JPS63285155A - Oxide type superconductive material and production thereof - Google Patents

Oxide type superconductive material and production thereof

Info

Publication number
JPS63285155A
JPS63285155A JP62116860A JP11686087A JPS63285155A JP S63285155 A JPS63285155 A JP S63285155A JP 62116860 A JP62116860 A JP 62116860A JP 11686087 A JP11686087 A JP 11686087A JP S63285155 A JPS63285155 A JP S63285155A
Authority
JP
Japan
Prior art keywords
oxide
oxide type
superconductive material
superconducting
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62116860A
Other languages
Japanese (ja)
Inventor
Katsuzo Aihara
勝蔵 相原
Naofumi Tada
直文 多田
Masahiro Ogiwara
荻原 正弘
Katsuo Koriki
高力 勝男
Yasuo Suzuki
保夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62116860A priority Critical patent/JPS63285155A/en
Publication of JPS63285155A publication Critical patent/JPS63285155A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To enable production of a superconductive material of oxide type having large critical electric current density, by connecting superconductive material particles of oxide type through an electrically conductive substance. CONSTITUTION:Superconductive material particles of oxide type are mixed with electrically conductive metal powder while stirring and the mixed powder is molded under pressure or, after the molding, may be heat-treated to give a superconductive material of oxide type. Or the mixed powder is packed into a metallic pipe and mechanically processed to reduce section area or, after the mechanical processing, may be heat-treated to produce the superconductive material of oxide type. The superconductive material of oxide type thus obtained has a sectional structure shown by the figure and superconductive material particles 1 of oxide type are mutually connected by the electrically conductive material 2. The superconductive material of oxide type having various shapes can be readily obtained by the above-mentioned production methods.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸化物系超電導材料、およびその製造方法に
係り、特に、各種の超電導応用装置に使用される高い臨
界温度と大きな臨界電流密度を有する酸化物系超電導材
料、およびその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an oxide-based superconducting material and a method for producing the same, and particularly relates to a material with a high critical temperature and a large critical current density used in various superconducting application devices. The present invention relates to an oxide-based superconducting material having the following properties and a method for producing the same.

〔従来の技術〕[Conventional technology]

超電導材料には、従来から例えば特開昭61−2302
09号公報、特開昭61−230210号公報等に開示
されている合金系超電導材料、特開昭61−25650
8号公報等に開示されている化合物系超電導材料など各
種材料が知られている。超電導材料は、ジョセフソン素
子などのエレクトロニクスデバイスや強磁界を発生する
超電導磁石などを作るのに使用される。従来の超電導材
料としては、合金系ではNb−Ti、化合物系ではNb
3Sn  が最も一般的に使用されてきたが、これら材
料の臨界温度Tcは、Nb−Tiでは9.5に、Nb5
Snでは18に程度であり、超電導状態を保持するには
Superconducting materials have been developed in the past, for example, in Japanese Patent Application Laid-Open No. 61-2302.
Alloy-based superconducting materials disclosed in JP-A No. 09, JP-A-61-230210, etc., JP-A-61-25650
Various materials are known, such as compound-based superconducting materials disclosed in Publication No. 8 and the like. Superconducting materials are used to make electronic devices such as Josephson devices and superconducting magnets that generate strong magnetic fields. Conventional superconducting materials include Nb-Ti for alloy systems and Nb for compound systems.
3Sn has been most commonly used, but the critical temperature Tc of these materials is 9.5 for Nb-Ti and
For Sn, it is about 18, which is sufficient to maintain a superconducting state.

高価な液体ヘリウムを冷媒として使用する必要があった
This required the use of expensive liquid helium as a refrigerant.

しかるに、最近になって、ペロブスカイト型の結晶構造
を有する酸化物系超電導体でTcが90Kを越えるもの
まで発見され、冷媒として液体水素、液体ネオン、液体
窒素の使用が可能となってきた。
However, recently, oxide superconductors with a perovskite crystal structure and a Tc exceeding 90K have been discovered, and it has become possible to use liquid hydrogen, liquid neon, and liquid nitrogen as refrigerants.

これら酸化物系超電導体は、KzNiF4型の結晶構造
を持つ(L a L−XMX) 2Cu 0n−y (
ここでMはBa、Sr、Caなど)系および、3重の層
状ペロブスカイト型の結晶構造を持つ(Bai−、M’
 X)8Cu 5C)r−y (ここでM′はY、La
あるいはランタノイド系の元素)系に大別できる。前者
はTcが40に近辺にあり、後者はTcが90に近辺に
ある。
These oxide-based superconductors have a KzNiF4 type crystal structure (L a L-XMX) 2Cu 0n-y (
Here, M has a (Ba, Sr, Ca, etc.) system and a triple layered perovskite type crystal structure (Bai-, M'
X)8Cu 5C)ry (here, M' is Y, La
Or, it can be roughly divided into lanthanide-based elements). The former has Tc around 40, and the latter has Tc around 90.

これら酸化物系超電導体は、例えば各構成元素の酸化物
粉末を混合撹拌し、加圧成形したペレットを900℃〜
1100℃で空気中あるいは酸素雰囲気中で焼成して得
られる。
These oxide-based superconductors are produced by, for example, mixing and stirring oxide powders of each constituent element, press-molding pellets at 900°C
It is obtained by firing at 1100°C in air or oxygen atmosphere.

〔発明が解決しようとする問題点〕 しかるに、例えば超電導磁石を用いるにはコイル巻線を
するために長尺化した線材を必要とする。
[Problems to be Solved by the Invention] However, for example, when using a superconducting magnet, a long wire is required for winding the coil.

酸化物系超電導体を用いた長尺線化の試みも行われてい
る。その方法の1例は、焼成したペレットを粉砕し、そ
の粉末をCu、ステンレススチールあるいはCu−Ni
パイプに充填し、それに断面減少を施して長尺線材化す
る方法である。しかし、この方法で作った長尺線では臨
界電流密度がほとんど零、す、なわち超電導状態で電流
がほとんど流れないという大きな問題がある。
Attempts are also being made to create long wires using oxide-based superconductors. One example of this method is to crush fired pellets and use the powder to make Cu, stainless steel or Cu-Ni steel.
This is a method of filling a pipe with it and reducing its cross section to create a long wire. However, a major problem with long wires made using this method is that the critical current density is almost zero, meaning that they are in a superconducting state and almost no current flows.

本発明は上述の点に鑑みて成されたもので、その目的と
するところは、高い臨界温度を有する酸化物系超電導体
を用いた大きな臨界電流密度を有する酸化物系超電導材
料、及びその製造方法を提供するにある。
The present invention has been made in view of the above-mentioned points, and its purpose is to provide an oxide-based superconducting material having a large critical current density using an oxide-based superconductor having a high critical temperature, and its production. We are here to provide you with a method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の酸化物系超電導材料は、酸化物系超電導体粒子
が導電性物質を介して接続された構造を有する。そして
、本発明の製造方法の一つは、酸化物系超電導体粉末と
導電性金属粉末を混合撹拌し、この混合粉末を加圧成形
することにより、あるいはその後に熱処理を施すことに
より酸化物系超電導材料を得る。更に、本発明の製造方
法の他の一つは、酸化物系超電導体粉末と導電性金属粉
末を混合撹拌し、この混合粉末を金属性パイプに充填し
、これを機械加工により断面減少させることにより、あ
るいはその後に熱処理を施すことにより酸化物系超電導
材料を得る。
The oxide-based superconducting material of the present invention has a structure in which oxide-based superconductor particles are connected via a conductive substance. One of the manufacturing methods of the present invention is to mix and stir oxide-based superconductor powder and conductive metal powder, and press-mold this mixed powder, or by subsequently heat-treating the oxide-based superconductor powder and conductive metal powder. Obtain superconducting material. Furthermore, another manufacturing method of the present invention is to mix and stir oxide superconductor powder and conductive metal powder, fill a metal pipe with this mixed powder, and reduce the cross section by machining. An oxide-based superconducting material is obtained by or by subsequently performing heat treatment.

〔作用〕[Effect]

本発明の酸化物系超電導材料は、超電導粒子相互の空隙
に充填させられた導電性物質により超電導粒子相互の密
着が良好となり超電導電流が流れ易くなる。
In the oxide-based superconducting material of the present invention, the conductive material filled in the voids between the superconducting particles allows the superconducting particles to adhere well to each other, making it easier for superconducting current to flow.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して詳細に説明する
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の酸化物系超電導材料は第1図に示す断面構造を
有する。導電性物質2により酸化物系超電導体粒子1が
相互に接続されている。
The oxide superconducting material of the present invention has a cross-sectional structure shown in FIG. Oxide-based superconductor particles 1 are interconnected by conductive substance 2 .

たとえば、酸化物系超電導体粉末を金属性パイプに充填
し、断面減少を行った従来の酸化物系超電導材料の場合
には、第2図に示すように、隣りあう酸化物系超電導粒
子1相互が充分に密着して接続された状態にならず、粒
子間に空隙3が存在し、相互の接続は点接触的であるこ
とが、走査型電子顕微鏡観察により明らかとなった。こ
の状態で、個々の酸化物系超電導粒子1は超電導性を喪
失していないことが交流帯磁率法による臨界温度の測定
から示され、金属性パイプ中で断面減少の際に超電導性
が破壊されていないことが確認された。それにもかかわ
らず、電流を流そうとしても電気抵抗零の超電導電流が
流れない。この原因は、超電導体粒子1の相互の接触が
不十分であるためと考えられ、このことから、空隙に導
電性物質を充填させてやれば超電導電流が流れ易くなる
と推察された。
For example, in the case of a conventional oxide superconducting material in which a metallic pipe is filled with oxide superconducting powder to reduce the cross section, adjacent oxide superconducting particles 1 are Observation using a scanning electron microscope revealed that the particles were not sufficiently closely connected, that there were voids 3 between the particles, and that the mutual connections were point-contact. In this state, individual oxide-based superconducting particles 1 have not lost their superconductivity, as shown by critical temperature measurements using the AC magnetic susceptibility method, and superconductivity is destroyed when the cross section is reduced in the metallic pipe. It has been confirmed that this is not the case. Despite this, even if an attempt is made to flow a current, a superconducting current with zero electrical resistance will not flow. This is thought to be due to insufficient mutual contact between the superconductor particles 1, and from this it was inferred that filling the voids with a conductive substance would facilitate the flow of superconducting current.

この時、超電導粒子1が超電導でない導電性物質2と接
触している場合、超電導電子がある距離の範囲までしみ
出すことは従来から良く知られている。このしみ出す距
離はコヒーレント長さと呼ばれているが、酸化物系超電
導体の場合には30人程度以下となっている。したがっ
て、超電導粒子1の相互の間隙距離もコヒーレント長さ
程度に小さくしておくことが有効である。導電性物質2
が存在しない場合には、超電導電子のしみ出し効果が期
待できないことから、超電導電流が超電導体粒子1間を
流れることができなくなる。
At this time, it has been well known that when superconducting particles 1 are in contact with non-superconducting conductive material 2, superconducting electrons seep out to a certain distance range. This seeping distance is called the coherent length, and in the case of oxide-based superconductors, it is about 30 or less. Therefore, it is effective to keep the mutual gap distance between the superconducting particles 1 as small as the coherent length. Conductive substance 2
If there is no superconducting current, no superconducting current can flow between the superconducting particles 1 because no superconducting electron seeping effect can be expected.

また、本発明の製造方法では、導電性物質2を形成させ
るために導電性金属粉末を用いるが、この導電性金2粉
末としては、単体の金属にこだわる必要はなく合金であ
ってもかまわないが、加工性の良好なものが望ましい。
Furthermore, in the manufacturing method of the present invention, a conductive metal powder is used to form the conductive substance 2, but the conductive gold 2 powder need not be limited to a single metal and may be an alloy. However, one with good workability is desirable.

1例として、In。As an example, In.

Pb、Snt Ag、Au、Cuなどの金属あるいはそ
れら合金の使用が可能である。
Metals such as Pb, Snt Ag, Au, Cu or alloys thereof can be used.

更に、本発明の製造方法では、機械加工を施した後熱処
理を行うことにより、さらに臨界電流密度の向上が可能
であるが、このとき、熱処理温度は酸化物系超電導体粒
子と導電性金属とが反応して超電導性を悪化させないよ
うに700℃以下の低温熱処理が望ましい。
Furthermore, in the manufacturing method of the present invention, it is possible to further improve the critical current density by performing heat treatment after machining, but at this time, the heat treatment temperature is set at a temperature that is different between the oxide-based superconductor particles and the conductive metal. A low temperature heat treatment of 700° C. or lower is desirable to avoid deterioration of superconductivity due to reaction.

以下、具体的な実施例に沿って本発明を説明する。The present invention will be described below with reference to specific examples.

実施例1 出発原料として市販の試薬である、YzOa。Example 1 YzOa is a commercially available reagent as a starting material.

BaCO5、CuO粉末を用い、原子比でY:Ba:C
uが1:2:3になるように秤量し、ボールミルを用い
て混合撹拌した。この混合粉末を950℃の温度で20
時間、空気中で板焼した。
Using BaCO5 and CuO powder, the atomic ratio is Y:Ba:C
They were weighed so that u was 1:2:3, and mixed and stirred using a ball mill. This mixed powder was heated to 950℃ for 20 minutes.
Grilled in the air for an hour.

それを直径30mm、厚さ2mのペレットに加圧成形し
、酸素ガス気流中で950℃の温度で15時間本焼した
。本焼後の冷却速度は、100℃/hとし、ついで酸素
ガス中で700℃の温度で10時間アニールを行った。
It was press-molded into pellets with a diameter of 30 mm and a thickness of 2 m, and was fired at a temperature of 950° C. for 15 hours in an oxygen gas stream. The cooling rate after firing was 100°C/h, and then annealing was performed in oxygen gas at a temperature of 700°C for 10 hours.

出来上ったペレットから、切削と研磨により、幅1 、
5 m 、厚1 、5 m 、長さ25ma+の棒状試
料を作製し、4端子抵抗法で臨界温度を測定したところ
、超電導開始温度が98に、電気抵抗零の完全に超電導
に転移した温度が93Kを示した。また、この試料を液
体窒素中に浸漬し・、臨界電流を測定したところ140
A/cdであった。また、これとは別に幅1 m 、厚
1 nm 、長さ10mの棒状試料を作り、交流帯磁率
法で超電導体の反磁性を応用して臨界温度の測定を行っ
たところ、超電導開始温度が95K、完全に超電導にな
った温度が89にであった。
The finished pellets are cut and polished to a width of 1.
A rod-shaped sample of 5 m in diameter, 1.5 m in thickness, and 25 m in length was prepared, and the critical temperature was measured using the 4-terminal resistance method.The superconductivity onset temperature was 98, and the temperature at which it completely transitioned to superconductivity with zero electrical resistance was found to be 98. It showed 93K. In addition, when this sample was immersed in liquid nitrogen and the critical current was measured, it was 140
It was A/cd. Separately, we made a rod-shaped sample with a width of 1 m, a thickness of 1 nm, and a length of 10 m, and measured the critical temperature by applying the diamagnetic properties of superconductors using the AC magnetic susceptibility method. As a result, we found that the superconductivity onset temperature was The temperature at which it became completely superconducting was 95K and 89K.

つぎに、ペレットを粉砕し、粒径が50〜100μmの
歯末状にした。この粉末を交流#F81率法で臨界温度
の測定を行ったところ、棒状試料と同じ値を示し、粉砕
により超電導性が劣化していないことを確めた。
Next, the pellets were pulverized to form tooth pads with a particle size of 50 to 100 μm. When the critical temperature of this powder was measured using the AC #F81 ratio method, it showed the same value as the rod-shaped sample, confirming that the superconductivity had not deteriorated due to pulverization.

その後、重量%で0,1,5.10%のSn粉末(平均
粒径75μm)を混合撹拌した4種類の混合粉末を作製
した。
Thereafter, four types of mixed powders were prepared by mixing and stirring 0, 1, and 5.10% by weight Sn powders (average particle size: 75 μm).

この混合粉末を内径φ6w1.外径φ8mmのCυパイ
プに充填し、両端を封じた後、ダイス線引きにより直径
φ0.8+mまで伸線加工を施した。出来上った線の長
さは各々約10mであった。
This mixed powder has an inner diameter of φ6w1. After filling a Cυ pipe with an outer diameter of 8 mm and sealing both ends, wire drawing was performed using die drawing to a diameter of 0.8+ m. The length of each completed line was approximately 10 m.

この線から201長さの試料を切り出し、種々の条件で
熱処理を施した。
A sample of 201 length was cut from this wire and heat treated under various conditions.

このようにして作製した試料について、臨界温度、臨界
電流密度の測定を行った。その結果を表に示す。
The critical temperature and critical current density of the sample thus prepared were measured. The results are shown in the table.

表で熱処理時間はいずれも1時間とした。また、臨界温
度については1−1.1−2. l−3,及び2−4の
試料では4端子抵抗法で測定できなかったので交流帯磁
率法で測定した。また臨界電流密度については液体窒素
中で測定した結果である。
In the table, the heat treatment time was 1 hour in all cases. Regarding critical temperature, see 1-1.1-2. Samples 1-3 and 2-4 could not be measured using the 4-terminal resistance method, so they were measured using the AC magnetic susceptibility method. Moreover, the critical current density is the result of measurement in liquid nitrogen.

以上の結果から、従来法の1−1.1−2.1−3では
臨界電流密度が零で超電導電流が流れなかったのに対し
、本発明では超電導電流が流れることが明らかである。
From the above results, it is clear that in the conventional method 1-1.1-2.1-3, the critical current density was zero and no superconducting current flowed, whereas in the present invention, a superconducting current flows.

このとき、導電性金属粉としてのSnの割合は、5%前
後が最も良好であり、熱処理を施した場合に300℃熱
処理で臨界電流密度が最大値を示した。熱処理温度が高
すぎると、Y B a 2c u 5C)r−yの超電
導体粒子とSnとが反応して臨界温度の低下が見られて
いる。
At this time, the ratio of Sn as the conductive metal powder was best around 5%, and when heat treatment was performed, the critical current density showed the maximum value at 300° C. heat treatment. If the heat treatment temperature is too high, the superconductor particles of YBa2cu5C)ry react with Sn, resulting in a decrease in the critical temperature.

また、表に示した各試料の新面を顕微鏡観察した。その
結果、1−1の試料では超電導体粒子の平均粒径は約2
μmであり、第2図のような接触であったのに対し、2
−1.3−1.4−1ではSn粒子が伸線加工で引伸ば
された中に超電導体粒子がめり込んで相互に接続してい
る状況がisされた。さらにそれら番熱処理した試料で
は超電導体粒子を包むようにSnが溶融した状況が確認
された。
In addition, the new surface of each sample shown in the table was observed under a microscope. As a result, in sample 1-1, the average particle size of superconductor particles was approximately 2
μm, and the contact was as shown in Figure 2, whereas
In -1.3-1.4-1, it was found that the superconductor particles were embedded in Sn particles that were stretched by wire drawing and were connected to each other. Furthermore, in the heat-treated samples, it was confirmed that Sn was melted so as to surround the superconductor particles.

実施例2 実施例1にて得られた5%Snの混合粉末を用いて、ロ
ール圧延法により幅20■、厚0 、5 wrr 。
Example 2 The 5% Sn mixed powder obtained in Example 1 was rolled to a width of 20 cm and a thickness of 0.5 wrr.

長さ1mのシートを作製した。A sheet with a length of 1 m was produced.

このシートから幅5m+、長さ3amの試料を切り出し
、液体窒素中で臨界電流密度を測定したところ、3A/
cdを得た。
A sample with a width of 5m+ and a length of 3am was cut out from this sheet, and the critical current density was measured in liquid nitrogen, and it was found to be 3A/
I got the CD.

またシートの一部を300℃、1時間の熱処理を施した
試料では、臨界電流密度は130A/aJであった。
In addition, in a sample in which a portion of the sheet was heat-treated at 300° C. for 1 hour, the critical current density was 130 A/aJ.

これらシートの断面を顕微!を観察したところ、実施例
1と同様、超電導体粒子相互がSnを介して接続されて
いるのが確認できた。
Microscope the cross section of these sheets! When observed, it was confirmed that the superconductor particles were connected to each other via Sn, as in Example 1.

実施例3 実施例1にて得られた5%Snの混合粉末を用いて、内
径φ10mm、外径φ15mm、長さ30rmの円筒試
料をプレス成形により作製した。この円筒試料を300
℃、1時間の熱処理を施した後、液体窒素中に浸漬し超
電導マグネット中で磁界を印加し、磁気シールド効果の
測定を行った。この結果、円筒試料中のシールド電流は
臨界電流密度に換算して128 A/aJであることが
わかった。
Example 3 Using the 5% Sn mixed powder obtained in Example 1, a cylindrical sample with an inner diameter of 10 mm, an outer diameter of 15 mm, and a length of 30 rm was produced by press molding. This cylindrical sample was
After being heat-treated at ℃ for 1 hour, it was immersed in liquid nitrogen, a magnetic field was applied in a superconducting magnet, and the magnetic shielding effect was measured. As a result, it was found that the shielding current in the cylindrical sample was 128 A/aJ in terms of critical current density.

実施例4 Snのかわりに5%のAg粉末を用いて実施例1と同様
にCuパイプに混合粉末を充−して伸線加工を行い、ソ
ノ後300℃、400℃、500℃の熱処理を行った試
料を作製した。
Example 4 Using 5% Ag powder instead of Sn, a Cu pipe was filled with the mixed powder and wire drawn in the same manner as in Example 1, and after sowing, heat treatment was performed at 300°C, 400°C, and 500°C. A sample was prepared.

液体窒素中での臨界電流密度は、各々、53A/aj、
174A/aJ、238A/c+?であり、この場合、
熱処理による酸化物超電導体粒子との反応性が小さいこ
とが原因と思われるが、熱処理温度が高いほど大きな臨
界電流密度を示した。
The critical current density in liquid nitrogen is 53 A/aj, respectively.
174A/aJ, 238A/c+? and in this case,
The higher the heat treatment temperature, the higher the critical current density, probably due to the low reactivity with the oxide superconductor particles due to heat treatment.

〔発明の効果〕〔Effect of the invention〕

以上から明らかなように、本発明によれば、臨界電流密
度の大きい酸化物系超電導材料を得ることができ、しか
も、その製造方法は上述した実施例からもわかるように
比較的容易である。また、種々の形状のものが容易に得
られる利点もある。
As is clear from the above, according to the present invention, an oxide-based superconducting material with a high critical current density can be obtained, and the manufacturing method thereof is relatively easy, as can be seen from the above-mentioned Examples. Another advantage is that products of various shapes can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の酸化物系超電導材料の断面図、第2図
は従来の酸化物系超電導材料の断面図である。
FIG. 1 is a cross-sectional view of the oxide-based superconducting material of the present invention, and FIG. 2 is a cross-sectional view of a conventional oxide-based superconducting material.

Claims (1)

【特許請求の範囲】 1、酸化物系超電導体粒子が導電性物質を介して接続さ
れていることを特徴とする酸化物系超電導材料。 2、酸化物系超電導体粉末と導電性金属粉末を混合撹拌
し、該混合粉末を加圧成形することにより、またはその
後熱処理を施すことにより酸化物系超電導材料を得るこ
とを特徴とする酸化物系超電導材料の製造方法。 3、酸化物系超電導体粉末と導電性金属粉末を混合撹拌
し、該混合粉末を金属性パイプに充填した後断面減少を
施すことにより、またはその後に熱処理を施すことによ
り酸化物系超電導材料を得ることを特徴とする酸化物系
超電導材料の製造方法。
[Claims] 1. An oxide-based superconducting material characterized in that oxide-based superconductor particles are connected via a conductive substance. 2. An oxide material characterized in that an oxide superconducting material is obtained by mixing and stirring an oxide superconductor powder and a conductive metal powder, and press-molding the mixed powder, or by subsequently subjecting it to heat treatment. A method for manufacturing superconducting materials. 3. Oxide-based superconducting material is produced by mixing and stirring oxide-based superconducting powder and conductive metal powder, filling the mixed powder into a metallic pipe, and then reducing the cross-section, or by subsequently applying heat treatment. A method for producing an oxide-based superconducting material, characterized in that it obtains.
JP62116860A 1987-05-15 1987-05-15 Oxide type superconductive material and production thereof Pending JPS63285155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62116860A JPS63285155A (en) 1987-05-15 1987-05-15 Oxide type superconductive material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62116860A JPS63285155A (en) 1987-05-15 1987-05-15 Oxide type superconductive material and production thereof

Publications (1)

Publication Number Publication Date
JPS63285155A true JPS63285155A (en) 1988-11-22

Family

ID=14697419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62116860A Pending JPS63285155A (en) 1987-05-15 1987-05-15 Oxide type superconductive material and production thereof

Country Status (1)

Country Link
JP (1) JPS63285155A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307150A (en) * 1987-06-05 1988-12-14 Hitachi Cable Ltd Oxide cremics based superconductor and production thereof
JPH01100808A (en) * 1987-09-18 1989-04-19 Internatl Business Mach Corp <Ibm> Superconductor, high tc metal oxide super- conductor and second degree superconductor
JPH01279507A (en) * 1988-04-30 1989-11-09 Showa Electric Wire & Cable Co Ltd Manufacture of ceramic superconductor
JPH02206504A (en) * 1989-02-03 1990-08-16 Koujiyundo Kagaku Kenkyusho:Kk Work piece of superconductive material
JPH02256108A (en) * 1988-10-17 1990-10-16 Fmc Corp Surperconductive metal matrix complex and its manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307150A (en) * 1987-06-05 1988-12-14 Hitachi Cable Ltd Oxide cremics based superconductor and production thereof
JPH01100808A (en) * 1987-09-18 1989-04-19 Internatl Business Mach Corp <Ibm> Superconductor, high tc metal oxide super- conductor and second degree superconductor
JPH01279507A (en) * 1988-04-30 1989-11-09 Showa Electric Wire & Cable Co Ltd Manufacture of ceramic superconductor
JPH02256108A (en) * 1988-10-17 1990-10-16 Fmc Corp Surperconductive metal matrix complex and its manufacture
JPH02206504A (en) * 1989-02-03 1990-08-16 Koujiyundo Kagaku Kenkyusho:Kk Work piece of superconductive material

Similar Documents

Publication Publication Date Title
US5063200A (en) Ceramic superconductor article
JP2636049B2 (en) Method for producing oxide superconductor and method for producing oxide superconducting wire
JP2002373534A (en) Superconducting wire, its producing method, and superconducting magnet using it
JP2004192934A (en) Superconductive wire and its manufacturing method
JPH06196031A (en) Manufacture of oxide superconductive wire
JPS63285155A (en) Oxide type superconductive material and production thereof
EP0310033B1 (en) Superconducting wire and method of producing the same
US6699821B2 (en) Nb3Al superconductor and method of manufacture
EP0440799A1 (en) Superconductive wire material and method of producing the same
Flukiger et al. Composite core Nb/sub 3/Sn wires: preparation and characterization
WO1990008389A1 (en) Method of producing ceramic-type superconductive wire
JP2563564B2 (en) Superconducting oxide wire
JPS63252309A (en) Manufacture of oxide superconductive wire
JP2727565B2 (en) Superconductor manufacturing method
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
JPH07105765A (en) Manufacture of oxide superconducting wire raw material and oxide superconducting wire
JPH1059718A (en) Production of thallium-based superconductor
JPS63304528A (en) Manufacture of superconductive wire
JPH06309967A (en) Manufacture of oxide type superconducting wire
JPH06510157A (en) Textured superconductor and its manufacturing method
JP2001351444A (en) Oxide superconductor and its manufacturing method
JPH03265562A (en) Production of ceramic superconductor
JPH0343915A (en) Manufacture of multiple-cored superconductor
JPH01144517A (en) Oxide-based superconductive cable
JPH03165405A (en) Manufacture of ceramics