JPH04179006A - Manufacture of ceramic superconductive wire materials - Google Patents

Manufacture of ceramic superconductive wire materials

Info

Publication number
JPH04179006A
JPH04179006A JP2305786A JP30578690A JPH04179006A JP H04179006 A JPH04179006 A JP H04179006A JP 2305786 A JP2305786 A JP 2305786A JP 30578690 A JP30578690 A JP 30578690A JP H04179006 A JPH04179006 A JP H04179006A
Authority
JP
Japan
Prior art keywords
metal particles
ceramic
composite
metal
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2305786A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
菊地 祐行
Kiyoshi Nemoto
清 根本
Masanao Mimura
三村 正直
Naoki Uno
直樹 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2305786A priority Critical patent/JPH04179006A/en
Publication of JPH04179006A publication Critical patent/JPH04179006A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Wire Processing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a ceramic superconductive wire material of better superconductivity characteristics and capable of preventing the formation of coarse voids by using as raw materials the stuff in which the metal particles of the same kind of materials as that of a metal pipe are dispersed. CONSTITUTION:The stuff containing the dispersed metal particles 2 of the same kind of materials as that of a metal pipe 1 is used for raw materials 3. Namely, when the metal particles 2 of the same kind of material as the composite materials are dispersed in the raw materials 3 for a ceramic superconductive conductor, the gas generated from the raw materials 3 is adsorbed by the surface of the metal particles to be minutely distributed. Accordingly, it is prevented that the generated gas coheres to be coarse. Thereby, the formation of coarse voids inside the ceramic superconductive layer is prevented, so that the superconductivity characteristics may be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、マグネット用、ケーブル用、電流リード用等
に適した電気的特性に優れたセラミックス超電導線材の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a ceramic superconducting wire with excellent electrical properties suitable for use in magnets, cables, current leads, and the like.

〔従来の技術] 近年B1−5r−Ca−Cu−0系、Y−Ba−Cu−
0系、Tl1−Ba−Ca−Cu−0系等の臨界温度(
Tc)が液体窒素温度を超えるセラミックス超電導体が
見出され、種々分野で応用研究が進められている。
[Prior art] In recent years, B1-5r-Ca-Cu-0 system, Y-Ba-Cu-
0 system, Tl1-Ba-Ca-Cu-0 system, etc. critical temperature (
Ceramic superconductors whose Tc) exceeds the temperature of liquid nitrogen have been discovered, and applied research is underway in various fields.

ところで、これらのセラミックス超電導体は脆い為、こ
れらを所定形状のセラミックス超電導線状体に加工する
には、例えばセラミックス超電導体となし得る原料物質
を所定形状の圧粉成形体となし、或いは金属製パイプ内
に前記原料物質を充填した複合ビレットに伸延加工を施
して所定形状の複合線状体となし、次いでこれに所定の
加熱処理を施して前記原料物質をセラミックス超i!導
体となす方法等が用いられている。
By the way, since these ceramic superconductors are brittle, in order to process them into ceramic superconducting wire bodies of a predetermined shape, for example, raw material that can be made into a ceramic superconductor must be made into a powder compact of a predetermined shape, or a metal A composite billet filled with the raw material in a pipe is stretched to form a composite linear body of a predetermined shape, and then subjected to a predetermined heat treatment to transform the raw material into a ceramic super i! A method of forming a conductor is used.

上記加工法のうち、金属製パイプと複合して加工する方
法は、長尺材の製造に適しており、広く実用化研究が進
められている。
Among the above-mentioned processing methods, the method of processing in combination with a metal pipe is suitable for manufacturing long materials, and research on its practical application is widely underway.

而して、上記金属製パイプは内部の原料物質層の加工性
を改善するとともに、得られたセラミックス超電導線材
に機械的強度並びに電気的安定性を付与する作用を果た
すものであって、か−る金属製パイプ材料には、加工性
並びに熱的、電気的伝導性に優れたAg、Ag合金、C
u、Cu合金等が用いられている。
The metal pipe has the function of improving the workability of the internal raw material layer and imparting mechanical strength and electrical stability to the obtained ceramic superconducting wire. Metal pipe materials include Ag, Ag alloy, and C, which have excellent workability and thermal and electrical conductivity.
U, Cu alloy, etc. are used.

又前記複合ビレットを伸延加工する方法としては押出し
、圧延、引抜き、スェージング等従来の加工方法が適用
される。又複合ビレットを伸延加工して得られる複合線
状体の断面形状は、円形。
Conventional processing methods such as extrusion, rolling, drawing, and swaging may be used to stretch the composite billet. Furthermore, the cross-sectional shape of the composite linear body obtained by stretching the composite billet is circular.

楕円形、多角形、テープ状等任意の形状が通用される。Any shape such as ellipse, polygon, tape shape, etc. can be used.

又上記複合線状体を複数本束ねて、再度金属製パイプ内
に挿入し、これに伸延加工を施して多芯複合線状体とな
し、或いはセラミックス超電導体と金属材料とを交互に
渦巻状又は同芯状に成形し、これに伸延加工を施して多
層又は多芯状の複合線状体となすことも可能である。
Alternatively, a plurality of the above-mentioned composite wire bodies may be bundled, inserted into a metal pipe again, and stretched to form a multicore composite wire body, or the ceramic superconductor and the metal material may be alternately spirally shaped. Alternatively, it is also possible to form a concentric shape and subject it to elongation to form a multilayered or multicore composite linear body.

而して、上記の原料物質をセラミックス超電導体となら
しめる為の加熱処理は、例えば、Y系セラミックス超電
導体の場合は900〜950°C1B1系セラミツクス
超電導体の場合は850〜900°C程度の温度で、酸
素含有雰囲気中にて施され、原料物質のセラミックス超
電導体への反応がなされる。
The heat treatment for converting the above-mentioned raw material into a ceramic superconductor is, for example, 900 to 950°C in the case of a Y-based ceramic superconductor and 850 to 900°C in the case of a 1B1-based ceramic superconductor. The reaction is carried out at a temperature in an oxygen-containing atmosphere to react the raw material into a ceramic superconductor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記の如き加熱処理を前記の伸延加工処
理後の複合線状体に施すと原料物質からガスが多量に発
生し、このガスは凝集して、第2図に示したように得ら
れたセラミックス超電導々体のセラミックス超電導体層
6内に粗大なボイド7を形成し、その結果前記ボイド形
成部位のセラミックス超電導体層はその占積率が極端に
小さくなり、線材の機械的強度を低下させるばかりでな
く、超電導電流は上記小断面積部位に律速されるように
なって臨界電流値が著しく低下するという問題があった
However, when the above-described heat treatment is applied to the composite filament after the drawing process, a large amount of gas is generated from the raw material, and this gas coagulates, resulting in the resultant product shown in Figure 2. Coarse voids 7 are formed in the ceramic superconductor layer 6 of the ceramic superconductor, and as a result, the space factor of the ceramic superconductor layer at the void formation site becomes extremely small, reducing the mechanical strength of the wire. In addition, there is a problem in that the superconducting current is rate-limited by the small cross-sectional area portion, resulting in a significant decrease in the critical current value.

〔課題を解決する為の手段〕[Means to solve problems]

本発明はか−る状況に鑑み鋭意研究を行った結果、セラ
ミックス超電導体となし得る原料物質中に複合材として
用いたのと同じ材種の金属粒子を分散させておくと、前
記原料S質から発生するガスは前記金属粒子の表面に吸
着されて微細に分布することを知見し、更に研究を進め
て本発明を完成するに到ったものである。
As a result of intensive research in view of the above situation, the present invention has found that if metal particles of the same grade as that used for the composite material are dispersed in a raw material material that can be made into a ceramic superconductor, It was discovered that the gas generated from the metal particles is adsorbed on the surface of the metal particles and distributed finely, and through further research, the present invention was completed.

即ち、本発明は、セラミックス超電導体となし得る原料
物質を金属製パイプ内に充填して複合ビレットとなし、
次いで前記複合ビレットに伸延加工を施して複合線状体
となしたのち、前記複合線状体に所定の加熱処理を施す
セラミックス超電導線材の製造方法において、原料物質
に金属製パイプと同じ材種の金属粒子を分散させたもの
を用いることを特徴とするものである。
That is, the present invention involves filling a metal pipe with a raw material that can be made into a ceramic superconductor to form a composite billet,
Next, in the method for manufacturing a ceramic superconducting wire, the composite billet is stretched to form a composite linear body, and then the composite linear body is subjected to a predetermined heat treatment. This method is characterized by the use of metal particles dispersed therein.

即ち、本発明方法は、金属製パイプ内に充填するセラミ
ックス超電導体となし得る原料物質(以下原料物質と略
記する)に、複合材として用いたのと同じ材種の金属粒
子を分散させて加熱処理時に発生するガスを前記金属粒
子の表面に吸着させ、前記発生ガスが凝集して粗大化す
るのを防止するものであり、又前記金属粒子には金属製
パイプ等複合化に用いたのと同じ材種の金属材料を用い
て、金属粒子と金属製パイプとが加熱処理時に接触して
も相互に反応し劣化しないようにしたものであ本発明方
法で用いる金属製パイプ及び金属粒子の材料としては、
Ag、Cu又はその合金が、熱・電気伝導性等に優れて
いて好ましい材料であるが、とりわけAg又はその合金
は酸素固熔能が大きいので好ましいものである。又Ag
合金の中にあってはAg−Au、Ag  Pd、Ag−
Rh。
That is, the method of the present invention involves dispersing metal particles of the same grade as that used in the composite material into a raw material (hereinafter abbreviated as raw material) that can be used as a ceramic superconductor to be filled into a metal pipe, and then heating the material. The gas generated during processing is adsorbed on the surface of the metal particles to prevent the generated gas from coagulating and becoming coarse, and the metal particles include metal pipes and other materials used for composites. Materials for the metal pipe and metal particles used in the method of the present invention are made by using metal materials of the same grade so that the metal particles and the metal pipe do not react with each other and deteriorate even if they come into contact during heat treatment. as,
Ag, Cu, or an alloy thereof is a preferable material because it has excellent thermal and electrical conductivity, and Ag or an alloy thereof is particularly preferable because it has a high oxygen solidification ability. Also Ag
Among the alloys, Ag-Au, Ag-Pd, Ag-
Rh.

Ag−Pt等がセラミックス超電導体と非反応性の為、
特に適している。
Because Ag-Pt etc. are non-reactive with ceramic superconductors,
Particularly suitable.

而して、前述の如く、原料物質中に混合する金属粒子に
は、最外周被覆層を形成する為の金属製パイプと同じ材
種の金属材料が用いられるが、ここで同じ材種とは、同
一組成の金属同士のみならず、AgとAg合金又はCu
とCu合金等の組合わせであってもよく、双方が高温で
接触しても相互に反応して変質したりしないものを言う
As mentioned above, the metal particles mixed into the raw material are made of the same material as the metal pipe used to form the outermost coating layer, but the same material does not mean the same material here. , not only metals of the same composition, but also Ag and Ag alloys or Cu
It may be a combination of Cu alloy and Cu alloy, and refers to a material that does not react with each other and change in quality even if the two come into contact at high temperature.

以下に本発明方法を図を参照して具体的に説明する。第
1図は本発明方法の態様例を示す工程説明図である。
The method of the present invention will be specifically explained below with reference to the drawings. FIG. 1 is a process explanatory diagram showing an embodiment of the method of the present invention.

最外周被覆層を形成する為の金属製パイプ1内に、前記
金属製パイプ1と同じ材種の金属粒子2を分散させた原
料物質3を充填して複合ビレット4となしく図イ)、次
いでこの複合ビレット4を伸延加工してテープ状の複合
線状体5となしく図口)、シかるのちこの複合線状体に
所定の加熱処理を施して前記原料物質をセラミ、クス超
電導体に反応せしめるものである。
A metal pipe 1 for forming the outermost peripheral coating layer is filled with a raw material 3 in which metal particles 2 of the same type as the metal pipe 1 are dispersed to form a composite billet 4 (Figure A), Next, this composite billet 4 is stretched to form a tape-shaped composite linear body 5 (Fig. It causes a reaction.

尚、第1図口に図示したように、原料物質に混合する金
属粒子2は余り大きいと、伸延加工後の複合線状体にお
いて金属製パイプと接触して原料物質3との接触面積が
減少してガス吸着効果が低下するので、金属粒子2の径
は、用いた金属粒子材料の加工性にもよるが、径が0.
5〜0.03mm程度のものが好ましい。
As shown in Figure 1, if the metal particles 2 mixed with the raw material are too large, they will come into contact with the metal pipe in the composite filament after drawing, reducing the contact area with the raw material 3. Therefore, the diameter of the metal particles 2 depends on the workability of the metal particle material used, but the diameter is less than 0.
A thickness of about 5 to 0.03 mm is preferable.

又前記金属粒子の原料物質との混合比は、5%(容量%
)未満では金属粒子が吸着し得るガス量が少なく、又3
0%を超えるとセラミックス超電導体層の占積率が減少
して臨界電流が減少するので、5〜30%の範囲にする
のが好ましい。
The mixing ratio of the metal particles with the raw material is 5% (volume %).
), the amount of gas that can be adsorbed by metal particles is small;
If it exceeds 0%, the space factor of the ceramic superconductor layer decreases and the critical current decreases, so it is preferably in the range of 5 to 30%.

而して、前記金属粒子を原料物質と混合する方法として
は、通常のミキサー又はボールミル等が用いられる。又
前記金属粒子の形状は特に限定するものでなく、又その
大きさも大小取り混ぜたものであって差支えない。
As a method for mixing the metal particles with the raw material, a conventional mixer, ball mill, or the like is used. Further, the shape of the metal particles is not particularly limited, and the size thereof may be mixed.

又金属粒子を分散させた原料物質を金属製パイプ内に充
填する方法としては、粉末状のま一充填しても、又は予
めCIP或いは焼結して予備成形したものを挿入し充填
してもよい。
In addition, as a method of filling a metal pipe with a raw material in which metal particles are dispersed, it is possible to fill the metal pipe with powdered material, or to insert and fill a material that has been preformed by CIP or sintering. good.

本発明方法で用いる原料物質としては、前述のBi系、
Y系、Tf系等のセラミックス超電導体が広く適用され
るに加えて、上記セラミックス超電導体の前駆物質であ
るセラミックス超電導体に合成されるまでの中間体、例
えばセラミックス超電導体構成元素の酸化物や炭酸塩等
の混合体又は共沈混合物又は酸素欠損型複合酸化物又は
上記構成元素の合金等の粉末が使用可能で、これらの前
駆物質は酸素含存雰囲気中で加熱処理することによりセ
ラミックス超電導体に反応するものである。
The raw materials used in the method of the present invention include the above-mentioned Bi-based materials,
In addition to Y-based, Tf-based, and other ceramic superconductors, which are widely used, intermediates used in the synthesis of ceramic superconductors, which are precursors of the above-mentioned ceramic superconductors, such as oxides of constituent elements of ceramic superconductors, etc. Powders such as mixtures or coprecipitated mixtures of carbonates, oxygen-deficient composite oxides, or alloys of the above constituent elements can be used, and these precursors can be heated in an oxygen-containing atmosphere to form ceramic superconductors. It is something that reacts to.

〔作用] 本発明方法では、金属製パイプ内に充填する原料物質に
前記金属製パイプと同じ材種の金属粒子を分散させ、加
熱処理時に原料物質から発生するガスを前記金属粒子表
面に吸着させるので、発生ガスが凝集して粗大なボイド
に成長するようなことがない。父上記金属粒子は金属製
パイプと同じ材種からなるので、加熱処理時に双方が接
触しても、相互に反応して劣化するようなことがない。
[Function] In the method of the present invention, metal particles of the same grade as the metal pipe are dispersed in the raw material to be filled into the metal pipe, and gas generated from the raw material during heat treatment is adsorbed on the surface of the metal particles. Therefore, the generated gas does not aggregate and grow into coarse voids. Since the metal particles mentioned above are made of the same material as the metal pipe, even if they come into contact during heat treatment, they will not react with each other and deteriorate.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

B 1zoff+ 5rCOs 、CaCO3、CuO
の粉末をBi :Sr :Ca :Cuが原子比で2=
2:1:2になるように配合し混合したのち、大気中で
800°C×20時間加熱し、これを粉砕して平均粒径
約5μmの仮焼成粉を作製し、この仮焼成粉にAg粒子
を種々配合量を変えて配合し、全体をミキサーにて十分
混合した。而して調整した混合体をAg製パイプ内に充
填して複合ビレ、トとなし、次いでこの複合ビレットを
溝ロール及び平ロールにて順次圧延加工してテープ状複
合線状体となした。次に而して作製したそれぞれの複合
線状体に大気中にて850°C×50時間の加熱処理を
施してテープ状のセラミックス超電導線材を製造した。
B 1zoff+ 5rCOs, CaCO3, CuO
The atomic ratio of Bi:Sr:Ca:Cu is 2=
After blending and mixing in a ratio of 2:1:2, it was heated in the air at 800°C for 20 hours and crushed to create a calcined powder with an average particle size of about 5 μm. Ag particles were mixed in various amounts, and the whole was thoroughly mixed using a mixer. The prepared mixture was filled into an Ag pipe to form a composite billet, and then this composite billet was sequentially rolled using grooved rolls and flat rolls to form a tape-shaped composite linear body. Next, each of the composite linear bodies thus produced was subjected to heat treatment at 850°C for 50 hours in the atmosphere to produce a tape-shaped ceramic superconducting wire.

尚、前記Ag粒子の粒径と混合量、及び金属製パイプと
複合線状体の形状は第1表に示した如く種々に変化させ
た。又比較の為、原料物質に金属粒子を混合しなかった
他は実施例と同し方法によっても同様なテープ状のセラ
ミックス超電導線材を製造した。
The particle size and mixing amount of the Ag particles, and the shapes of the metal pipe and composite linear body were varied as shown in Table 1. For comparison, a similar tape-shaped ceramic superconducting wire was manufactured by the same method as in the example except that metal particles were not mixed into the raw material.

このようにして得られた各々のセラミックス超電導線材
について、SEMによるボイド観察並びに臨界電流値(
I c)の測定を行った。結果は第1表に示した。尚、
Jcは液体窒素(77K)中、0磁場下で測定した。
For each ceramic superconducting wire obtained in this way, void observation by SEM and critical current value (
Ic) was measured. The results are shown in Table 1. still,
Jc was measured in liquid nitrogen (77K) under zero magnetic field.

第1表より明らかなように、本発明方法品(階1〜16
)は粗大ボイドは全く生ぜず、Tcは高い値のものであ
った。
As is clear from Table 1, the products manufactured by the method of the present invention (floors 1 to 16)
) did not produce any coarse voids and had a high Tc value.

本発明方法品の中にあって、Nn7,15は、金属粒子
が大きい為、又に8.16は金属粒子の混合量が少ない
為、いずれもガスの吸着能が低減し、又NQ6.14は
金属粒子の分散量が多い為、セラミックス超電導体層の
占積率が減少して、いずれもIcが幾分低めのものとな
った。
Among the products manufactured by the method of the present invention, Nn7 and 15 have large metal particles, and 8.16 has a small amount of metal particles mixed, so both have reduced gas adsorption ability. Since the amount of metal particles dispersed was large, the space factor of the ceramic superconductor layer was reduced, and the Ic was somewhat low in both cases.

他方、比較方法品(Ntl17,18 )は金属粒子が
混合されていない為、原料物質から発生したガスが凝集
し粗大化して粗大なボイドを形成し、Icが大幅に低下
した。
On the other hand, since the comparative method products (Ntl17,18) were not mixed with metal particles, the gas generated from the raw materials aggregated and became coarse, forming coarse voids, resulting in a significant decrease in Ic.

上記実施例では、Bi系超電導体の場合について説明し
たが、本発明方法は他のセラミックス超電導体に適用し
ても同様の効果を発現するもので、特に、原料物質を半
溶融状態以上の温度に加熱して反応させる場合は原料物
質からのガス発生が多い為、末法の効果が顕著に現れる
In the above embodiment, the case of a Bi-based superconductor was explained, but the method of the present invention can also be applied to other ceramic superconductors to achieve similar effects. When the reaction is carried out by heating to , the effect of the final method becomes noticeable because a large amount of gas is generated from the raw materials.

〔効果〕〔effect〕

以上述べたように、本発明方法によれば、加熱処理時に
発生するガスが金属粒子の表面に微細に吸着されて、粗
大なボイドの形成が阻止される為、超電導特性に優れた
セラミックス超電導線材が得られ、工業上顕著な効果を
奏する。
As described above, according to the method of the present invention, the gas generated during heat treatment is finely adsorbed on the surface of the metal particles, and the formation of coarse voids is prevented, so the ceramic superconducting wire has excellent superconducting properties. is obtained, and has a remarkable industrial effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図イ3口は本発明方法の態様例を示す工程説明図、
第2図は従来法によるテープ状のセラミックス超電導線
材の断面図である。 1・・・金属製バイブ、2・・・金属粒子、3・・・原
料物質、4・・・複合ビレット、5・・・複合線状体、
6・・・セラミックス超電導体層、7・・・粗大なボイ
ド。 特許出願人   古河電気工業株式会社第1図 第2図
Figure 1A3 is a process explanatory diagram showing an embodiment of the method of the present invention;
FIG. 2 is a cross-sectional view of a tape-shaped ceramic superconducting wire produced by a conventional method. DESCRIPTION OF SYMBOLS 1... Metal vibrator, 2... Metal particles, 3... Raw material, 4... Composite billet, 5... Composite linear body,
6... Ceramic superconductor layer, 7... Coarse voids. Patent applicant Furukawa Electric Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] セラミックス超電導体となし得る原料物質を金属製パイ
プ内に充填して複合ビレットとなし、次いで前記複合ビ
レットに伸延加工を施して複合線状体となしたのち、前
記複合線状体に所定の加熱処理を施すセラミックス超電
導線材の製造方法において、原料物質に金属製パイプと
同じ材種の金属粒子を分散させたものを用いることを特
徴とするセラミックス超電導線材の製造方法。
A metal pipe is filled with a raw material that can be made into a ceramic superconductor to form a composite billet, and then the composite billet is stretched to form a composite linear body, and then the composite linear body is heated to a predetermined temperature. A method for producing a ceramic superconducting wire that is subjected to a treatment, the method comprising using a raw material in which metal particles of the same grade as a metal pipe are dispersed.
JP2305786A 1990-11-09 1990-11-09 Manufacture of ceramic superconductive wire materials Pending JPH04179006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2305786A JPH04179006A (en) 1990-11-09 1990-11-09 Manufacture of ceramic superconductive wire materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2305786A JPH04179006A (en) 1990-11-09 1990-11-09 Manufacture of ceramic superconductive wire materials

Publications (1)

Publication Number Publication Date
JPH04179006A true JPH04179006A (en) 1992-06-25

Family

ID=17949335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2305786A Pending JPH04179006A (en) 1990-11-09 1990-11-09 Manufacture of ceramic superconductive wire materials

Country Status (1)

Country Link
JP (1) JPH04179006A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1070729A2 (en) 1993-06-07 2001-01-24 Mitsui Chemicals, Inc. Transition metal compound, olefin polymerization catalyst component comprising said compound, olefin polymerization catalyst containing said component, process for olefin polymerization using said catalyst, propylene homopolymer, propylene copolymer and propylene elastomer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1070729A2 (en) 1993-06-07 2001-01-24 Mitsui Chemicals, Inc. Transition metal compound, olefin polymerization catalyst component comprising said compound, olefin polymerization catalyst containing said component, process for olefin polymerization using said catalyst, propylene homopolymer, propylene copolymer and propylene elastomer

Similar Documents

Publication Publication Date Title
JPH04212215A (en) Manufacture of bismuthal oxide superconductor
JP2636049B2 (en) Method for producing oxide superconductor and method for producing oxide superconducting wire
JPH04292819A (en) Manufacture of oxide superconductive wire
JPH04237910A (en) Manufacture of bismuth oxide superconducting wire rod
JPH04179006A (en) Manufacture of ceramic superconductive wire materials
Fischer et al. Fabrication and properties of Bi-2223 tapes
JP3029153B2 (en) Manufacturing method of multilayer ceramic superconductor
JPH01251514A (en) Superconductive wire and manufacture thereof
JPH04317415A (en) Production of bi-based oxide superconductor
JP3313907B2 (en) Bi-based superconducting material, Bi-based superconducting wire having the same, and method of manufacturing the superconducting wire
JP3979609B2 (en) Method for producing Tl-based oxide superconductor
AU742588B2 (en) Cryogenic deformation of ceramic superconductors
JPH04317416A (en) Production of bi-based oxide superconductor
JPH02183918A (en) Manufacture of oxide superconductor
JP3011962B2 (en) Method for manufacturing multi-core or multilayer ceramic superconductor
JPH02229753A (en) Preparation of ductile composite containing superconductive ceramic oxide
JP2004296253A (en) Manufacturing method of bismuth based oxide superconducting wire rod
JPH02278616A (en) Manufacture of multicore-type oxide superconductor
JPH0589729A (en) Manufacture of high strength ceramic superconductive conductor
JPH03222213A (en) Thallium group oxide superconductive wire-rod
JPH02217320A (en) Production of bi-based oxide superconductor
JPH04249812A (en) Manufacture of tape-shaped ceramic superconducting wire rod
JPH02192619A (en) Manufacture of oxide superconductor
JPH09235120A (en) Production of bismuth-based oxide superconductor
JPH0554735A (en) Manufacture of ceramic superconductor