JPH01144528A - Manufacture of ceramic-base superconductive wire - Google Patents

Manufacture of ceramic-base superconductive wire

Info

Publication number
JPH01144528A
JPH01144528A JP62301794A JP30179487A JPH01144528A JP H01144528 A JPH01144528 A JP H01144528A JP 62301794 A JP62301794 A JP 62301794A JP 30179487 A JP30179487 A JP 30179487A JP H01144528 A JPH01144528 A JP H01144528A
Authority
JP
Japan
Prior art keywords
ceramic
fiber
superconducting wire
manufacturing
sintered layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62301794A
Other languages
Japanese (ja)
Inventor
Etsuo Hosokawa
細川 悦雄
Takeo Shiono
武男 塩野
Takayo Hasegawa
隆代 長谷川
Toshio Kasahara
敏夫 笠原
Masatada Fukushima
福島 正忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP62301794A priority Critical patent/JPH01144528A/en
Publication of JPH01144528A publication Critical patent/JPH01144528A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a wire material of excellent flexibility and stability by covering the outer side of a ceramic fiber with a mixed solution containing dispersed fine particle of a ceramic superconductive material, heating and sintering the material and covering the sintered layer with a metallic stabilizing member. CONSTITUTION:An application device 3 and a baking oven 4 are arranged between a reel out bobbin 1 wound with SiC-based fiber W and a winding bobbin 2 so that the fiber W is routed. A mixed solution L held in an application tub 3b is prepared by dispersing crushed fine powder of a superconductive material in a polyurethane varnish liquid, with the superconductive material being made by mixing, heating and sintering Y2O3, BaCO3 and CuO. The fiber W is passed through the application tub 3b and the baking oven 4 for several times to produce a primary sintered layer of Y-Ba-Cu-O-based ceramic on the fiber W and is further heated to produce a sintered layer. The outer circumference of the sintered layer is further deposited with TiC as a stabilizing member. This makes it possible to easily manufacture a wire material having excellent flexibility and stability.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は超電導線の製造方法に係り、特にセラミックス
系超電導線の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a superconducting wire, and particularly to a method for manufacturing a ceramic superconducting wire.

(従来の技術) 近年、特に昨年の秋以降、セラミックス超電導体の開発
が世界中で急ピッチで進められている。
(Conventional Technology) In recent years, especially since last fall, the development of ceramic superconductors has been progressing at a rapid pace all over the world.

この超電導体は、従来の最高の臨界温度を示すNb3G
eの23にを大中に越えるもので、Ba−La−Cu−
0系セラミックス(臨界温度35に) 、La−8r−
Cu−0系セラミックス(超電導開始温度37に以上)
、La−Ca−Cu−0系セラミックス、Y−Ba−C
u−0系セラミックス(ゼロ抵抗温度93K)等のほか
、本年に入って233にあるいは300に以上の臨界温
度を示すセラミックスも報告おれている。
This superconductor is Nb3G, which has the highest conventional critical temperature.
It is more than 23 of e, and Ba-La-Cu-
0 series ceramics (critical temperature 35), La-8r-
Cu-0 ceramics (superconductivity starting temperature 37 or higher)
, La-Ca-Cu-0 ceramics, Y-Ba-C
In addition to u-0 series ceramics (zero resistance temperature of 93K), ceramics showing a critical temperature of 233 or more than 300 have been reported this year.

このようにセラミックス超電導材料は臨界温度が液体窒
素温度以上や室温で用いることができる可能性があり、
この場合、高価な液体ヘリウムを使用しなくて済むため
、経済的に極めて有利となるほか、超電導発電機等に使
用されると構造がシンプルで熱機関の効率も向上する等
の利点を有する。
In this way, it is possible that ceramic superconducting materials can be used at critical temperatures higher than the liquid nitrogen temperature or at room temperature.
In this case, there is no need to use expensive liquid helium, which is extremely advantageous economically, and when used in a superconducting generator or the like, the structure is simple and the efficiency of the heat engine is improved.

しかしながら、セラミックスは硬くて、かつ脆いため、
現在実用化されているNb−T i系やNb、 Sn系
超電導線のように曲げたり、あるいはコイル巻きするこ
とができず、この点を克服することが実用化への第1歩
となる。
However, since ceramics are hard and brittle,
It cannot be bent or coiled like the Nb-Ti-based or Nb-Sn-based superconducting wires that are currently in practical use, and overcoming this point is the first step toward practical use.

現在線材の製造方法として、 ■アモルファスのテープあるいは線材を酸素雰囲気下で
加熱処理する方法、 ■合金管(たとえばCu−Ni合金)の内部に原料の粉
末を充填し、両端を引張って線材やテープ状に成形する
方法、 ■銅系合金管内にセラミックスを充填し、熱処理および
圧延加工等を施して線材やテープ状に成形する方法、等
が提案されている。
Currently, there are two ways to manufacture wire rods: 1. Heat-treating amorphous tape or wire in an oxygen atmosphere; 2. Filling an alloy tube (for example, Cu-Ni alloy) with raw material powder and pulling both ends to produce wire or tape. 2) A method of filling a copper alloy tube with ceramics, subjecting it to heat treatment, rolling, etc., and forming it into a wire or tape shape, etc. have been proposed.

しかしながら、上記■の方法においては、極めて急速な
冷却を必要とする上、極めて細い線材や薄膜のテープし
か得られず、実用線材を得る方法としては、難点を有し
ており、上記■の方法では長尺の線材を連続的に製造す
ることが困難であり、上記■の方法では線材の定長が当
初の銅合金管の外径によって制限される上、加工工程が
複雑となる難点がある。この場合、セラミックス超電導
体生成の熱処理は、超電導特性向上の観点から成形後、
すなわち最終線径近傍で施すことが望ましいが、銅系合
、金管で被覆されているため成形後に内部に酸素を供給
することが極めて困難であり、実際上不可能である。
However, the above method (■) requires extremely rapid cooling and can only yield extremely thin wire rods or thin film tapes, so it has disadvantages as a method for obtaining practical wire rods. However, it is difficult to continuously manufacture long wire rods, and in method (■) above, the fixed length of the wire rod is limited by the outer diameter of the initial copper alloy tube, and the processing process is complicated. . In this case, the heat treatment for producing the ceramic superconductor is performed after molding from the viewpoint of improving superconducting properties.
That is, it is desirable to carry out the process near the final diameter of the wire, but since the wire is coated with a copper-based alloy or a brass tube, it is extremely difficult to supply oxygen to the inside after forming, which is practically impossible.

(発明が解決しようとする問題点) 本発明は、上記の難点を解決するためになされたもので
、アモルファス化のための急速冷却を必要とせず、長尺
の線材を容易に製造することができる上、酸化性雰囲気
中での熱処理を長尺の線材の状態で施すことができ、か
つ高い臨界電流密度の実用線材を製造することが可能な
セラミックス系超電導線の製造方法を提供することをそ
の目的とする。
(Problems to be Solved by the Invention) The present invention was made to solve the above-mentioned difficulties, and it is possible to easily manufacture a long wire rod without requiring rapid cooling to make it amorphous. It is an object of the present invention to provide a method for producing a ceramic superconducting wire, which can be heat-treated in an oxidizing atmosphere in the form of a long wire, and which can produce a practical wire with a high critical current density. That purpose.

[発明の構成] (問題点を解決するための手段) 本発明のセラミックス系超電導線の製造方法は、 (イ)セラミックファイバの外周にセラミックス超電導
物質あるいは酸化性雰囲気中で加熱することによりそれ
を生成する構成物質よりなる微粉末を溶媒中に分散させ
た混合溶液を被着する工程と、(ロ)次いで前記被着物
質を焼結する工程と、(ハ)この焼結層の外周に導電性
セラミックスあるいは導電性高分子よりなる安定化材を
被覆する工程とからなることを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The method for manufacturing a ceramic superconducting wire of the present invention includes (a) applying a ceramic superconducting material to the outer periphery of a ceramic fiber or heating it in an oxidizing atmosphere; A step of depositing a mixed solution in which fine powder consisting of the constituent materials to be produced is dispersed in a solvent, (b) a step of sintering the deposited material, and (c) a step of applying a conductive material to the outer periphery of this sintered layer. The method is characterized by a step of coating with a stabilizing material made of conductive ceramics or conductive polymer.

上記のセラミックファイバとしては炭化ケイ素(SiC
)系あるいは酸化物系のものを用いることができる。
The above ceramic fiber is made of silicon carbide (SiC
) type or oxide type can be used.

これらのファイバは連続長繊維で、1000〜1300
℃以上の高い耐熱性と200〜250k(1/■イ以上
の引張強さを有しており、その平均直径はたとえば10
〜13μIφと極めて小さいものがあり、もちろんこれ
より大径のものを用いることもできる。前者のSiC系
ファイバとしては、たとえばチラノ繊維(宇部興産株式
会社製5i−Ti−C−0系ファイバ商品名)やニカロ
ン(日本カーボン株式会社製SiC系ファイバ商品名)
をあげることができ、後者の酸化物系ファイバとしては
サフィル(英国In+perialChemical 
Industries PLC−ICI製八1へ03フ
ァイバ商品名)等の他5102系ファイバを用いること
ができる。
These fibers are continuous filaments, with a diameter of 1000 to 1300
It has high heat resistance of over ℃ and tensile strength of over 200 to 250k (1/■i), and its average diameter is, for example, 10
There are diameters as small as ~13 μIφ, and of course diameters larger than this can also be used. Examples of the former SiC fiber include Tyranno fiber (trade name of 5i-Ti-C-0 fiber manufactured by Ube Industries, Ltd.) and Nicalon (trade name of SiC fiber manufactured by Nippon Carbon Co., Ltd.).
The latter oxide fiber is manufactured by Safil (UK In+perial Chemical Co., Ltd.).
In addition to Industries PLC-ICI 81 to 03 fiber (trade name), 5102 series fiber can be used.

上記のファイバはその体積固有抵抗が105ΩC1以下
であることが好ましい。体積固有抵抗が上記の範囲であ
ると臨界温度以上に超電導線の温度が上昇したときに、
電流がファイバ内を流れ易くなり破壊し難くなるなめで
ある。体積固有抵抗が高いと臨界温度以上になったとき
に端子電圧が上昇し破壊し易くなる0体積固有抵抗が小
さければロスの発生も少なく好都合である。
The above-mentioned fiber preferably has a volume resistivity of 10 5 ΩC1 or less. When the volume resistivity is within the above range, when the temperature of the superconducting wire rises above the critical temperature,
This lick makes it easier for current to flow through the fiber and makes it harder to break. If the volume resistivity is high, the terminal voltage will rise when the temperature exceeds the critical temperature, making it easy to break down.If the zero volume resistivity is small, loss will occur less, which is advantageous.

セラミックス超電導物質としては、たとえばYBa2 
Cu30X (X < 14 ;ペロブスカイト)やこ
れにF笠を添加したものがあり、一方、酸化性雰囲気中
で加熱することによりそれを生成する構成物質としては
炭酸塩や酸化物、たとえばY2O3、BaCO3、Cu
O等があげられる。
Examples of ceramic superconducting materials include YBa2
There are Cu30X (X <14; perovskite) and those with F cap added thereto, while constituent substances that produce it by heating in an oxidizing atmosphere include carbonates and oxides, such as Y2O3, BaCO3, Cu
Examples include O.

上記の物質は微粉末の状態で溶媒中に分散される。この
場合、混合溶液中の各構成元素の原子数比はセラミック
ス超電導物質を構成する原子数比に一致するように配合
することが好ましい、超電導物質の微粉末は固相反応法
で生成したものが好適する。すなわち、酸化物、炭酸塩
等を均一に混合後、空気中で加熱する工程を繰返し、次
いでこれを圧縮した後、酸化性雰囲気中で焼結後、粉砕
したものを用いることができる。
The above substances are dispersed in a solvent in the form of fine powder. In this case, it is preferable that the atomic ratio of each constituent element in the mixed solution matches the atomic ratio of the ceramic superconducting material.The fine powder of the superconducting material is one produced by a solid phase reaction method. Suitable. That is, after uniformly mixing oxides, carbonates, etc., the process of heating in air is repeated, then this is compressed, and then sintered in an oxidizing atmosphere and pulverized can be used.

さらに混合溶液の溶媒としては、分解温度の低いエナメ
ルワニス、たとえばポリウレタンワニスやポリビニルア
ルコール樹脂溶液等が用いられる。
Further, as a solvent for the mixed solution, an enamel varnish having a low decomposition temperature, such as a polyurethane varnish or a polyvinyl alcohol resin solution, is used.

セラミックス超電導物質の焼結層の生成は、酸素気流中
あるいは酸素加圧下で酸化調整しながら700〜100
0℃に加熱して、特性の改善が図られる。
The generation of a sintered layer of ceramic superconducting material is carried out at a temperature of 700 to 100 while adjusting oxidation in an oxygen stream or under oxygen pressure.
The properties are improved by heating to 0°C.

この焼結層の外側に安定化材が被覆されるが、この安定
化材としては、導電性セラミックスや導電性高分子材料
が用いられる。前者の導電性セラミックスとしてはTi
C,NbC,WClTaC,ZrB、 BN、ZrN等
の炭化物、ホウ化物や窒化物があり、一方後者の導電性
高分子材料としてはポリアセチレンやポリピロール等を
あげることができる。これらの安定化材はその体積固有
抵抗が105Ωcm以下であることが好ましい。その理
由はセラミックファイバの場合と同様であるが、特に導
電性セラミックスを用いた場合には線材の構成部材の熱
膨張の差を小さくすることができ熱的影響に対して極め
て有利となる。
A stabilizing material is coated on the outside of this sintered layer, and as this stabilizing material, conductive ceramics or conductive polymer materials are used. The former conductive ceramic is Ti
There are carbides, borides, and nitrides such as C, NbC, WClTaC, ZrB, BN, and ZrN, and examples of the latter conductive polymer materials include polyacetylene and polypyrrole. These stabilizing materials preferably have a volume resistivity of 10 5 Ωcm or less. The reason for this is the same as in the case of ceramic fibers, but especially when conductive ceramics are used, the difference in thermal expansion of the constituent members of the wire can be reduced, which is extremely advantageous against thermal effects.

安定化材の被覆は、溶融、気相あるいはイオン状態で施
すことができる。
The stabilizing material coating can be applied in the melt, gas phase or ionic state.

上記の安定化材の外側に通常絶縁被膜が施される。絶縁
被膜としては有機あるいは無機材料が用いられ、前者の
有機絶縁被膜としてはUV@化ウレタン樹脂やPVFエ
ナメルを、一方後者の無代絶縁被膜としてはアルミナや
ポリボロシロキサン樹脂等をあげることができる。
An insulating coating is usually applied to the outside of the above-mentioned stabilizing material. Organic or inorganic materials are used as the insulating coating, and the former organic insulating coating includes UV@-cured urethane resin and PVF enamel, while the latter non-containing insulating coating includes alumina and polyborosiloxane resin. .

(作用) 本発明の方法においては、セラミックファイバの外側に
セラミックス超電導物質あるいは酸化性雰囲気中で加熱
することによりそれを生成する構成物質よりなる微粉末
を含む混合溶液を被着した後焼結するため、長尺の線材
を容易に製造することができ、かつファイバがセラミッ
クスよりなるため超電導物質との熱膨張の差も小さく、
かつ密着性も良好である。
(Function) In the method of the present invention, a mixed solution containing a fine powder made of a ceramic superconducting material or a constituent material that generates it by heating in an oxidizing atmosphere is deposited on the outside of a ceramic fiber, and then sintered. Therefore, long wire rods can be easily manufactured, and since the fiber is made of ceramics, the difference in thermal expansion with the superconducting material is small.
Moreover, the adhesion is also good.

すなわち上記の良好な密着性の達成とセラミックスの加
工を不要としたことにより、長尺線材の製造を可能にす
る。また混合溶液を用いることにより、エナメル線の製
造工程と同様の方法を採用することができる。
That is, by achieving the above-mentioned good adhesion and eliminating the need for processing ceramics, it is possible to manufacture long wire rods. Moreover, by using a mixed solution, a method similar to the manufacturing process of enamelled wire can be adopted.

(実−例) 以下本発明の実施例について説明する。(actual example) Examples of the present invention will be described below.

図は本発明によるセラミックス超電導線を製造するため
の装置の概略を示したもので、セラミックファイバWを
巻回した送出しボビン1と巻取りボビン2との間に塗布
装r!L3および焼付炉4が順に配置され、ファイバW
はガイドリール5〜8を介して塗布装置3と焼付炉4を
所定回数通過することにより、塗布ロール3aを介して
塗布槽3b内に収容された混合溶液りが複数層に亘って
塗布焼付けされる。なお9は絞りダイスである。
The figure schematically shows an apparatus for manufacturing a ceramic superconducting wire according to the present invention, in which a coating device r! L3 and baking furnace 4 are arranged in order, and the fiber W
By passing through the coating device 3 and the baking furnace 4 a predetermined number of times via the guide reels 5 to 8, the mixed solution contained in the coating tank 3b is coated and baked in multiple layers via the coating roll 3a. Ru. Note that 9 is a drawing die.

実施例1 ます固相反応法により次のようにして超電導物質の微粉
末を製造しな。すなわちY2O3を2259、BaC0
3を4679、CuOを239gを混合して、これを空
気中で950℃×8時間加熱する工程を3回繰返して得
た粉末に1.5t/c/の圧縮力を加えてプレスした0
次いで空気中で950°C×12時間焼結した後、40
0℃まで徐冷し、この温度で2時間保持した後、粉末に
粉砕しな、このようにして製造したH電導微粉末500
gをポリウレタンワニス(クレゾール溶液、120℃×
90分の固型分70χ) 1000a中に混合した。
Example 1 Fine powder of a superconducting material was produced by a solid phase reaction method as follows. That is, Y2O3 is 2259, BaC0
The process of mixing 4,679 g of CuO and 239 g of CuO and heating this in air at 950°C for 8 hours was repeated three times, and the resulting powder was pressed by applying a compression force of 1.5 t/c/.
Then, after sintering in air at 950°C for 12 hours,
The H conductive fine powder 500 produced in this way was slowly cooled to 0°C, kept at this temperature for 2 hours, and then ground into powder.
g to polyurethane varnish (cresol solution, 120℃
90 minutes solids content 70χ) was mixed in 1000a.

この混合溶液を塗布槽3b内に収容し、一方セラミック
ファイバWは外径10μlφのSiC系ファイバにカロ
ン;日本カーボン株式会社製商品名)を用い、上記の塗
布装置および炉長5m、炉温300〜400℃の焼付炉
4に6回通過せしめてセラミックファイバW上に膜厚6
.8μmの一次焼結層を形成した0次いでこのようにし
て得られた線材の1000本を集金撚りした後、950
℃で2時間加熱し焼結層を形成した。この焼結層の膜厚
は3.5μmであった。さらにこの焼結層の外周にTi
Cを被着した線材の特性を測定した結果、臨界温度(T
c )は88K、臨界電流密度(JC)は(0,5〜1
.0)X 10”八/d (at77K)であった。
This mixed solution was stored in the coating tank 3b, and the ceramic fiber W was a SiC fiber with an outer diameter of 10 μlφ and was made of Charon (trade name, manufactured by Nippon Carbon Co., Ltd.), using the above-mentioned coating device, furnace length of 5 m, and furnace temperature of 300 m. The ceramic fiber W is passed through the baking furnace 4 at ~400°C 6 times to form a film with a thickness of 6
.. After forming a primary sintered layer of 8 μm, 1000 wires thus obtained were collected and twisted, and then 950
It was heated at ℃ for 2 hours to form a sintered layer. The thickness of this sintered layer was 3.5 μm. Furthermore, Ti is added to the outer periphery of this sintered layer.
As a result of measuring the characteristics of the wire coated with C, we found that the critical temperature (T
c) is 88K, critical current density (JC) is (0,5~1
.. 0)×10”8/d (at77K).

なお上記の実施例では集合撚りした後、焼結および安定
化層を被覆したが、焼結および安定化層の被覆後に集合
撚りしてもよい。
In the above embodiments, after collective twisting, sintering and coating with a stabilizing layer were performed, but collective twisting may be performed after sintering and coating with a stabilizing layer.

実施例2 実施例゛1と同様に固相反応法で作成した超電導物質の
微粉末500(lをポリビニルアルコール樹脂の20%
エタノール溶液1000G中に均一に混合し、同様に外
径10μlφのSiCファイバ上に塗布焼付けした。こ
の時の膜厚は6.7μmであった。この線材の1000
本を集合撚りした後、950℃で2時間焼結した焼結層
の厚さは2.8μmであった。さらにこの外周に賀Cを
被着した線材の特性を測定した結果、’rc =83K
 、  J c = (0,3〜0.7)X 10” 
A/c!(at77K)であった。
Example 2 500 liters of fine powder of superconducting material prepared by the solid phase reaction method in the same manner as in Example 1 (20% of polyvinyl alcohol resin)
The mixture was uniformly mixed in 1000 G of ethanol solution, and similarly applied and baked onto a SiC fiber having an outer diameter of 10 μlφ. The film thickness at this time was 6.7 μm. 1000 of this wire
After the books were collectively twisted, they were sintered at 950° C. for 2 hours, and the thickness of the sintered layer was 2.8 μm. Furthermore, as a result of measuring the characteristics of the wire rod coated with C on the outer periphery, 'rc = 83K
, Jc = (0,3~0.7)X10"
A/c! (at77K).

[発明の効果] 以上述べたように本発明のセラミックス系超電導線の製
造方法によれば、セラミックファイバの外側にセラミッ
クス超電導物質の焼結層を形成することにより、長尺の
機械的および電気的に安定した線材を容易に製造するこ
とができるとともに、高い電流密度の超電導線を得るこ
とができる。
[Effects of the Invention] As described above, according to the method for manufacturing a ceramic superconducting wire of the present invention, by forming a sintered layer of a ceramic superconducting material on the outside of a ceramic fiber, long mechanical and electrical It is possible to easily produce a wire rod that is stable in terms of properties, and also to obtain a superconducting wire with a high current density.

本発明によって製造された超電導線は可撓性に優れるた
め、これらの複数本を用いて集合線、撚線あるいは編組
線を容易に形成することができ、このようにして得られ
た線材をコイル巻きした後、エナメルワニスを含浸して
超電導マグネットを製作することができる。
Since the superconducting wire manufactured according to the present invention has excellent flexibility, a plurality of these wires can be used to easily form an assembled wire, a stranded wire, or a braided wire, and the wire obtained in this way can be used to form a coil. After winding, it can be impregnated with enamel varnish to create a superconducting magnet.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明のセラミックス系超電導線の製造方法に用い
られる装置の一実施例を示す概略図である。 3・・・・・・・・・塗布装置 4・・・・・・・・・焼付炉 W・・・・・・・・・セラミックファイバL・・・・・
・・・・混合溶液
The figure is a schematic diagram showing an embodiment of an apparatus used in the method of manufacturing a ceramic superconducting wire of the present invention. 3... Coating device 4... Baking furnace W... Ceramic fiber L...
・・・Mixed solution

Claims (7)

【特許請求の範囲】[Claims] (1)(イ)セラミックファイバの外周に、セラミック
ス超電導物質あるいは酸化性雰囲気中で加熱することに
よりそれを生成する構成物質よりなる微粉末を溶媒中に
分散させた混合溶液を被着する工程と、 (ロ)次いで前記被着物質を焼結する工程と、(ハ)こ
の焼結層の外周に導電性セラミックスあるいは導電性高
分子材料よりなる安定化材を被覆する工程とからなるこ
とを特徴とするセラミックス系超電導線の製造方法。
(1) (a) A step of depositing a mixed solution in which fine powder made of a ceramic superconducting material or a constituent material that is generated by heating in an oxidizing atmosphere is dispersed in a solvent on the outer periphery of the ceramic fiber. (b) Next, the step of sintering the adhered substance; and (c) the step of coating the outer periphery of the sintered layer with a stabilizing material made of conductive ceramics or conductive polymer material. A method for manufacturing a ceramic superconducting wire.
(2)セラミックファイバは、炭化ケイ素系あるいは酸
化物系ファイバである特許請求の範囲第1項記載のセラ
ミックス系超電導線の製造方法。
(2) The method for manufacturing a ceramic superconducting wire according to claim 1, wherein the ceramic fiber is a silicon carbide fiber or an oxide fiber.
(3)超電導物質は、Y−Ba−Cu−O系セラミック
スである特許請求の範囲第1項あるいは第2項記載のセ
ラミックス系超電導線の製造方法。
(3) The method for manufacturing a ceramic superconducting wire according to claim 1 or 2, wherein the superconducting material is a Y-Ba-Cu-O ceramic.
(4)超電導物質よりなる微粉末は、固相反応法により
生成されてなる特許請求の範囲第1項ないし第3項のい
ずれか1項記載のセラミックス系超電導線の製造方法。
(4) The method for producing a ceramic superconducting wire according to any one of claims 1 to 3, wherein the fine powder of the superconducting substance is produced by a solid phase reaction method.
(5)溶媒は、低分解温度のエナメルワニスよりなる特
許請求の範囲第1項ないしし第4項のいずれか1項記載
のセラミックス系超電導線の製造方法。
(5) The method for manufacturing a ceramic superconducting wire according to any one of claims 1 to 4, wherein the solvent is an enamel varnish having a low decomposition temperature.
(6)セラミックファイバは、その体積固有抵抗が10
^5Ωcm以下である特許請求の範囲第2項記載のセラ
ミックス系超電導線の製造方法。
(6) Ceramic fiber has a volume resistivity of 10
The method for manufacturing a ceramic superconducting wire according to claim 2, wherein the ceramic superconducting wire has a resistance of ^5 Ωcm or less.
(7)導電性セラミックスあるいは導電性高分子材料よ
りなる安定化材は、その体積固有抵抗が10^5Ωcm
以下である特許請求の範囲第1項、第3項ないし第6項
のいずれか1項記載のセラミックス系超電導線の製造方
法。
(7) The stabilizing material made of conductive ceramics or conductive polymer material has a volume resistivity of 10^5Ωcm.
A method for manufacturing a ceramic superconducting wire according to any one of claims 1, 3 to 6 below.
JP62301794A 1987-11-30 1987-11-30 Manufacture of ceramic-base superconductive wire Pending JPH01144528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62301794A JPH01144528A (en) 1987-11-30 1987-11-30 Manufacture of ceramic-base superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62301794A JPH01144528A (en) 1987-11-30 1987-11-30 Manufacture of ceramic-base superconductive wire

Publications (1)

Publication Number Publication Date
JPH01144528A true JPH01144528A (en) 1989-06-06

Family

ID=17901255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62301794A Pending JPH01144528A (en) 1987-11-30 1987-11-30 Manufacture of ceramic-base superconductive wire

Country Status (1)

Country Link
JP (1) JPH01144528A (en)

Similar Documents

Publication Publication Date Title
US6344287B1 (en) High temperature compatible insulation for superconductors and method of applying insulation to superconductors
JPH11505365A (en) Multifilament superconducting composite material and manufacturing method
JPH0268820A (en) Electric conductor in the form of wire or cable
JPH06318409A (en) Superconductor
JP3783538B2 (en) Manufacturing method of oxide superconducting wire
JPH01144528A (en) Manufacture of ceramic-base superconductive wire
JPH01144527A (en) Manufacture of ceramic-based superconductive wire
JPH01149322A (en) Manufacture of ceramic superconductive wire
JPH01144526A (en) Manufacture of ceramic-based superconductive wire
JPH01149321A (en) Manufacture of ceramic superconductive wire
JPH1125785A (en) Oxide superconducting stranded wire, manufacture of oxide superconducting cable conductor, coated wire, stranded wire and cable conductor
JP3635210B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JP2573506B2 (en) Manufacturing method of ceramic superconducting wire
JPH0765646A (en) Oxide superconducting cable and manufacture of strand
JPH02270222A (en) Ceramic superconducting wire and manufacture thereof
JPH05211013A (en) Oxide superconductor and manufacture thereof
JP2604379B2 (en) Manufacturing method of ceramic superconducting wire
JPH01149317A (en) Manufacture of ceramic superconductive wire
JPH01149320A (en) Manufacture of ceramic superconductive wire
JPS63284720A (en) Superconducting wire
JP4150129B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JPH01144524A (en) Manufacture of ceramic-based superconductive wire
JP3513915B2 (en) Oxide superconducting wire, method for producing the same, and oxide superconducting conductor
JPH04262308A (en) Oxide superconductive wire rod
JPH01143108A (en) Manufacture of ceramics superconductive wire