JPH02217320A - Production of bi-based oxide superconductor - Google Patents

Production of bi-based oxide superconductor

Info

Publication number
JPH02217320A
JPH02217320A JP1038448A JP3844889A JPH02217320A JP H02217320 A JPH02217320 A JP H02217320A JP 1038448 A JP1038448 A JP 1038448A JP 3844889 A JP3844889 A JP 3844889A JP H02217320 A JPH02217320 A JP H02217320A
Authority
JP
Japan
Prior art keywords
layer
heat treatment
elements
diffusion
based oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1038448A
Other languages
Japanese (ja)
Other versions
JPH07102976B2 (en
Inventor
Kyoji Tachikawa
恭治 太刀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Original Assignee
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University filed Critical Tokai University
Priority to JP1038448A priority Critical patent/JPH07102976B2/en
Publication of JPH02217320A publication Critical patent/JPH02217320A/en
Publication of JPH07102976B2 publication Critical patent/JPH07102976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a Bi-based oxide superconductor containing dense oxide superconductors, having a homogeneous composition and continuously formed in the shape of layers by subjecting a double-layer material consisting of the first layer composed of Sr-Ca-O elements and the second layer composed of Bi-Cu-O elements to diffusion heat treatment. CONSTITUTION:A composite material consisting of the first layer (1) composed of at least Sr-Ca-O elements and the second layer (2) composed of at least Bi-Cu-O elements is subjected to diffusion heat treatment to form a Bi-based oxide superconductor layer (3) on the surface of the first layer (1). In the above- mentioned method for production, the first layer is oxides composed of the Sr-Ca-O elements and the atomic ratio thereof is preferably such that Ca is within the range of 0.5-2.0 based on 1 Sr. The second layer is oxides composed of the Bi-Cu-O elements and the atomic ratio thereof is preferably such that Cu is within the range of 0.5-2.0 based on 1 Bi. The aforementioned heat treatment is preferably composed of primary diffusion heat treatment carried out at 600-800 deg.C and secondary heat treatment performed at 800-900 deg.C thereafter.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、磁気共鳴映像袋ffi (MRI−CT)等
の超電導マグネット線材や、超電導送電等の導電材とし
て有望視され、開発が進められているBi基の高臨界温
度酸化物超電導材の製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is expected to be used as a superconducting magnet wire for magnetic resonance imaging bags (MRI-CT), etc., and as a conductive material for superconducting power transmission, etc. , relates to a method for producing a Bi-based high critical temperature oxide superconducting material, which is currently under development.

(従来の技術) 最近、常電導状態から超電導状態に遷移する臨界温度T
cが液体窒素温度を超える値をもつY(イツトリウム)
基、Bi(ビスマス)基、TfI (タリウム)基等の
酸化物超電導体が発見されている。Bi基醋酸化物超電
導体は、B i 2 S r 2 Ca Cu 20 
xで示される組成の相が約80にのTeを、また、 B i2 S r2 Ca2 Cu3 oYで示される
組成の層が約105にのTcをもつことが知られている
。これらの異なるTcをもつ相は、通常混合状態で生成
されるが、最近、Biの一部をpbで置換すると105
にの高いTcをもつ相が生成され易くなることが知られ
ている。これらの酸化物系超電導体は、液体ヘリウムで
冷却することが必要であった従来のNb−TiやNb3
Sn等の金属系超電導体に比較して格段に有利な冷却条
件で使用できることから、実用上極めて有望な超電導材
料として研究開発が進められている。とくにBi基醋酸
化物超電導体TIのように毒性の強い元素を含まずにL
OOK以上のTcが得られるため注目されている。
(Prior art) Recently, the critical temperature T at which the normal conductive state transitions to the superconducting state
Y (yttrium) with c exceeding the liquid nitrogen temperature
Oxide superconductors such as Bi, Bi (bismuth), and TfI (thallium) have been discovered. Bi-based oxide superconductor is B i 2 S r 2 Ca Cu 20
It is known that a phase with the composition indicated by x has a Te of about 80, and a layer with the composition B i2 S r2 Ca2 Cu3 oY has a T of about 105. These phases with different Tc are usually produced in a mixed state, but recently, when part of Bi is replaced with pb, 105
It is known that phases with high Tc are more likely to be generated. These oxide-based superconductors are different from conventional Nb-Ti and Nb3, which required cooling with liquid helium.
Since it can be used under much more advantageous cooling conditions than metal-based superconductors such as Sn, research and development is progressing as a superconducting material that is extremely promising for practical use. In particular, it does not contain highly toxic elements like the Bi-based oxide superconductor TI.
It is attracting attention because it can obtain Tc higher than OOK.

酸化物超電導体は、機械的性質が極めて脆いため、線材
の形に加工する手法の一例として次の様な方法が行われ
ている。すなわち、酸化物超電導体を構成する元素を含
む複数の原料粉末を仮焼して、不要成分を除いた後に、
この仮焼粉末をAg等の金属管に充填し、これをスェー
ジング、線引き、圧延等の方法により所望の径の線ある
いは所望の厚さのテープに加工し、これに熱処理を施し
て金属管内部の圧縮混合粉末に固相反応を生じさせて所
望の組成をもつ酸化物超電導体を生成させ、超電導線材
を製造する方法である。
Since oxide superconductors have extremely fragile mechanical properties, the following method is used as an example of a method for processing them into wire rods. That is, after calcining multiple raw material powders containing elements constituting the oxide superconductor and removing unnecessary components,
This calcined powder is filled into a metal tube made of Ag, etc., and processed into a wire of a desired diameter or tape of a desired thickness by methods such as swaging, wire drawing, and rolling. This is a method for manufacturing superconducting wire by causing a solid phase reaction in a compressed mixed powder of

(発明が解決しようとする課題) 従来の製造法では、原料粉末を完全に均一に混合するこ
とが困難なことから、熱処理を施しても超電導体全体が
完全に均一な組成とならない問題があった。とくに長尺
線材では線材全長にわたり均一な組成の超電導体を生成
できない。このため不適当な組成で不充分な超電導特性
をもつ局部を形成することとなり、この結果、線材全体
の特性が制限されてしまう問題点があった。 また、上
記の線材内部に形成されている酸化物超電導体は粉末を
圧縮した成形体を固相反応により焼結したもので、その
内部に微細な空孔が多数存在する。
(Problem to be solved by the invention) In conventional manufacturing methods, it is difficult to mix raw material powders completely uniformly, so even if heat treatment is performed, there is a problem that the entire superconductor does not have a completely uniform composition. Ta. In particular, in the case of long wires, it is not possible to produce a superconductor with a uniform composition over the entire length of the wire. This results in the formation of localized areas with inadequate superconducting properties due to inappropriate composition, resulting in the problem that the properties of the entire wire are limited. Further, the oxide superconductor formed inside the above-mentioned wire is a compact formed by compressing powder and sintered by solid phase reaction, and many fine pores exist inside the oxide superconductor.

このことから、従来の合金体や金属間化合物体に比較し
て緻密性に欠け、実用上重要な臨界電流密度Jcを高め
るのが困難な問題点があった。
For this reason, compared to conventional alloy bodies and intermetallic compound bodies, they lack denseness and have a problem in that it is difficult to increase the practically important critical current density Jc.

さらに、酸化物系超電導体では、その結晶のC軸方向と
ab軸方向で著しく超電導特性が異なるため、各結晶の
方位を揃え、特性のすぐれた方向に磁界を加えるとか、
電流を流す必要がある。従来の粉末加工法では、結晶方
位を揃えるためには、極めて強度の加工を加えるなどの
困難な作業が必要であった。
Furthermore, in oxide superconductors, the superconducting properties are significantly different between the C-axis direction and the AB-axis direction of the crystal, so it is necessary to align the orientation of each crystal and apply a magnetic field in the direction with the best properties.
Current needs to flow. Conventional powder processing methods require difficult work such as extremely strong processing to align the crystal orientation.

本発明は、均一な組成をもつ緻密な酸化物超電導体を層
状に連続して生成させることが出来、しかも超電導層の
厚さを所望の大きさに制御し、結晶方位の揃った組織を
容易に得ることが出来るBi基醋酸化物超電導体製造方
法を提供するものである。
The present invention enables the formation of a dense oxide superconductor with a uniform composition in a continuous layered manner, and also allows the thickness of the superconducting layer to be controlled to a desired size, making it easy to form a structure with uniform crystal orientation. The present invention provides a method for producing a Bi-based acetic acid superconductor that can be obtained in the following manner.

(課題を解決するための手段) 本発明者は、拡散法による超電導体の製造に着目した。(Means for solving problems) The present inventor has focused on the production of superconductors using a diffusion method.

すなわち、このような拡散反応による超電導体の製造は
、酸化物超電導体同様に機械的性質が硬く脆くて直接的
加工が困難なNb3 Sn。
That is, the production of a superconductor by such a diffusion reaction is difficult for Nb3Sn, which, like oxide superconductors, has hard and brittle mechanical properties and is difficult to directly process.

V3Ga等の金属化合物超電導体の線材化に適用され、
これらの工業化に大きい成功を収めた(例えば K、T
achlkava、Pilamentary A15S
uperconductors、 Plenua Pr
ess、(198G)、 1頁参照)。この拡散法によ
ると、均一な組成をもった緻密な超電導層を連続して生
成し、優れた超電導特性をうることができる。
Applied to wire rods of metal compound superconductors such as V3Ga,
They achieved great success in industrializing them (e.g. K, T
achlkava, Pilamentary A15S
upperconductors, Plenua Pr
ess, (198G), p. 1). According to this diffusion method, a dense superconducting layer with a uniform composition can be continuously produced and excellent superconducting properties can be obtained.

本発明は、この拡散法をBi基醋酸化物超電導体製法に
適用したもので、Bi−Sr−Ca−Cu−0の元素で
構成されるBi基醋酸化物超電導体製造方法において、
第1層として、Sr−Ca−Cu−0,Sr−Ca−0
等で構成される酸化物を用い、第2層として、Bi−C
a−Cu−01Bi−Cu−0等で構成される酸化物を
用いる。次いで、第1層に第2層をVLMiシて複合体
を作製し、しかる後拡散熱処理を行う。
The present invention applies this diffusion method to a method for manufacturing a Bi-based oxide superconductor, which includes the following steps:
As the first layer, Sr-Ca-Cu-0, Sr-Ca-0
Bi-C is used as the second layer.
An oxide composed of a-Cu-01Bi-Cu-0 or the like is used. Next, a second layer is applied to the first layer by VLMi to produce a composite, and then a diffusion heat treatment is performed.

本発明で製造するBi基酸化物超電導体は、先に述べた
B i2 S r2CaCu20X%Bi2Sr2 C
a2 CLI30Y%及びBiの一部をpbで置換した
ものを含む。
The Bi-based oxide superconductor produced in the present invention has the above-mentioned B i2 S r2 CaCu20X% Bi2 Sr2 C
a2 Contains CLI30Y% and a portion of Bi replaced with pb.

第1層は、複合体を拡散する際の下地として機能するも
ので、なるべく高い融点をもつことが望ましい。この第
1層は、S r CO3、Ca CO3、必要により加
えるCuO等の原料粉末を所定の組成比で混合し、仮焼
、成型プレス、本焼等の過程を経て作製される。一方、
その上に被覆する第2層は、拡散工程で元素が拡散する
もので、なるべく低い融点をもつことが望ましい。この
第2層は、B i20B 、CLIO%必要により加え
るCaCO3、Pb3O4等の原料粉末を所定の組成比
で混合し、仮焼、本焼等の過程を経て作製される。第1
層を高融点とし、′1s2層を低融点とした理由は、第
1層の融点が高い方が、機械的に強固な下地として役立
ち、また、第2層(低融点要素)の融点が低い方が拡散
反応が速やかに進行し、容易に厚い拡散層をうろことが
出来るためである。
The first layer functions as a base for diffusing the composite, and desirably has a melting point as high as possible. This first layer is produced by mixing raw material powders such as S r CO3, Ca CO3, and CuO added if necessary in a predetermined composition ratio, and performing processes such as calcination, mold pressing, and final firing. on the other hand,
The second layer coated thereon is one in which elements are diffused during the diffusion process, and it is desirable to have a melting point as low as possible. This second layer is produced by mixing raw material powders such as B i20B , CLIO%, CaCO3, Pb3O4, etc. added as necessary in a predetermined composition ratio, and performing processes such as calcination and final firing. 1st
The reason why the first layer has a high melting point and the '1s2 layer has a low melting point is that the first layer with a high melting point serves as a mechanically strong base, and the second layer (low melting point element) has a low melting point. This is because the diffusion reaction proceeds more quickly and it is possible to easily move through a thick diffusion layer.

これら酸化物は、熱分析法等を用いた発明者の研究によ
り、Bi基酸化物超電導体では、第1層としては、Bi
を含まないSr−Ca系酸化物が適当であり、一方、第
2層としてはSrを含まないBi−Cu系酸化物が適当
であることを見出して得られたものである。ここでは、
上記構成の第1層は、950℃〜1100℃程度の融点
で、上記第2層の構成のものは、融点が600℃〜80
0 ’C程度である。
The inventor's research using thermal analysis methods etc. has revealed that in Bi-based oxide superconductors, Bi is used as the first layer of these oxides.
This was obtained by discovering that a Sr--Ca based oxide containing no Sr is suitable, while a Bi--Cu based oxide containing no Sr is suitable for the second layer. here,
The first layer with the above structure has a melting point of about 950°C to 1100°C, and the second layer has a melting point of about 600°C to 80°C.
It is about 0'C.

S r−Ca−Cu−0系の場合、第1層の組成比(原
子比)は、Srを1に対して、Ca0.25〜1.0.
  Cu  0.25〜1.5の範囲で、Sr−Ca−
0系の場合、第1層の組成比(原子比)は、Srを1に
対して、Ca0.5〜2.0の範囲であることがよい。
In the case of the S r-Ca-Cu-0 system, the composition ratio (atomic ratio) of the first layer is 1 for Sr and 0.25 to 1.0 for Ca.
Cu in the range of 0.25 to 1.5, Sr-Ca-
In the case of 0 series, the composition ratio (atomic ratio) of the first layer is preferably in the range of 0.5 to 2.0 Ca to 1 Sr.

B 1−Ca−Cu−0の場合、第2層の組成比(原子
比)は、Bilに対して、Ca  0.25〜1.0.
 Cu  0.25〜1.5の範囲にあり、Bi−Cu
−0の場合、第2層の組成比(原子比)は、Bflに対
して、Cu0.5〜2.0の範囲にあることが望ましい
。ここで上記第1層及び第2層は、酸化物の形態をとる
ため、0の含有量は、上記他の元素の量により理論的に
計算される。
In the case of B 1-Ca-Cu-0, the composition ratio (atomic ratio) of the second layer is 0.25 to 1.0.
Cu is in the range of 0.25 to 1.5, Bi-Cu
In the case of −0, the composition ratio (atomic ratio) of the second layer is desirably in the range of Cu0.5 to 2.0 with respect to Bfl. Here, since the first layer and the second layer are in the form of oxides, the content of 0 is theoretically calculated based on the amount of the other elements.

本発明では、組成比がこれらの範囲から外れると良好な
超電導特性をうろことが困難となる。なお、第2層のう
ち、Biを組成比(原子比)0.1〜0.5の範囲でp
bに置換しても差支えない。
In the present invention, if the composition ratio deviates from these ranges, it becomes difficult to maintain good superconducting properties. In addition, in the second layer, Bi is added at a composition ratio (atomic ratio) of 0.1 to 0.5.
There is no problem in replacing it with b.

次いで、第1図に示すように、第1層1上に第2層2を
被覆する。その具体的な方法は、基材テープ(図示せず
)上に第1層1をスプレー法、印刷法等の手法で連続的
に塗布した後、基材テープとの密着性を高めるための熱
処理を行い、ついでその表面に第2層2を同様な手法で
連続的に被覆する、あるいは、第1層を焼成して作製し
た柱形状の芯の周囲に第2層を被覆するなどの方法が含
まれる。
Next, as shown in FIG. 1, a second layer 2 is coated on the first layer 1. The specific method is to continuously apply the first layer 1 onto a base tape (not shown) using a spray method, printing method, etc., and then heat treatment to increase the adhesion to the base tape. Then, the second layer 2 is continuously coated on the surface using the same method, or the second layer is coated around the columnar core made by firing the first layer. included.

次に拡散熱処理をおこなう。この拡散熱処理は、低い温
度で一次拡散熱処理を行ったのち、次に高い温度で二次
拡散熱処理を行った方が、より性能の良好な材料を提供
することが出来る。
Next, a diffusion heat treatment is performed. This diffusion heat treatment can provide a material with better performance if the primary diffusion heat treatment is performed at a low temperature and then the secondary diffusion heat treatment is performed at a higher temperature.

−次拡散熱処理温度は600℃〜800℃の範囲、また
、二次熱処理温度は、800℃〜900℃の範囲にある
。−成熱処理温度は、第2層の融点付近にあり、拡散反
応により高い 臨界温度Tcの得られる組成をもつBi基酸酸化物生成
させる。
- The secondary diffusion heat treatment temperature is in the range of 600°C to 800°C, and the secondary heat treatment temperature is in the range of 800°C to 900°C. - The heat-forming treatment temperature is near the melting point of the second layer, and a Bi-based acid oxide having a composition that provides a high critical temperature Tc is produced by a diffusion reaction.

二次熱処理温度は、Bi基嵩高臨界温度超電導体生成温
度付近にあり、高いTcをもつ結晶構造を形成させる。
The secondary heat treatment temperature is near the temperature for forming a Bi-based bulky critical temperature superconductor, forming a crystal structure with a high Tc.

−次拡散熱処理を省略しても超電導層を生成させること
が可能であるが、第2層の成分系が急速に溶融、膨張し
、超電導層にクラックを発生させることがある。従って
、−次拡散熱処理を省略する場合は、二次拡散熱処理の
際の昇温を600℃以上の温度域において1℃/分より
遅く行う必要がある。
Although it is possible to generate a superconducting layer even if the second diffusion heat treatment is omitted, the component system of the second layer may rapidly melt and expand, causing cracks to occur in the superconducting layer. Therefore, when the secondary diffusion heat treatment is omitted, it is necessary to raise the temperature during the secondary diffusion heat treatment at a rate of less than 1° C./min in a temperature range of 600° C. or higher.

第1層の芯の周囲に第2層を被覆する場゛合、その複合
体に一次拡散処理を行って両者の密着性を高め、ついで
これをAg等のケースに挿入して長尺線に加工後、二次
拡散処理を行うことにより、高TeのBi基酸化物超電
導線材を作製する手法をとることが出来る。 そして、
本発明によれば、照合体に拡散熱処理を行うことにより
、第2層の成分が第1層内に拡散して反応し、第1層1
の表面に高Teの超電導層3が生成される。
When coating the second layer around the core of the first layer, the composite is subjected to primary diffusion treatment to increase the adhesion between the two, and then inserted into a case made of Ag or the like to form a long wire. By performing a secondary diffusion treatment after processing, it is possible to produce a high Te Bi-based oxide superconducting wire. and,
According to the present invention, by performing diffusion heat treatment on the reference body, the components of the second layer diffuse into the first layer and react, and the components of the second layer react with each other.
A high Te superconducting layer 3 is generated on the surface of the .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に基づく拡散法によると、
緻密で空孔がなく、しかも組成が均一なりi層高Tc酸
化物超電導体を作製しうる効果がある。そのため、本製
造法を線材作製に適用した場合に、Jcが大きく、しか
も長さ方向に特性の均一なりi層高Tc酸化物線材を製
造することが可能となる。また、通常の粉末焼結法と異
なり、一方向から第2層の成分が拡散して酸化物超電導
体が生成するため、拡散方向に結晶粒が生長し、結晶配
向性の優れた高Tc酸化物超電導体を得ることが出来る
効果もある。さらに、第2層の厚さを調節することによ
って高Tc超電導層(拡散層)の厚さを容易に制御する
ことが可能である。従って本製造法は従来の製造法にお
ける課題を解決し、ち密性、均一性が優れ、かつ結晶方
位を揃えたBi基高Tc酸化物超電導体を提供すること
ができる。
As explained above, according to the diffusion method based on the present invention,
It has the effect of producing an i-layer high Tc oxide superconductor that is dense, has no pores, and has a uniform composition. Therefore, when this manufacturing method is applied to wire manufacturing, it is possible to manufacture an i-layer high Tc oxide wire with a large Jc and uniform characteristics in the length direction. In addition, unlike the normal powder sintering method, the components of the second layer diffuse from one direction to form an oxide superconductor, so crystal grains grow in the direction of diffusion, resulting in high Tc oxidation with excellent crystal orientation. There is also the effect that a physical superconductor can be obtained. Furthermore, the thickness of the high Tc superconducting layer (diffusion layer) can be easily controlled by adjusting the thickness of the second layer. Therefore, this manufacturing method solves the problems of conventional manufacturing methods, and can provide a Bi-based high-Tc oxide superconductor with excellent compactness and uniformity, and with uniform crystal orientation.

実施例I S rcO3、CaCO3、CuOの原料粉末をSr2
CaCu04の組成となるよう配合し、900℃で6時
間仮焼して、CO2等の不要成分を除去しついで、10
25℃で12時間仮焼したのち、粉砕、混合を繰返し行
った。この粉末を2 tonの荷重でプレスして巾4謙
膳、長さ30龍、厚さ約2−のテープ状に成型し、10
30℃で12時間本焼して、下地となる第1層を作製し
た。一方、B i2 O3、CaCO3、CuOの原料
粉末をB i2 CaCu20Bの組成となるよう配合
し、700℃で6時間仮焼したのち、粉砕、混合を繰り
返し、730℃で8時間本焼をして第2層を作製した。
Example I Sr2 raw material powders of SrcO3, CaCO3, and CuO
It was blended to have the composition of CaCu04, calcined at 900℃ for 6 hours to remove unnecessary components such as CO2, and then
After calcining at 25°C for 12 hours, pulverization and mixing were repeated. This powder was pressed with a load of 2 tons to form a tape with a width of 4 mm, a length of 30 mm, and a thickness of approximately 2 mm.
Main firing was performed at 30° C. for 12 hours to produce a first layer serving as a base. On the other hand, raw material powders of B i2 O3, CaCO3, and CuO were blended to have a composition of B i2 CaCu20B, and after calcining at 700°C for 6 hours, pulverization and mixing were repeated, and main firing at 730°C for 8 hours. A second layer was produced.

熱分析を行った結果では、第1層の融点は約1070℃
で、第2層の融点は約750℃であった。
According to the results of thermal analysis, the melting point of the first layer is approximately 1070°C.
The melting point of the second layer was approximately 750°C.

ついで、第2層を形成する成分の粉末をポリビニールア
ルコール中に懸濁したスラリーを下地である第1層の上
に厚さ約100μm塗布して複合体を作製した。この複
合体を750℃で5時間、−次拡散熱処理を行ったのち
、[0℃で50時間、二次拡散熱処理を行って試料を作
製した。なお、本実施例の熱処理はいずれも大気中で行
った。−次拡散熱処理により第2層の成分が第2層内に
拡散し、厚さ約100μmの拡散層が生成されていたが
、まだ超電導性は示さなかった。
Next, a slurry in which powders of the components forming the second layer were suspended in polyvinyl alcohol was applied to a thickness of about 100 μm on the first layer as a base to prepare a composite. This composite was subjected to secondary diffusion heat treatment at 750° C. for 5 hours, and then subjected to secondary diffusion heat treatment at 0° C. for 50 hours to prepare a sample. Note that all the heat treatments in this example were performed in the atmosphere. The components of the second layer were diffused into the second layer by the second diffusion heat treatment, and a diffusion layer with a thickness of about 100 μm was generated, but superconductivity was not yet exhibited.

第2図に、二次拡散熱処理後の試料の断面写真を示す。FIG. 2 shows a cross-sectional photograph of the sample after the secondary diffusion heat treatment.

この写真から第1層下地1の上に厚さ約100μmの拡
散層3が生成し、拡散層内の結晶粒は高融点要素下地に
ほぼ垂直に配向して生長していることがわかる。拡散層
の内部には、通常の粉末焼結体にみられるような空孔が
存在せず緻密な組織を示している。また、第3図に試料
の二次拡散熱処理後のBiの面分析結果を、また第4図
にSrの面分析結果を示した。第3図及び第4図で1は
下地である第1層、3は拡散層である。白い点が元素の
分布を示しており、第1層を構成するSr及び第2層を
構成するBiがそれぞれ拡散層中に均一に拡散している
ことがわかる。また、この拡散層のX線回折図形を撮影
したところ、主としてTc8G)[のB i2 S r
2 CaCu20x相の回折ピークからなり、他に一部
Te105にのB [2S r2 Ca2 Cu30y
相の回折ピークが認められた。第、5図には、直流4端
子法で測定した試料の抵抗の温度変化を示した。ゼロ抵
抗温。度は88にであるが、80K及び103Kにも超
電導遷移が現われている。
From this photograph, it can be seen that a diffusion layer 3 with a thickness of about 100 μm is formed on the first layer base 1, and that the crystal grains in the diffusion layer grow in an orientation almost perpendicular to the high melting point element base. Inside the diffusion layer, there are no pores that are found in ordinary powder sintered bodies, and a dense structure is exhibited. Further, FIG. 3 shows the surface analysis results of Bi after the secondary diffusion heat treatment of the sample, and FIG. 4 shows the surface analysis results of Sr. In FIGS. 3 and 4, 1 is a first layer which is a base, and 3 is a diffusion layer. The white dots indicate the distribution of elements, and it can be seen that Sr constituting the first layer and Bi constituting the second layer are each uniformly diffused into the diffusion layer. In addition, when the X-ray diffraction pattern of this diffusion layer was photographed, it was found that mainly Tc8G)[B i2 S r
2 Consists of the diffraction peak of the CaCu20x phase, and a part of the B [2S r2 Ca2 Cu30y
A phase diffraction peak was observed. Figures 5 and 5 show the temperature change in the resistance of the sample measured by the DC 4-terminal method. Zero resistance temperature. Although the degree is 88, superconducting transitions also appear at 80K and 103K.

本実施例により、拡散法によって均一な組成をもった緻
密で厚さBi基高Tc酸化物層を作製出来ることがわか
った。
According to this example, it was found that a dense and thick Bi-based Tc oxide layer having a uniform composition can be produced by the diffusion method.

実施例2 Sr2 CaCu205の配合組成をもった第1層及び
Biを20原子%pbで置換した(B i  01IP
b  0.2) 2 CaCu208の配合組成をもっ
た第2層を実施例1と同様な方法で作製し、実施例1と
同様にして厚さ約100μmの第2層を第1層に被覆し
た。この複合体を大気中で150℃で5時間、−次拡散
熱処理を行ったのち、840℃で50時間二次拡散熱処
理を行った。この拡散熱処理により実施例1と同様に厚
さ約100μmの均一な組成をもつ拡散層が生成された
。第6図はこの試料の抵抗の温度変化を示した。約to
oKでゼロ抵抗かえられ、Biの一部をpbが置換する
ことによりて、高Te相の生成が容易になったことを示
している。
Example 2 The first layer had a composition of Sr2CaCu205 and Bi was replaced with 20 at% PB (B i 01IP
b 0.2) 2 A second layer having a composition of CaCu208 was prepared in the same manner as in Example 1, and the second layer with a thickness of about 100 μm was coated on the first layer in the same manner as in Example 1. . This composite was subjected to secondary diffusion heat treatment at 150° C. for 5 hours in the air, and then to secondary diffusion heat treatment at 840° C. for 50 hours. As in Example 1, this diffusion heat treatment produced a diffusion layer having a thickness of about 100 μm and having a uniform composition. FIG. 6 shows the change in resistance of this sample with temperature. About to
The resistance was changed to zero at OK, indicating that the generation of a high Te phase was facilitated by substituting part of Bi with pb.

また、この試料の臨界電流を直流4端子法により液体窒
素中(77K)で測定したところ、5Aの電流を流して
も超電導状態が破れなかった。超電導層の厚さが約10
0μmであるから、臨界電流密度Jcに換算すると12
50A/cj以上の実用に供するのに充分な値となる。
In addition, when the critical current of this sample was measured in liquid nitrogen (77K) using the DC four-probe method, the superconducting state was not broken even when a current of 5 A was applied. The thickness of the superconducting layer is approximately 10
Since it is 0 μm, converting it to critical current density Jc is 12
This is a value of 50 A/cj or more, which is sufficient for practical use.

実施例3 SrCO3とCaCO3の原料粉末を Sr2Ca204の組成となるように配合、混合し、9
0℃、6時間と、1025℃、12時間の仮焼をおこな
った後、粉砕と混合を繰返した。この粉末を幅4層層、
長さ30−1厚さ約2■朧にプレス成型し、1030℃
で12時間本焼して下地である第1層を作製した。また
B i203 、Pb304及びCuOを(Bit、7
、Pbo、1)2cu306の組成となるように配合混
合し、700℃で8時間の本焼をおこなって第2層を作
製した。実施例1と同様にして第2層の成分の粉末を第
1層下地の上に塗付して複合体を作製した。
Example 3 Raw material powders of SrCO3 and CaCO3 were blended and mixed to have a composition of Sr2Ca204, and 9
After calcining at 0°C for 6 hours and at 1025°C for 12 hours, pulverization and mixing were repeated. This powder is spread in 4 layers,
Length: 30-1 Thickness: Approx. 2mm Press molded at 1030℃
The first layer, which is the base layer, was prepared by firing for 12 hours. In addition, B i203 , Pb304 and CuO (Bit, 7
. In the same manner as in Example 1, powders of the components of the second layer were applied onto the base of the first layer to prepare a composite.

この複合体を740℃で5時間、−時拡散熱処理をおこ
なった後、840℃で5時間二次拡散熱処理をおこなっ
て試料を作製した。これらの拡散熱処理によって厚さが
約50μmの拡散層が生成された。
This composite was subjected to diffusion heat treatment at 740°C for 5 hours and then secondary diffusion heat treatment at 840°C for 5 hours to prepare a sample. These diffusion heat treatments produced a diffusion layer with a thickness of approximately 50 μm.

この試料のTcを直流4端子法によりて測定したところ
、98にのゼロ抵抗温度が得られた。
When the Tc of this sample was measured by the DC four-terminal method, a zero resistance temperature of 98 was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本製造法の原理を説明するための図、第2図
ないし第6図は本発明の詳細な説明するもので、第2図
は実施例1の試料断面の粒子構造を示す走査電子顕微鏡
組織写真、第3図は同じくBiの面分析像を示し、試料
断面の粒子構造を示す顕微鏡写真、′1s4図はSrの
面分析像を示し、試料断面の粒子構造を示す顕微鏡写真
、第5図及び第6図はそれぞれ実施例1及び2による試
料の電気抵抗の温度変化を示す図である。 1・・・第1層(高融点要素)、2・・・第2層(低融
点要素)、3・・・拡散層(高Tc超電導層)出願人代
理人 弁理士 鈴 江 武 彦第1図 m                 、−、/””−
−””  ””””  ””  −’、、*、/−9″
−一一\電気お坑(mΩ) 電入砲扼(mΩ)
Figure 1 is a diagram for explaining the principle of the present manufacturing method, Figures 2 to 6 are detailed explanations of the present invention, and Figure 2 shows the particle structure of a cross section of the sample of Example 1. A scanning electron micrograph of the structure; Figure 3 shows a surface analysis image of Bi, and a microphotograph showing the grain structure of a cross section of the sample; Figure '1s4 shows a surface analysis image of Sr, a microphotograph showing the grain structure of a cross section of the sample. , FIG. 5, and FIG. 6 are diagrams showing temperature changes in electrical resistance of samples according to Examples 1 and 2, respectively. 1... First layer (high melting point element), 2... Second layer (low melting point element), 3... Diffusion layer (high Tc superconducting layer) Applicant's representative Patent attorney Takehiko Suzue 1st Figure m ,-,/””-
−”” ”””” ”” −',, *, /-9″
-11\Electric pit (mΩ) Electric gun tower (mΩ)

Claims (5)

【特許請求の範囲】[Claims] (1)少なくともSr−Ca−Oの元素で構成される第
1層と、少なくともBi−Cu−Oの元素で構成される
第2層とからなる複合体を拡散熱処理して、Bi基酸化
物超電導体層を形成することを特徴とするBi基酸化物
超電導体の製造方法。
(1) A composite consisting of a first layer composed of at least the element Sr-Ca-O and a second layer composed of at least the element Bi-Cu-O is subjected to a diffusion heat treatment to form a Bi-based oxide. A method for producing a Bi-based oxide superconductor, which comprises forming a superconductor layer.
(2)前記第1層は、Sr−Ca−Cu−Oの元素で構
成された酸化物で、その原子比が、Srを1としてCa
0.25〜1.0,Cu0.25〜1.5の範囲にあり
、また、第2層がBi−Ca−Cu−Oの元素で構成さ
れた酸化物で、その原子比が、Biを1としてCa0.
25〜1.0、Cu0.25〜1.5の範囲内にあるこ
とを特徴とする特許請求の範囲第1項記載のBi基酸化
物超電導体の製造方法。
(2) The first layer is an oxide composed of the elements Sr-Ca-Cu-O, and the atomic ratio is Sr: 1 and Ca:
0.25-1.0, Cu0.25-1.5, and the second layer is an oxide composed of the elements Bi-Ca-Cu-O, with an atomic ratio of Bi 1 as Ca0.
25-1.0 and Cu0.25-1.5, the method for producing a Bi-based oxide superconductor according to claim 1.
(3)前記第1層は、Sr−Ca−Oの元素で構成され
た酸化物で、その原子比が、Srを1としてCa0.5
〜2.0の範囲にあり、また、第2層がBi−Cu−O
の元素で構成された酸化物で、その原子比が、Biを1
としてCu0.5〜3.0の範囲内にあることを特徴と
する特許請求の範囲第1項記載のBi基酸化物超電導体
の製造方法。
(3) The first layer is an oxide composed of the elements Sr-Ca-O, and the atomic ratio thereof is 1 for Sr and 0.5 for Ca.
~2.0, and the second layer is Bi-Cu-O
An oxide composed of the elements whose atomic ratio is Bi to 1
2. The method for producing a Bi-based oxide superconductor according to claim 1, wherein Cu is within a range of 0.5 to 3.0.
(4)前記第2層のBiの一部を、Bi1に対し0.1
〜0.5の組成比の原子%でPbに置換することを特徴
とする特許請求の範囲第2項又は第3項記載のBi基酸
化物超電導体の製造方法。
(4) A portion of Bi in the second layer is set at 0.1 with respect to Bi1.
4. The method for producing a Bi-based oxide superconductor according to claim 2 or 3, characterized in that Pb is substituted at a composition ratio of ~0.5 atomic %.
(5)前記熱処理が600℃〜800℃の範囲にある一
次拡散熱処理と、この熱処理の後におこなう800℃〜
900℃の範囲にある二次拡散熱処理とからなることを
特徴とする特許請求の範囲第1項乃至第4項のいずれか
1項に記載のBi基酸化物超電導体の製造方法。
(5) Primary diffusion heat treatment in which the heat treatment is in the range of 600°C to 800°C, and 800°C to
5. A method for producing a Bi-based oxide superconductor according to any one of claims 1 to 4, which comprises a secondary diffusion heat treatment at a temperature of 900°C.
JP1038448A 1989-02-20 1989-02-20 Method for producing Bi-based oxide superconductor Expired - Fee Related JPH07102976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1038448A JPH07102976B2 (en) 1989-02-20 1989-02-20 Method for producing Bi-based oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1038448A JPH07102976B2 (en) 1989-02-20 1989-02-20 Method for producing Bi-based oxide superconductor

Publications (2)

Publication Number Publication Date
JPH02217320A true JPH02217320A (en) 1990-08-30
JPH07102976B2 JPH07102976B2 (en) 1995-11-08

Family

ID=12525570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1038448A Expired - Fee Related JPH07102976B2 (en) 1989-02-20 1989-02-20 Method for producing Bi-based oxide superconductor

Country Status (1)

Country Link
JP (1) JPH07102976B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069723A1 (en) * 2005-12-16 2007-06-21 Dowa Electronics Materials Co., Ltd. Method of forming thick film of oxide superconductor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184556A (en) * 1989-01-12 1990-07-19 Furukawa Electric Co Ltd:The Production of superconductive molded article of bismuth-based oxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184556A (en) * 1989-01-12 1990-07-19 Furukawa Electric Co Ltd:The Production of superconductive molded article of bismuth-based oxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069723A1 (en) * 2005-12-16 2007-06-21 Dowa Electronics Materials Co., Ltd. Method of forming thick film of oxide superconductor
US7638463B2 (en) 2005-12-16 2009-12-29 Dowa Electronics Materials Co., Ltd. Method of forming oxide superconductor thick film
JP5087785B2 (en) * 2005-12-16 2012-12-05 Dowaエレクトロニクス株式会社 Method for forming oxide superconductor thick film

Also Published As

Publication number Publication date
JPH07102976B2 (en) 1995-11-08

Similar Documents

Publication Publication Date Title
JP3575004B2 (en) Intermetallic compound superconductor composed of magnesium and boron, alloy superconductor containing the intermetallic compound, and methods of producing these
EP0356969A2 (en) Method of producing oxide superconductor
JP2636049B2 (en) Method for producing oxide superconductor and method for producing oxide superconducting wire
JP3089294B2 (en) Manufacturing method of superconducting tape material
JPH04292819A (en) Manufacture of oxide superconductive wire
JPH02217320A (en) Production of bi-based oxide superconductor
JPH0881221A (en) Oxide superconductor and its production
JP2889286B2 (en) Superconducting body and superconducting coil formed using the superconducting body
JP2859516B2 (en) Oxide superconductor and manufacturing method thereof
JP3512825B2 (en) Method for producing metal-oxide superconductor composite material
JP3257569B2 (en) Method for producing Tl-based oxide superconductor
JPS63285155A (en) Oxide type superconductive material and production thereof
JP2971504B2 (en) Method for producing Bi-based oxide superconductor
JP3979609B2 (en) Method for producing Tl-based oxide superconductor
JPH07282659A (en) Manufacture of high temperature superconducting wire rod
JPH01251514A (en) Superconductive wire and manufacture thereof
JP3590567B2 (en) Manufacturing method of oxide superconducting wire and oxide superconducting wire
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JPH09235120A (en) Production of bismuth-based oxide superconductor
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
JPH0717366B2 (en) Method for producing oxide-based superconducting material
JP3149170B2 (en) Method for producing bismuth-based oxide superconductor
JPH03105809A (en) Manufacture of oxide superconductive wire material
Lim et al. Processing of BSCCO 2212 and 2223 superconductor compounds
JPH05274933A (en) Manufacture of oxide superconducting wire material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees