JPH04317415A - Production of bi-based oxide superconductor - Google Patents
Production of bi-based oxide superconductorInfo
- Publication number
- JPH04317415A JPH04317415A JP3106694A JP10669491A JPH04317415A JP H04317415 A JPH04317415 A JP H04317415A JP 3106694 A JP3106694 A JP 3106694A JP 10669491 A JP10669491 A JP 10669491A JP H04317415 A JPH04317415 A JP H04317415A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- raw material
- oxide
- oxide superconductor
- superconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000002994 raw material Substances 0.000 claims abstract description 49
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 239000002131 composite material Substances 0.000 claims description 38
- 238000010438 heat treatment Methods 0.000 claims description 19
- 239000013078 crystal Substances 0.000 claims description 10
- 229910018274 Cu2 O Inorganic materials 0.000 claims 1
- 238000000465 moulding Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 6
- 238000000034 method Methods 0.000 description 23
- 230000000052 comparative effect Effects 0.000 description 13
- 238000001354 calcination Methods 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 235000010216 calcium carbonate Nutrition 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910016264 Bi2 O3 Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 229910000018 strontium carbonate Inorganic materials 0.000 description 2
- LEDMRZGFZIAGGB-UHFFFAOYSA-L strontium carbonate Chemical compound [Sr+2].[O-]C([O-])=O LEDMRZGFZIAGGB-UHFFFAOYSA-L 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 235000014443 Pyrus communis Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、ケーブル,マグネット
,電流リード等に好適なBi系酸化物超電導々体の製造
方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Bi-based oxide superconductor suitable for cables, magnets, current leads, etc.
【0002】0002
【従来の技術】近年、Bi−Pb−Sr−Ca−Cu−
O系やBi−Sr−Ca−Cu−O系等の臨界温度(T
c)が液体窒素温度を超える酸化物超電導体が見出され
、種々分野で応用研究が進められている。ところで、こ
れらの酸化物超電導体は脆い為、これらを所定形状の線
状体に加工するには、例えば酸化物超電導体となし得る
粉末状の原料物質を所定形状に圧粉成形し、これを加熱
焼結してバルク状の酸化物超電導々体となす方法、或い
は金属製パイプ内に前記原料物質を充填して複合ビレッ
トとなし、次いでこの複合ビレットを所望形状の線材に
縮径加工し、この線材に所定の加熱処理を施す方法によ
り製造されている。又前記の酸化物超電導線材の多数本
を金属製パイプ内に充填して複合ビレットとなし、又は
金属でシースしたシート状の酸化物超電導体を渦巻状又
は同心状の多重複合体に成形して複合ビレットとなし、
これらの複合ビレットに縮径加工及び加熱処理を施して
多芯酸化物超電導々体となす方法等も用いられている。
前記の金属製パイプ又は金属シースの材料には銀,銀合
金,銅,銅合金等の熱及び電気伝導性に優れた金属材料
が用いられるが、特に銀は酸素透過性に優れている為、
得られる酸化物超電導々体が超電導特性に優れ、好まし
い材料である。又金属製パイプの形状は丸,楕円,多角
,テープ等任意の形状のパイプが用いられる。又前記金
属製パイプに原料物質を充填した複合ビレットを所望形
状に加工する方法としては、押出し,引抜き,スエージ
ング,圧延等任意の加工法が適用される。[Prior Art] In recent years, Bi-Pb-Sr-Ca-Cu-
The critical temperature (T
Oxide superconductors whose temperature (c) exceeds the temperature of liquid nitrogen have been discovered, and applied research is progressing in various fields. By the way, these oxide superconductors are brittle, so in order to process them into a linear body of a predetermined shape, for example, a powdered raw material that can be made into an oxide superconductor is compacted into a predetermined shape, and then this is A method of heating and sintering to form a bulk oxide superconductor, or filling a metal pipe with the raw material to form a composite billet, and then reducing the diameter of this composite billet into a wire rod of a desired shape, It is manufactured by subjecting this wire to a predetermined heat treatment. Further, a large number of the above-mentioned oxide superconducting wires may be filled into a metal pipe to form a composite billet, or a sheet-like oxide superconductor sheathed with metal may be formed into a spiral or concentric multiplex composite. Composite billet and pear,
A method of forming a multicore oxide superconductor by subjecting these composite billets to diameter reduction processing and heat treatment is also used. Metal materials with excellent thermal and electrical conductivity such as silver, silver alloys, copper, and copper alloys are used as materials for the metal pipes or metal sheaths, but silver in particular has excellent oxygen permeability.
The obtained oxide superconductor has excellent superconducting properties and is a preferred material. Further, the metal pipe may have any shape such as round, oval, polygonal, tape, etc. Further, as a method for processing the composite billet in which the metal pipe is filled with raw materials into a desired shape, any processing method such as extrusion, drawing, swaging, rolling, etc. can be applied.
【0003】ところで、近年、酸化物超電導体は、液体
Heの極低温下では、高磁場下における臨界電流密度(
Jc)を大きく取れることが見出された。そして、Bi
系酸化物超電導体には、Bi2 Sr2 CaCu2
Ox 結晶相〔以下(2212)相と略記する。〕の酸
化物超電導体とBi2 Sr2 Ca2 Cu3 Ox
結晶相〔以下(2223)相と略記する。〕の酸化物
超電導体とが主に知られているが、前者の方が後者より
、液体He中での特性が優れており、従って前者の(2
212)相の酸化物超電導体の研究が盛んに行われるよ
うになってきた。而して、前記の(2212)相の酸化
物超電導体の製造は、一般にBi2 O3,SrCO3
,CaCO3,CuOの複合酸化物又は酸化物をそれぞ
れ所定量配合し混合して混合粉体となし、これを所定温
度で仮焼成し、次いでこの仮焼成体を粉砕混合して仮焼
成粉となし、この仮焼成粉を再び仮焼成するという工程
を複数回繰り返して(2212)相の複合酸化物を作製
し、この複合酸化物を所望形状に成形し、この成形体に
所定の加熱処理を施して(2212)相の酸化物超電導
々体となす方法によりなされていた。Incidentally, in recent years, oxide superconductors have been shown to have a critical current density (
It has been found that Jc) can be increased. And Bi
The system oxide superconductor includes Bi2 Sr2 CaCu2
Ox crystal phase [hereinafter abbreviated as (2212) phase. ] oxide superconductor and Bi2 Sr2 Ca2 Cu3 Ox
Crystal phase [hereinafter abbreviated as (2223) phase. ] are mainly known as oxide superconductors, but the former has better properties in liquid He than the latter;
Research on 212) phase oxide superconductors has become active. Therefore, the above-mentioned (2212) phase oxide superconductor is generally manufactured using Bi2 O3, SrCO3
, CaCO3, and CuO in predetermined amounts and mixed to form a mixed powder, which is calcined at a predetermined temperature, and then this calcined body is pulverized and mixed to form a calcined powder. The process of calcining this calcined powder again is repeated multiple times to produce a (2212) phase composite oxide, this composite oxide is molded into a desired shape, and this molded body is subjected to a predetermined heat treatment. (2212) phase oxide superconductor.
【0004】0004
【発明が解決しようとする課題】しかしながら、このよ
うな工程を経て調製した(2212)相の複合酸化物を
原料物質として用いると、最終の加熱処理工程において
、原料物質が焼結し難くくなる傾向があり、そこで焼結
させようとして高温に加熱すると(2212)相の複合
酸化物が過剰反応を起こして異相が析出し、これが粗大
化して得られる酸化物超電導々体の超電導特性が低下し
てしまうという問題があった。[Problems to be Solved by the Invention] However, when a (2212) phase composite oxide prepared through such a process is used as a raw material, the raw material becomes difficult to sinter in the final heat treatment process. Therefore, when heated to high temperatures in an attempt to sinter, the composite oxide of the (2212) phase causes an excessive reaction and a different phase precipitates, which coarsens and deteriorates the superconducting properties of the resulting oxide superconductor. There was a problem with this.
【0005】[0005]
【課題を解決する為の手段】本発明はかかる状況に鑑み
鋭意研究を行った結果、従来通りにて調製した(221
2)相の複合酸化物Aに、平均組成は前記複合酸化物A
と同じであるがBi2 Sr2 CuOY 結晶相の複
合酸化物並びにCuO等の酸化物を主成分とする原料物
質Bを混合させるとこの混合原料は、比較的低温で焼結
できることを知見し、更に研究を進めて本発明を完成す
るに到ったものである。即ち、本発明は、Bi系酸化物
超電導体となし得る原料物質を所望形状に成形し、この
成形体に所定の加熱処理を施してBi系酸化物超電導々
体を製造するにあたり、原料物質として、Bi2 Sr
2 Ca1 Cu2 Ox 結晶相の複合酸化物からな
る原料物質(A)と、平均組成はA原料物質と同じであ
るが、Bi2 Sr2 CuOY 結晶相の複合酸化物
並びにCuO等の酸化物を主成分とする原料物質(B)
とを、Bi2 Sr2 CaCu2 Ox 結晶相の複
合酸化物が10〜90重量%含有するように両者を混合
した混合原料を用いることを特徴とするものである。[Means for Solving the Problems] The present invention has been made as a result of intensive research in view of the above situation.
2) The average composition of the phase composite oxide A is the composite oxide A.
However, it was discovered that by mixing a composite oxide with a Bi2 Sr2 CuOY crystal phase and a raw material B whose main components are oxides such as CuO, this mixed raw material could be sintered at a relatively low temperature, and further research was conducted. By proceeding with this process, we have completed the present invention. That is, in the present invention, a raw material that can be made into a Bi-based oxide superconductor is molded into a desired shape, and this molded body is subjected to a predetermined heat treatment to produce a Bi-based oxide superconductor. , Bi2 Sr
2 Ca1 Cu2 Ox A raw material material (A) consisting of a composite oxide in the crystal phase has the same average composition as the A raw material material, but contains a composite oxide in the Bi2 Sr2 CuOY crystal phase and oxides such as CuO as the main components. Raw material (B)
The present invention is characterized in that a mixed raw material is used in which both are mixed so that the composite oxide of the Bi2 Sr2 CaCu2 Ox crystal phase is contained in an amount of 10 to 90% by weight.
【0006】本発明方法において、混合原料中に含有さ
せる(2212)相の複合酸化物の比率を10〜90重
量%に限定した理由は、10重量%未満では、混合原料
を(2212)相の酸化物超電導体に反応させる加熱処
理に長時間を要し、この間に異相の析出と粗大化が起き
ること、又90重量%を超えると混合原料が焼結し難く
くなり、焼結させようとして加熱処理温度を高めると(
2212)相の過剰反応が進み、異相が急速に粗大化し
て得られる酸化物超電導々体の超電導特性が低下する為
である。本発明において、上記原料物質A又は原料物質
Bを作製する方法は、例えばBi2 O3 ,SrCO
3,,CaCO3,CuOの出発原料をBi,Sr,C
a,Cuの元素が原子比で2:2:1:2になるように
配合し、これを粉砕混合して混合粉体となし、この混合
粉体を、例えば大気中で840℃×50時間の仮焼成を
5回以上施すと、ほぼ全体が(2212)相の複合酸化
物となる。又同一混合粉体を750℃×50時間の仮焼
成を1〜2回施すと、Bi2 Sr2 CuOz,相の
複合酸化物やCuO等の酸化物が混在したものが得られ
る。このように、仮焼成にて得られる複合酸化物の種類
は、仮焼成する際の雰囲気,加熱温度,時間,加熱回数
等により変化するので、予備実験により調べておいて、
仮焼成条件を決めることが望ましい。又前記混合原料は
(2212)相を主成分とする原料物質AとBi2 S
r2 CuOY 相の複合酸化物とCuO等の酸化物を
主成分とする原料物質Bとを混合して作製するので、(
2212)相の含有量を正確に調整できる。又前記混合
原料を粉砕しておくと、(2212)相の複合酸化物が
微細化して、その核作用が顕著となるばかりでなく、仮
焼成段階で既に粗大化した異相は微細化して無害なもの
となる上、この微細化した異相は通電使用時に磁束をピ
ンニングする作用も果たすようになる。In the method of the present invention, the reason why the ratio of the (2212) phase composite oxide to be contained in the mixed raw material is limited to 10 to 90% by weight is that if the mixed raw material is less than 10% by weight, the (2212) phase composite oxide is contained in the mixed raw material. It takes a long time for the heat treatment to react with the oxide superconductor, and during this time, precipitation and coarsening of different phases occur, and if the content exceeds 90% by weight, it becomes difficult to sinter the mixed raw material, and it becomes difficult to sinter. When the heat treatment temperature is increased (
2212) This is because the excessive reaction of the phase progresses and the different phases rapidly coarsen, resulting in a decrease in the superconducting properties of the resulting oxide superconductor. In the present invention, the method for producing the raw material A or the raw material B includes, for example, Bi2 O3, SrCO
3., CaCO3, CuO starting materials are Bi, Sr, C
Blend the elements a and Cu in an atomic ratio of 2:2:1:2, pulverize and mix to obtain a mixed powder, and heat this mixed powder at 840°C for 50 hours in the atmosphere, for example. If the pre-calcination is performed five or more times, the composite oxide becomes almost entirely of the (2212) phase. If the same mixed powder is pre-calcined once or twice at 750° C. for 50 hours, a mixture of Bi2 Sr2 CuOz phase composite oxides and oxides such as CuO can be obtained. In this way, the type of composite oxide obtained by calcining changes depending on the atmosphere, heating temperature, time, number of heating times, etc. during calcining, so please check through preliminary experiments.
It is desirable to determine the pre-firing conditions. Further, the mixed raw material is composed of raw material A whose main component is the (2212) phase and Bi2S.
Since it is produced by mixing the r2 CuOY phase composite oxide and the raw material B whose main component is an oxide such as CuO, (
2212) Phase content can be precisely adjusted. In addition, if the mixed raw material is pulverized, the (2212) phase complex oxide will not only become finer and its nucleation effect will become more pronounced, but also the foreign phases that have already become coarse during the calcination stage will become finer and harmless. In addition to this, this finely divided phase also functions to pin the magnetic flux when energized.
【0007】[0007]
【作用】本発明方法では、Bi系酸化物超電導体となし
得る原料物質を所望形状に成形し、この成形体に所定の
加熱処理を施してBi系酸化物超電導々体を製造するに
あたり、原料物質に(2212)相のBi系酸化物超電
導体となし得る原料物質Aと平均組成はA原料物質と同
じであるが、Bi2 Sr2CuOY 結晶相の複合酸
化物並びにCuO等の酸化物を主成分とする原料物質B
とをBi2 Sr2 CaCu2 Ox 結晶相の複合
酸化物が10〜90重量%含有するように両者を混合し
た混合原料を用いると、低い温度で焼結することができ
、又超電導体への反応の核となる(2212)相の複合
酸化物が均一に分布するので、(2212)相のBi系
酸化物超電導体への反応が迅速になされ、従って(22
12)相の過剰反応による異相の析出と粗大化が阻止さ
れる。[Operation] In the method of the present invention, a raw material that can be made into a Bi-based oxide superconductor is molded into a desired shape, and this molded body is subjected to a prescribed heat treatment to produce a Bi-based oxide superconductor. Raw material A, which can be made into a Bi-based oxide superconductor with a (2212) phase, has the same average composition as raw material A, but contains a composite oxide with a Bi2 Sr2 CuOY crystal phase and oxides such as CuO as the main components. Raw material B
By using a mixed raw material containing 10 to 90% by weight of composite oxide in the Bi2 Sr2 CaCu2 Ox crystal phase, sintering can be performed at a low temperature, and the nucleus of the reaction to form a superconductor. Since the composite oxide of the (2212) phase is uniformly distributed, the reaction to the (2212) phase Bi-based oxide superconductor is rapid, and therefore the (2212) phase is uniformly distributed.
12) Precipitation and coarsening of different phases due to excessive phase reaction are prevented.
【0008】[0008]
【実施例】以下に本発明を実施例により詳細に説明する
。
実施例1
Bi2 O3 ,SrCO3 ,CaCO3 ,CuO
等の出発原料粉をBi:Sr:Ca:Cuが原子比で2
:2:1:2になるように配合し混合したのち、大気中
で840℃×20時間仮焼成し、この仮焼成体を粉砕し
て仮焼成粉となし、この仮焼成粉を再び仮焼成する、仮
焼成粉の仮焼成と粉砕を1サイクルとする工程を7回繰
り返して(2212)相の複合酸化物からなる原料物質
Aを作製した。他方大気中で750℃×50時間の仮焼
成を2回繰り返してBi2 Sr2 Cu1 OY と
CuO等からなる原料物質Bを作製した。次に、これら
の原料物質A及び原料物質Bを(2212)相の複合酸
化物が10〜90%の範囲になる種々の比率で配合し混
合して混合原料となし、この混合原料を圧粉成形して3
mm×3mm×50mmの角棒状のバルク体となし、次
にこのバルク体を大気中で845℃×50時間加熱処理
して(2212)相のバルク状Bi系酸化物超電導々体
を製造した。[Examples] The present invention will be explained in detail below using examples. Example 1 Bi2O3, SrCO3, CaCO3, CuO
Starting material powder such as Bi:Sr:Ca:Cu in atomic ratio is 2.
: After mixing in a ratio of 2:1:2, calcining in the atmosphere at 840°C for 20 hours, crushing this calcined body to obtain calcined powder, and calcining this calcined powder again. A process in which one cycle of calcining and pulverization of the calcined powder was repeated seven times to produce a raw material A consisting of a (2212) phase composite oxide. On the other hand, a raw material B consisting of Bi2 Sr2 Cu1 OY, CuO, etc. was prepared by repeating pre-calcination at 750° C. for 50 hours in the air twice. Next, these raw material A and raw material B are blended and mixed in various ratios such that the (2212) phase complex oxide is in the range of 10 to 90% to form a mixed raw material, and this mixed raw material is powdered. Shape 3
A rectangular rod-shaped bulk body measuring mm x 3 mm x 50 mm was prepared, and then this bulk body was heat-treated in the atmosphere at 845° C. for 50 hours to produce a (2212) phase bulk Bi-based oxide superconductor.
【0009】比較例1
実施例1において、混合原料中の(2212)相の複合
酸化物の配合比率を10%未満又は90%を超える値と
した他は、実施例1と同じ方法により(2212)相の
バルク状Bi系酸化物超電導々体を製造した。
比較例2
比較例1において、混合原料中の(2212)相の複合
酸化物の配合比率を7%とし最終工程の加熱処理条件を
840℃×100時間とした他は、比較例1と同じ方法
により(2212)相のバルク状Bi系酸化物超電導々
体を製造した。
比較例3
比較例1において、混合原料中の(2212)相の複合
酸化物の配合比率を93%とし最終工程の加熱処理条件
を880℃×50時間とした他は、比較例1と同じ方法
により(2212)相のバルク状Bi系酸化物超電導々
体を製造した。Comparative Example 1 In Example 1, the (2212) ) phase bulk Bi-based oxide superconductor was manufactured. Comparative Example 2 The same method as Comparative Example 1 was used, except that the blending ratio of the (2212) phase composite oxide in the mixed raw material was 7%, and the heat treatment conditions in the final step were 840°C x 100 hours. A (2212) phase bulk Bi-based oxide superconductor was manufactured using the following method. Comparative Example 3 The same method as in Comparative Example 1 was used, except that the blending ratio of the (2212) phase composite oxide in the mixed raw material was 93%, and the heat treatment conditions in the final step were 880°C x 50 hours. A (2212) phase bulk Bi-based oxide superconductor was manufactured using the following method.
【0010】実施例2
実施例1で作製したのと同じ原料物質A及び原料物質B
を種々比率で配合し混合して混合原料となし、これを外
径7mm,内径4mm,長さ50mmのAg製パイプ内
に充填して複合ビレットとなした。次にこの複合ビレッ
トを溝ロール圧延により外径1mmφの線材となし、次
いでこの線材を平ロール圧延して厚さ0.2mmのテー
プ状複合線材となした。しかるのち、このテープ状複合
線材を大気中で845℃×50時間加熱処理して(22
12)相のテープ状Bi系酸化物超電導々体を製造した
。
比較例4
実施例2において、混合原料中の(2212)相の複合
酸化物の配合比率を10%未満又は90%を超える値と
した他は、実施例2と同じ方法により(2212)相の
テープ状Bi系酸化物超電導々体を製造した。Example 2 The same raw material A and raw material B produced in Example 1
were mixed in various ratios to form a mixed raw material, which was filled into an Ag pipe with an outer diameter of 7 mm, an inner diameter of 4 mm, and a length of 50 mm to form a composite billet. Next, this composite billet was rolled into a wire rod with an outer diameter of 1 mmφ by groove roll rolling, and then this wire rod was flat rolled into a tape-shaped composite wire rod with a thickness of 0.2 mm. After that, this tape-shaped composite wire was heat-treated in the atmosphere at 845°C for 50 hours (22
12) A phase tape-shaped Bi-based oxide superconductor was manufactured. Comparative Example 4 In Example 2, the (2212) phase was prepared by the same method as in Example 2, except that the blending ratio of the (2212) phase composite oxide in the mixed raw material was set to less than 10% or more than 90%. A tape-shaped Bi-based oxide superconductor was manufactured.
【0011】比較例5
比較例4において、混合原料中の(2212)相の複合
酸化物の配合比率を7%とし最終工程の加熱処理条件を
840℃×100時間とした他は、比較例4と同じ方法
により(2212)相のテープ状Bi系酸化物超電導々
体を製造した。
比較例6
比較例4において、混合原料中の(2212)相の複合
酸化物の配合比率を93%とし最終工程の加熱処理条件
を880℃×50時間とした他は、比較例4と同じ方法
により(2212)相のテープ状Bi系酸化物超電導々
体を製造した。このようにして製造した各々の酸化物超
電導々体について、臨界電流密度(Jc)を測定した。
Jcは液体He(4.2K)中で、20万ガウスの強磁
場をかけて測定した。又顕微鏡観察により異相の生成状
況等を調べた。結果は実施例1と比較例1〜3、及び実
施例2と比較例4〜6に分けてそれぞれ表1及び表2に
示した。Comparative Example 5 Comparative Example 4 was performed except that the blending ratio of the (2212) phase composite oxide in the mixed raw material was 7% and the heat treatment conditions in the final step were 840°C x 100 hours. A (2212) phase tape-shaped Bi-based oxide superconductor was manufactured by the same method as described above. Comparative Example 6 The same method as Comparative Example 4 was used, except that the blending ratio of the (2212) phase complex oxide in the mixed raw material was 93%, and the heat treatment conditions in the final step were 880°C x 50 hours. A (2212) phase tape-shaped Bi-based oxide superconductor was manufactured using the following method. The critical current density (Jc) was measured for each oxide superconductor produced in this way. Jc was measured in liquid He (4.2K) by applying a strong magnetic field of 200,000 Gauss. In addition, the formation status of different phases was investigated by microscopic observation. The results are divided into Example 1 and Comparative Examples 1 to 3, and Example 2 and Comparative Examples 4 to 6, and are shown in Tables 1 and 2, respectively.
【0012】0012
【表1】[Table 1]
【0013】[0013]
【表2】[Table 2]
【0014】表1及び表2より明らかなように、本発明
方法品(No1〜5,11〜15)はそれぞれの比較例
方法品(No6〜10,16〜20)に比べて、いずれ
もJcが高い値を示した。本発明方法品のうち、(22
12)相の複合酸化物の配合比率が20〜40重量%の
もの(No2,3,12,13 )が最も良好な結果を
示した。他方、比較例方法品のNo6と16は、(22
12)相の複合酸化物の比率が7重量%と少なかった為
、混合原料が(2212)相の酸化物超電導体に反応す
るのに加熱処理時間が不足して得られた酸化物超電導体
中に未反応物質つまり異相が多量に残存して超電導特性
が低下した。このことから加熱処理時間を長くしたのが
No9,19であるが、この場合は未反応物質が反応し
終わる前に(2212)相の酸化物超電導体内に別の異
相が析出し粗大化して、やはり超電導特性は低い値のも
のとなった。又No7,8,17,18 は、(221
2)相の複合酸化物が多すぎて、焼結が十分になされず
、得られた酸化物超電導々体が空孔の多い組織となった
。このことから加熱処理温度を高めたのがNo10,2
0 で、今度は過剰反応を起こして異相が粗大化し、や
はりJcは低い値のものとなった。[0014] As is clear from Tables 1 and 2, the products produced by the method of the present invention (Nos. 1 to 5, 11 to 15) had a Jc showed a high value. Among the products of the method of the present invention, (22
12) Those in which the blending ratio of the phase complex oxide was 20 to 40% by weight (Nos. 2, 3, 12, and 13) showed the best results. On the other hand, comparative example method products No. 6 and 16 were (22
12) Since the ratio of the composite oxide in the phase was as low as 7% by weight, there was insufficient heat treatment time for the mixed raw material to react with the (2212) phase oxide superconductor, resulting in A large amount of unreacted substances, that is, a foreign phase, remained, and the superconducting properties deteriorated. For this reason, the heat treatment time was increased for Nos. 9 and 19, but in this case, before the unreacted substances finished reacting, another heterogeneous phase precipitated and became coarse within the (2212) phase oxide superconductor. As expected, the superconducting properties were of low value. Also, No. 7, 8, 17, 18 are (221
2) There was too much composite oxide in the phase, and sintering was not performed sufficiently, resulting in the resulting oxide superconductor having a structure with many pores. For this reason, No. 10 and 2 had higher heat treatment temperatures.
0, this time an overreaction occurred and the heterophase became coarse, resulting in a low Jc value.
【0015】[0015]
【効果】以上述べたように本発明方法によれば、異相が
粗大化しないので、Jc等の超電導特性に優れた(22
12)相のBi系酸化物超電導々体を製造することがで
き、工業上顕著な効果を奏する。[Effect] As described above, according to the method of the present invention, the foreign phase does not become coarse, so superconducting properties such as Jc are excellent (22
12) A phase Bi-based oxide superconductor can be produced, resulting in significant industrial effects.
Claims (1)
物質を所望形状に成形し、この成形体に所定の加熱処理
を施してBi系酸化物超電導々体を製造するにあたり、
原料物質として、Bi2 Sr2 Ca1 Cu2 O
x 結晶相の複合酸化物からなる原料物質(A)と、平
均組成はA原料物質と同じであるが、Bi2 Sr2
CuOY 結晶相の複合酸化物並びにCuO等の酸化物
を主成分とする原料物質(B)とを、Bi2 Sr2
CaCu2 Ox 結晶相の複合酸化物が10〜90重
量%含有するように両者を混合した混合原料を用いるこ
とを特徴とするBi系酸化物超電導々体の製造方法。1. In producing a Bi-based oxide superconductor by molding a raw material that can be made into a Bi-based oxide superconductor into a desired shape and subjecting the molded body to a prescribed heat treatment,
As raw materials, Bi2 Sr2 Ca1 Cu2 O
The raw material (A) consisting of a composite oxide in x crystal phase has the same average composition as the raw material A, but Bi2 Sr2
Bi2 Sr2
A method for producing a Bi-based oxide superconductor, characterized in that a mixed raw material is used in which a complex oxide of CaCu2Ox crystal phase is mixed in an amount of 10 to 90% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3106694A JPH04317415A (en) | 1991-04-11 | 1991-04-11 | Production of bi-based oxide superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3106694A JPH04317415A (en) | 1991-04-11 | 1991-04-11 | Production of bi-based oxide superconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04317415A true JPH04317415A (en) | 1992-11-09 |
Family
ID=14440143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3106694A Pending JPH04317415A (en) | 1991-04-11 | 1991-04-11 | Production of bi-based oxide superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04317415A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6194352B1 (en) * | 1994-01-28 | 2001-02-27 | American Superconductor Corporation | Multifilament composite BSCCO oxide superconductor |
US6284712B1 (en) | 1993-04-01 | 2001-09-04 | Alexander Otto | Processing of oxide superconductors |
-
1991
- 1991-04-11 JP JP3106694A patent/JPH04317415A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6284712B1 (en) | 1993-04-01 | 2001-09-04 | Alexander Otto | Processing of oxide superconductors |
US6436876B1 (en) | 1993-04-01 | 2002-08-20 | American Superconductor Corporation | Processing of oxide superconductors |
US6194352B1 (en) * | 1994-01-28 | 2001-02-27 | American Superconductor Corporation | Multifilament composite BSCCO oxide superconductor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03138820A (en) | Manufacture of oxide superconductor | |
JPH04317415A (en) | Production of bi-based oxide superconductor | |
JP3034255B2 (en) | Superconductor, superconductor wire, and method of manufacturing superconducting wire | |
JP2966134B2 (en) | Method for producing Bi-based oxide superconductor | |
JPH06176637A (en) | Manufacture of bi oxide superconductive wire | |
JPH02207420A (en) | Manufacture of superconducting wire rod | |
JPS63285812A (en) | Manufacture of oxide superconductive wire material | |
US5429791A (en) | Silver-high temperature superconductor composite material manufactured based on powder method, and manufacturing method therefor | |
JP2567891B2 (en) | Method for producing oxide superconducting molded body | |
JPH01304618A (en) | Manufacture of oxide superconductive filament | |
JP2574173B2 (en) | Superconducting wire manufacturing method | |
JPH02160317A (en) | Manufacture of superconducting wire | |
JPH01241717A (en) | Manufacture of oxide superconductor wire | |
JPH04179006A (en) | Manufacture of ceramic superconductive wire materials | |
JPH04249812A (en) | Manufacture of tape-shaped ceramic superconducting wire rod | |
JPH05339008A (en) | Tl-pb oxide superconducting material and its production | |
JPH01241715A (en) | Manufacture of oxide superconductor wire | |
JPH0554735A (en) | Manufacture of ceramic superconductor | |
JPH01161612A (en) | Oxide superconducting wire | |
JPH0447611A (en) | Manufacture of oxide superconducting wire | |
JPH02278616A (en) | Manufacture of multicore-type oxide superconductor | |
JPH01128318A (en) | Manufacture of superconductive wire material | |
JPH02189817A (en) | Manufacture of wire rod of oxide superconductive tape state | |
JPH01163913A (en) | Manufacture of oxide superconductive wire | |
JPH01128317A (en) | Manufacture of superconductive wire material |