8
7K, JC= (0,7~1.0) x 10”
Arc! (at77K).
この場合、実施例1に比較してJCが増加したのはペロ
プスカイト結晶の成長の差によるものと考えられる。In this case, the increase in JC compared to Example 1 is considered to be due to a difference in the growth of perovskite crystals.
実施例3
硝酸イツトリウム(Y(N(h ) 3 ・xL O;
Y分27wt% )を3290、硝酸バリウム(Ba(
No ! ) 2 HBa分52.5wt%)を523
gおよび硝酸銅(Cu(No 3 ) 2−3H20;
Cu分26.3wt% )を6259を蓚酸水溶液中に
溶解してpH=7に調整した混合液を塗布槽3b内に収
容し、この塗布槽と焼付炉4との間にDH=8.5に自
動調整された稀アンモニア水を収容した槽を配置して、
以下実施例1と同様の方法で外径10μlφのSiC系
ファイバの1000本からなる撚線上にY、 Ba、
Cuを含有する固型物を沈澱させた後、焼付ける工程を
6回繰返してファイバ撚線上に7,3μmの厚さの被膜
を形成した0次いで850℃で2時間焼結した。この時
の焼結層の膜厚は3.1μmであった。さらにこの焼結
層の外側にAgを蒸着した線材の特性を測定した結果、
Tc=86K 、Jc =(0,3〜O’、5)x 1
03A/C7(at77K)であった。Example 3 Yttrium nitrate (Y(N(h) 3 .xL O;
Y content 27wt%) was 3290, barium nitrate (Ba(
No! ) 2 HBa content 52.5wt%) 523
g and copper nitrate (Cu(No3) 2-3H20;
A mixed solution prepared by dissolving 6259 (Cu content: 26.3 wt%) in an oxalic acid aqueous solution and adjusting the pH to 7 is stored in the coating tank 3b, and between the coating tank and the baking furnace 4, a mixture with a pH of 8.5 A tank containing automatically adjusted rare ammonia water is placed in the
Thereafter, in the same manner as in Example 1, Y, Ba,
After precipitating the Cu-containing solid, the sintering process was repeated six times to form a 7.3 μm thick coating on the fiber strands. The thickness of the sintered layer at this time was 3.1 μm. Furthermore, as a result of measuring the characteristics of the wire with Ag deposited on the outside of this sintered layer,
Tc=86K, Jc=(0,3~O',5)x1
It was 03A/C7 (at77K).
[発明の効果]
以上述べたように本発明のセラミックス系超電導線の製
造方法によれば、セラミックファイバ撚線の外側にセラ
ミックス超電導物質の焼結層を形成することにより、高
温長時間の焼結条件下でもファイバが断線することなく
長尺の機械的および電気的に安定した線材を容易に製造
することができるとともに、高い強度と電流密度の超電
導線を得ることができる。[Effects of the Invention] As described above, according to the method for manufacturing a ceramic superconducting wire of the present invention, by forming a sintered layer of a ceramic superconducting material on the outside of the ceramic fiber strands, sintering at high temperature and for a long period of time is possible. It is possible to easily produce a long mechanically and electrically stable wire rod without fiber breakage even under such conditions, and a superconducting wire with high strength and current density can be obtained.
本発明によって製造された超電導線は可撓性に優れるた
め、これらの複数本を用いてさらに集合線、撚線あるい
は編組線を容易に形成することができ、このようにして
得られた線材を高張力でコイル巻きした後、エナメルワ
ニスを含浸して超電導マグネットを製作することができ
る。Since the superconducting wire manufactured according to the present invention has excellent flexibility, a plurality of these wires can be used to easily form an aggregated wire, stranded wire, or braided wire, and the wire obtained in this way can be used to After coiling with high tension, it can be impregnated with enamel varnish to produce superconducting magnets.
図は本発明のセラミックス系超電導線の製造方法に用い
られる装置の一実施例を示す概略図である。
3・・・・・・・・・塗布装置
4・・・・・・・・・焼付炉
W・・・・・・・・・セラミックファイバ撚線L・・・
・・・・・・液状の金属塩あるいは金属塩を含む混合溶
液The figure is a schematic diagram showing an embodiment of an apparatus used in the method of manufacturing a ceramic superconducting wire of the present invention. 3... Coating device 4... Baking furnace W... Ceramic fiber stranded wire L...
・・・・・・Liquid metal salt or mixed solution containing metal salt
Claims (7)
線外周に、酸素を除くセラミックス超電導物質の構成元
素を含む金属塩あるいは該金属塩を溶媒中に分散した混
合溶液を被着する工程と、(ロ)次いで前記被着物質を
焼結する工程と、(ハ)この焼結層の外側に金属または
その合金よりなる安定化材を被覆する工程とからなるこ
とを特徴とするセラミックス系超電導線の製造方法。(1) (A) A step of applying a metal salt containing constituent elements of a ceramic superconducting material excluding oxygen or a mixed solution of the metal salt dispersed in a solvent to the outer periphery of a twisted wire made by twisting a plurality of ceramic fibers. (b) Next, the step of sintering the adhered substance; and (c) The step of coating the outside of the sintered layer with a stabilizing material made of a metal or an alloy thereof. Method of manufacturing superconducting wire.
化物系ファイバである特許請求の範囲第1項記載のセラ
ミックス系超電導線の製造方法。(2) The method for manufacturing a ceramic superconducting wire according to claim 1, wherein the ceramic fiber is a silicon carbide fiber or an oxide fiber.
スである特許請求の範囲第1項あるいは第2項記載のセ
ラミックス系超電導線の製造方法。(3) The method for manufacturing a ceramic superconducting wire according to claim 1 or 2, wherein the superconducting material is a Y-Ba-Cu-O ceramic.
項ないし第3項のいずれか1項記載のセラミックス系超
電導線の製造方法。(4) The first claim is that the metal salt is a metal soap.
A method for manufacturing a ceramic superconducting wire according to any one of Items 1 to 3.
の範囲第1項ないし第3項のいずれか1項記載のセラミ
ックス系超電導線の製造方法。(5) The method for producing a ceramic superconducting wire according to any one of claims 1 to 3, wherein the metal salt is a nitrate or an oxalate.
^5Ωcm以下である特許請求の範囲第2項記載のセラ
ミックス系超電導線の製造方法。(6) Ceramic fiber has a volume resistivity of 10
The method for manufacturing a ceramic superconducting wire according to claim 2, wherein the ceramic superconducting wire has a resistance of ^5 Ωcm or less.
撚線外周に形成されてなる特許請求の範囲第1項ないし
第6項のいずれか1項記載のセラミックス系超電導線の
製造方法。(7) The ceramic superconducting wire according to any one of claims 1 to 6, wherein the sintered layer is formed on the outer periphery of the stranded wire excluding the strand gaps in the outermost layer constituting the stranded wire. manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62308267A JPH01149319A (en) | 1987-12-04 | 1987-12-04 | Manufacture of ceramic superconductive wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62308267A JPH01149319A (en) | 1987-12-04 | 1987-12-04 | Manufacture of ceramic superconductive wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01149319A true JPH01149319A (en) | 1989-06-12 |
Family
ID=17978961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62308267A Pending JPH01149319A (en) | 1987-12-04 | 1987-12-04 | Manufacture of ceramic superconductive wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01149319A (en) |
-
1987
- 1987-12-04 JP JP62308267A patent/JPH01149319A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6344287B1 (en) | High temperature compatible insulation for superconductors and method of applying insulation to superconductors | |
JPH01149319A (en) | Manufacture of ceramic superconductive wire | |
JP2573506B2 (en) | Manufacturing method of ceramic superconducting wire | |
JPH01149320A (en) | Manufacture of ceramic superconductive wire | |
JPH01144526A (en) | Manufacture of ceramic-based superconductive wire | |
JP2604379B2 (en) | Manufacturing method of ceramic superconducting wire | |
JPH01149321A (en) | Manufacture of ceramic superconductive wire | |
JPH0765646A (en) | Oxide superconducting cable and manufacture of strand | |
JPH01149316A (en) | Manufacture of ceramic superconductive wire | |
JPH01144524A (en) | Manufacture of ceramic-based superconductive wire | |
JPH02270222A (en) | Ceramic superconducting wire and manufacture thereof | |
JPH01149317A (en) | Manufacture of ceramic superconductive wire | |
JPH01149318A (en) | Manufacture of ceramic superconductive wire | |
JPH01149322A (en) | Manufacture of ceramic superconductive wire | |
JP2651018B2 (en) | High magnetic field magnet | |
JP4150129B2 (en) | Oxide superconducting compression molded conductor and manufacturing method thereof | |
JPH01149306A (en) | Ceramic superconductive wire | |
JPH01149307A (en) | Ceramic superconductive wire | |
JPH01144527A (en) | Manufacture of ceramic-based superconductive wire | |
JPH01144515A (en) | Ceramic-based superconductive cable | |
JPH01143108A (en) | Manufacture of ceramics superconductive wire | |
JPH01144528A (en) | Manufacture of ceramic-base superconductive wire | |
JP4373683B2 (en) | Method for manufacturing Bi-based oxide superconducting coil | |
JPH07114838A (en) | Oxide superconducting cable | |
JPH06251929A (en) | Manufacture of oxide superconducting coil |