JPH03250509A - Manufacture of superconducting oxide wire - Google Patents

Manufacture of superconducting oxide wire

Info

Publication number
JPH03250509A
JPH03250509A JP2046676A JP4667690A JPH03250509A JP H03250509 A JPH03250509 A JP H03250509A JP 2046676 A JP2046676 A JP 2046676A JP 4667690 A JP4667690 A JP 4667690A JP H03250509 A JPH03250509 A JP H03250509A
Authority
JP
Japan
Prior art keywords
temperature
heat
hours
wire
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2046676A
Other languages
Japanese (ja)
Other versions
JP2567967B2 (en
Inventor
Hisashi Sekine
関根 久
Tadashi Inoue
井上 廉
Hiroshi Maeda
弘 前田
Koichi Numata
幸一 沼田
Hiroichi Yamamoto
博一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
National Research Institute for Metals
Original Assignee
Mitsubishi Heavy Industries Ltd
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, National Research Institute for Metals filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2046676A priority Critical patent/JP2567967B2/en
Publication of JPH03250509A publication Critical patent/JPH03250509A/en
Application granted granted Critical
Publication of JP2567967B2 publication Critical patent/JP2567967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To manufacture a superconducting oxide wire of dense crystallization, high crystal orientation and high critical current density by filling the power of a Bi group oxide superconductor into a metal sheath to be cold-worked and heat-treated respective ly under specified conditions. CONSTITUTION:The powder of a Bi group oxide superconductor is filled into a metal sheath to be cold-worked, heat-treated at a temperature not higher than 875 deg.C and subsequently cold-worked, then heat-treated at a temperature not lower than 870 deg.C and heat-treated again at a temperature not higher than 875 deg.C. As for manufacture of the Bi group oxide superconductor, such a component that never damages the characteristics of a Bi-Sr-Ca-Cu-O group composition may be optionally added to the composition. A low Tc phase Bi2Sr2CaCu2 group composition, for example, can give a high critical current density characteristic (Jc). The wire can be manufactured not only for general-purpose but also into a tape-shaped one or a multicore linear one. The primary, secondary and tertiary heat treatment causes crystal growth to the superconductor in the preferential direction while correcting the distortion of crystal grains of the superconductor, whereby an oxide superconducting wire of dense crystallization, high crystal orientation and high critical current density can be manufac tured.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、酸化物超電導線材の製造法に関するもので
ある。さらに詳しくは、この発明は、各種超電導マグネ
ット、送電ゲーブル、発電機等に有用な、実用に供する
ことのできる臨界電流特性を有するBi系酸化物超電導
線材の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing an oxide superconducting wire. More specifically, the present invention relates to a method for producing a Bi-based oxide superconducting wire having critical current characteristics that can be put to practical use and is useful for various superconducting magnets, power transmission cables, generators, etc.

(従来の技術とその課題) 酸化物高温超電導体としてBi系酸化物が注目されてお
り、このBi系酸化物超電導体の薄膜化とともに、その
線材化、テープ状体への加工方法が精力的に検討されて
いる。
(Conventional technology and its issues) Bi-based oxides are attracting attention as high-temperature oxide superconductors, and efforts are being made to make the Bi-based oxide superconductors thinner and to process them into wires and tape-shaped bodies. is being considered.

すでにこれまでにも、Bi系酸化物超電導体の粉末を銀
シースに充填し、これを線材あるいはテ−プ状体に加工
した後に、焼結、圧延、焼結等の配向処理を施して起電
導線材、または超電導テープ状体を製造する方法が提案
されてもいる。
Already, Bi-based oxide superconductor powder has been filled into a silver sheath, processed into a wire or tape, and then subjected to orientation treatments such as sintering, rolling, and sintering. A method of manufacturing a conductive wire or a superconducting tape has also been proposed.

しかしながら、これまでに知られている方法では、Bi
系酸化物超電導体の場合には実用に供することのできる
臨界電流密度(Jc)を有する線材、あるいはテープ状
体が得られないのが実情である6 Bi系系酸化物電電導体異方性が大きく、ab面内で電
流が流れやすい。そこで高い臨界電流密度(Jc)を得
るためには、その組織を緻密化するとともに、ab面の
高配向化を図ることが必要となる。また、加工後の熱処
理において、特に多芯線材では酸化物超電導体とシース
金属との反応が起きて特性が劣化しやすいという問題が
あるため、この面での対策も必要となっている。
However, in the methods known so far, Bi
In the case of Bi-based oxide superconductors, the actual situation is that wires or tape-like bodies with a critical current density (Jc) that can be used in practical use cannot be obtained.6 Bi-based oxide superconductor anisotropy It is large and current flows easily in the a-b plane. Therefore, in order to obtain a high critical current density (Jc), it is necessary to make the structure dense and to achieve high orientation of the ab plane. In addition, during post-processing heat treatment, especially in multicore wires, there is a problem that reactions between the oxide superconductor and the sheath metal tend to occur, resulting in deterioration of characteristics, so countermeasures are needed in this regard.

この発明は、以上の通りの事情に鑑みてなされたもので
あり、従来の線材化方法の欠点を克服し、組織の緻密化
とともに高配向化を図り、高い臨界電流密度を有し、シ
ース金属との反応をも抑えた高特性のBii酸化物超電
導体線材を製造する方法を提供することを目的としてい
る。
This invention was made in view of the above-mentioned circumstances, and it overcomes the drawbacks of the conventional wire manufacturing method, achieves a dense structure and high orientation, has a high critical current density, and has a sheath metal. The object of the present invention is to provide a method for producing a high-performance Bii oxide superconductor wire that suppresses reactions with other materials.

(課題を解決するための手段) この発明は、上記の課題を解決するものとして、Bi系
酸化物超電導体の粉末を金属シースに詰めて冷間加工を
行い、875℃以下の温度で熱処理した後に冷間加工し
、次いで870℃以上の温度で熱処理し、さらに875
℃以下の温度で熱処理することを特徴とする酸化物超電
導線材の製造法を提供する。
(Means for Solving the Problems) This invention solves the above problems by packing Bi-based oxide superconductor powder into a metal sheath, cold working it, and heat-treating it at a temperature of 875°C or lower. After that, it is cold worked, then heat treated at a temperature of 870°C or higher, and then 875°C
Provided is a method for producing an oxide superconducting wire characterized by heat treatment at a temperature of 0.degree. C. or lower.

この発明の方法において対象となるBi系酸化物超電導
体は、B1−5r−Ca−Cu−0系をその組成の基本
とするものであり、特性を損うことのない成分を任意に
添加したものも含み得る。
The Bi-based oxide superconductor targeted in the method of this invention has a B1-5r-Ca-Cu-0 system as its basic composition, and any components that do not impair its properties may be added. It can also include things.

特にこれらの組成のうち、この発明においては、低Tc
相として知られている Bi  Sr  CaCu2の系の組成のものから高2 い電流密度特性(Jc)を得ることを可能とする点で注
目される。
In particular, among these compositions, in this invention, low Tc
It is noteworthy that it is possible to obtain a high current density characteristic (Jc) from a composition of the Bi Sr CaCu2 system, which is known as a phase.

また、目的とする線材としては、種々の形状、構造のも
のがこの発明に含まれる。たとえばテープ状体、多芯線
材も含まれる。これらの線材を製造するこの発明の方法
を、その工程順に説明すると次のように要約することが
できる。
Furthermore, the present invention includes wire rods of various shapes and structures. For example, tape-shaped bodies and multicore wires are also included. The method of the present invention for manufacturing these wires can be summarized as follows when explained in the order of its steps.

(1) 金属シースの充填と冷間加よ りi系酸化物超電導体の所定の組成からなる原料粉末を
、銀等の金属シースに充填し、初期冷間加工を行う。こ
の加工は、ロールプレス等の適宜な手段で行うことがで
きる。
(1) Filling a metal sheath and cold working A raw material powder of an i-based oxide superconductor having a predetermined composition is filled into a metal sheath made of silver or the like, and initial cold working is performed. This processing can be performed by appropriate means such as a roll press.

この工程においては、あらかじめ、Bi系の酸化物超電
導体粉末に、700〜875℃程度の温度において仮焼
もしくは前焼結としての熱処理を施し、次いで常温附近
まで急冷した粉末を用いることが有利でもある。この粉
末を使用することにより、臨界温度(Tc)が高い酸化
物超電導線材が得られる。たとえば低Tc相としての超
電導体でも約90に程度のレベルの線材が得られる。
In this step, it may be advantageous to use powder that has been heat-treated in advance as calcination or pre-sintering to a Bi-based oxide superconductor powder at a temperature of about 700 to 875°C, and then rapidly cooled to around room temperature. be. By using this powder, an oxide superconducting wire having a high critical temperature (Tc) can be obtained. For example, even with a superconductor having a low Tc phase, a wire with a level of about 90% can be obtained.

この時の常温前後程度までの急冷は、 300℃/時以上の速度で行うのが好ましい。At this time, the rapid cooling to around room temperature is Preferably, the reaction is carried out at a rate of 300° C./hour or higher.

これより遅いと臨界温度の低下が認められる場合ある。If it is slower than this, a decrease in the critical temperature may be observed.

この原因としては、酸素含有量の変化が影響しているも
のと推察される。
This is presumably caused by changes in oxygen content.

) −成熱処理と冷間加工 次いで、875℃以下の温度で熱処理し、冷間加工する
。この工程は、酸化物相を溶融させずに結晶成長させ、
圧延または線引き等の冷間加工によって長さ方向に強く
優先配向させることを目的としている。
) - Heat treatment and cold working Next, heat treatment is performed at a temperature of 875°C or less, and cold working is performed. This process allows crystal growth without melting the oxide phase,
The purpose is to achieve strong preferential orientation in the length direction by cold working such as rolling or wire drawing.

熱処理温度を875℃を超えるものとする場合には、強
い優先配向が形状されないうちに半溶融状態となり、ラ
ンダムな方向に結晶が成長し、超電導特性を低下させる
ことになる。
When the heat treatment temperature exceeds 875° C., the material becomes a semi-molten state before a strong preferential orientation is formed, and crystals grow in random directions, degrading superconducting properties.

また、この−成熱処理においては、徐々に、または段階
的に所定の処理温度まで昇温させるのが好ましい。この
ことは、金属シースと酸化物超電導体との反応を抑え、
多芯線材等において良好な特性を得る上で特に有効であ
る。急激に昇温させる場合は、相生成および均一化がな
されないうちに、しかも比較的低い温度で部分溶融が生
じ、金属シースとの反応が生じて特性が劣化しやすい。
In addition, in this heat-forming treatment, it is preferable to raise the temperature gradually or stepwise to a predetermined treatment temperature. This suppresses the reaction between the metal sheath and the oxide superconductor,
It is particularly effective in obtaining good characteristics in multicore wires and the like. If the temperature is raised rapidly, partial melting occurs at a relatively low temperature before phase formation and homogenization occur, and a reaction with the metal sheath occurs, which tends to deteriorate the properties.

所定温度までの、徐々に、または段階的に行う昇温は少
なくとも10時間以上かけて行うのが好ましい、これ以
下の場合には、金属シースとの反応抑制の作用は充分と
はならない。
It is preferable that the temperature be raised gradually or stepwise to a predetermined temperature over a period of at least 10 hours.If the temperature is lower than this, the effect of suppressing the reaction with the metal sheath will not be sufficient.

二次熱処理 優先方位をつける冷間加工を終了した後に、870’C
以上の温度で二次熱処理を行う。この熱処理は、酸化物
相を半溶融状態とし、優先方位に沿って結晶成長させる
ことを目的としている。
After completing the cold working to give the secondary heat treatment preferential direction, 870'C
Secondary heat treatment is performed at the above temperature. The purpose of this heat treatment is to bring the oxide phase into a semi-molten state and cause crystal growth along the preferred orientation.

この温度以下では溶融が生じないため、あるいは全く不
充分であるため、高密度化と高配向化のための結晶成長
は生じない。
Since melting does not occur below this temperature or is completely insufficient, crystal growth for high density and high orientation does not occur.

この二次熱処理においても、上記(2)と同様の理由か
ら、所定の温度までの昇温を徐々に、または段階的に1
0時間以上かけて行うのが好ましい。
In this secondary heat treatment as well, for the same reason as (2) above, the temperature is raised gradually or stepwise to a predetermined temperature.
It is preferable to carry out the process for 0 hours or more.

3) たとえば多芯線材の製造においては、 850℃×20時間 870℃X20時間 880℃×15時間 のように段階的に昇温させることができ、このプロセス
は、金属シースと超電導体との反応抑制にとって極めて
有利である。
3) For example, in the production of multicore wires, the temperature can be raised in stages such as 850°C x 20 hours, 870°C x 20 hours, and 880°C x 15 hours, and this process involves the reaction between the metal sheath and the superconductor. Extremely advantageous for suppression.

(4) 三次熱処理 最後に、875℃以下の温度において結晶の秩序度を高
めるための三次熱処理を行う。
(4) Tertiary heat treatment Finally, tertiary heat treatment is performed at a temperature of 875° C. or lower to increase the degree of crystal order.

これは、二次熱処理までの操作による結晶粒の歪みを是
正し、結晶の秩序度を回復することを目的としている。
The purpose of this is to correct the distortion of crystal grains caused by the operations up to the secondary heat treatment and restore the order of the crystals.

もちろん、以上のようなこの発明の方法においては、加
熱や冷間加工等の手段について特にそのための装置等に
限定はない。また工程の細部についても様々な態様が可
能である。以下、実施例を示し、さらにこの発明の製造
法について詳しく説明する。
Of course, in the method of the present invention as described above, there are no particular limitations on the means for heating, cold working, etc., and the equipment therefor. Furthermore, various aspects are possible regarding the details of the process. Examples will be shown below, and the manufacturing method of the present invention will be explained in detail.

実施例I Bi :Sr:Ca:Cu=2:2:1:2の組成とな
るように原料粉末を混合し、800℃X15時間の仮焼
および850℃×10時間の前熱処理を行い、100℃
/時の速度で常温まで冷却した後に銀シースに詰めてテ
ープ状に加工した。これに850℃×15時間の熱処理
を施した後に、冷間圧延してその厚さを半分に減少させ
、さらに880℃×15時間の半溶融熱処理および85
0℃×50時間の秩序回復三次熱処理を行った。
Example I Raw material powders were mixed to have a composition of Bi:Sr:Ca:Cu=2:2:1:2, and calcined at 800°C for 15 hours and preheated at 850°C for 10 hours. ℃
After cooling to room temperature at a rate of 1/2 hour, it was packed in a silver sheath and processed into a tape. This was heat-treated at 850°C for 15 hours, then cold-rolled to reduce its thickness by half, and then subjected to semi-melting heat treatment at 880°C for 15 hours and 850°C for 15 hours.
A tertiary order recovery heat treatment was performed at 0° C. for 50 hours.

得られた線材の臨界温度:TCは86にであり、4.2
におよび30Tの磁界での臨界電流密度:Jcは70.
0OOA /−であった。また77におよびOTでのJ
cは5.00OA/aaであった。
Critical temperature of the obtained wire: TC is 86, 4.2
Critical current density at a magnetic field of 30T: Jc is 70.
It was 0OOA/-. Also in 77 and J in OT
c was 5.00OA/aa.

実施例2 実施例1と同様の組成の粉末を800℃×15時間およ
び850℃×10時間の前熱処理を施した後に、500
0℃/時の速さで冷却し、実施例1と全く同様な工程で
テープ状体を作成した。この線材のTcは90にであり
、4.2におよび30Tの磁界でのJcは85,0OO
A/−であった。また、77におよびOTでのJcは3
5,0OOA/−であった。
Example 2 A powder having the same composition as in Example 1 was preheated at 800°C for 15 hours and at 850°C for 10 hours.
A tape-shaped body was prepared in exactly the same manner as in Example 1 by cooling at a rate of 0° C./hour. The Tc of this wire is 90, and the Jc in a magnetic field of 4.2 and 30T is 85,0OO
It was A/-. Also, Jc at 77 and OT is 3
It was 5,0OOA/-.

実施例3 実施例1と同様の組成で、同様の前熱処理を施した粉末
を銀シースに詰めて細線に加工後、銀パイプ中に束ねて
挿入し、再び冷間加工して330芯を含むBi系酸化物
の多芯テープを作成した。これに800℃X20時間お
よび830℃x20時間、さらに850℃X15時間の
熱処理を施した(試料A)、またこれとは別に、単に8
50℃×15時間の熱処理だけを施した後に圧延加工を
加え、さらに880℃×10時間および850℃×50
時間の熱処理を施して線材を作成した(試料B)、試料
AおよびBのTcはそれぞれ86におよび78にであり
、4.2におよび30TでのJcはそれぞれ26.0O
OA/−および10,0OOA/alYであった。
Example 3 Powder with the same composition as in Example 1 and subjected to the same preheat treatment was packed into a silver sheath and processed into a thin wire, then bundled and inserted into a silver pipe, and cold processed again to contain 330 cores. A multicore tape made of Bi-based oxide was created. This was heat treated at 800°C for 20 hours, at 830°C for 20 hours, and further at 850°C for 15 hours (sample A).
After heat treatment at 50°C for 15 hours, rolling was added, followed by further heat treatment at 880°C for 10 hours and at 850°C for 50 hours.
A wire rod was prepared by heat treatment for hours (sample B). The Tc of samples A and B was 86 and 78, respectively, and the Jc at 4.2 and 30T was 26.0O, respectively.
OA/- and 10,0OOA/alY.

実施例4 実施例3と同様の原料で、同様の工程により330芯の
多芯テープを加工後、800℃×20時間および830
℃×20時間、さらに850℃×15時間の熱処理を加
えた後、圧延加工をし、850℃X20時間および87
0’CX20時間、さらに880℃×10時間の熱処理
と、850℃X50時間の秩序回復熱処理を行った。T
cは89にであり、4.2におよび30TでのJcは3
7,0OOA/cdであった。また、77におよびOT
でのJcは31 、0OOA /−であった。
Example 4 After processing a 330-core multi-core tape using the same raw materials and the same process as in Example 3, it was heated at 800°C for 20 hours and at 830°C.
After heat treatment at 850°C for 20 hours and 850°C for 15 hours, rolling was performed at 850°C for 20 hours and at 87°C for 20 hours.
Heat treatment at 0'CX for 20 hours, further heat treatment at 880°C for 10 hours, and order recovery heat treatment at 850°C for 50 hours were performed. T
c is 89 and Jc at 4.2 and 30T is 3
It was 7,0OOA/cd. Also, 77 and OT
Jc was 31,0OOA/-.

(発明の効果) 以上詳しく説明した通り、この発明の製造法により、緻
密化、高配向化が図られ、高い臨界電流密度を有するB
i系酸化物超電導線材が得られる。
(Effects of the Invention) As explained in detail above, the manufacturing method of the present invention allows B to be densified and highly oriented, and has a high critical current density.
An i-based oxide superconducting wire is obtained.

また、この方法により金属シースと超電導体との反応が
得られるため、特製の劣化も抑止される。
Furthermore, since this method allows a reaction between the metal sheath and the superconductor to occur, deterioration of the special product is also suppressed.

Claims (4)

【特許請求の範囲】[Claims] (1)Bi系酸化物超電導体の粉末を金属シースに詰め
て冷間加工を行い、875℃以下の温度で熱処理した後
に冷間加工し、次いで870℃以上の温度で熱処理し、
さらに875℃以下の温度で熱処理することを特徴とす
る酸化物超電導線材の製造法。
(1) Bi-based oxide superconductor powder is packed in a metal sheath, cold worked, heat treated at a temperature of 875°C or lower, cold worked, then heat treated at a temperature of 870°C or higher,
A method for producing an oxide superconducting wire, further comprising heat-treating at a temperature of 875° C. or lower.
(2)原料粉末を700〜875℃の温度で熱処理した
後に、300℃/時以上の速度で常温附近にまで急冷し
た粉末を金属シースに詰める請求項(1)記載の酸化物
超電導線材の製造法。
(2) Manufacturing the oxide superconducting wire according to claim (1), wherein the raw material powder is heat treated at a temperature of 700 to 875°C, and then the powder is rapidly cooled to around room temperature at a rate of 300°C/hour or more and packed into a metal sheath. Law.
(3)請求項(1)または(2)記載の製造法において
、最初の875℃の温度以下での熱処理を、少なくとも
10時間以上かけて徐々に、または段階的に昇温させて
から行う酸化物超電導線材の製造法。
(3) In the manufacturing method according to claim (1) or (2), the oxidation is performed after the initial heat treatment at a temperature of 875°C or lower is gradually or stepwise raised over at least 10 hours. Manufacturing method of superconducting wire.
(4)請求項(1)、(2)または(3)記載の製造法
において、870℃の温度以上での熱処理を、少なくと
も10時間以上かけて徐々に、または段階的に昇温させ
てから行う酸化物超電導線材の製造法。
(4) In the manufacturing method according to claim (1), (2) or (3), the heat treatment at a temperature of 870°C or higher is performed after the temperature is gradually or stepwise raised over at least 10 hours. A manufacturing method for oxide superconducting wire.
JP2046676A 1990-02-26 1990-02-26 Manufacturing method of oxide superconducting wire Expired - Fee Related JP2567967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2046676A JP2567967B2 (en) 1990-02-26 1990-02-26 Manufacturing method of oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2046676A JP2567967B2 (en) 1990-02-26 1990-02-26 Manufacturing method of oxide superconducting wire

Publications (2)

Publication Number Publication Date
JPH03250509A true JPH03250509A (en) 1991-11-08
JP2567967B2 JP2567967B2 (en) 1996-12-25

Family

ID=12753978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2046676A Expired - Fee Related JP2567967B2 (en) 1990-02-26 1990-02-26 Manufacturing method of oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP2567967B2 (en)

Also Published As

Publication number Publication date
JP2567967B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
JPH0494019A (en) Manufacture of bismuth-based oxide superconductor
JPH03250509A (en) Manufacture of superconducting oxide wire
JPH04121912A (en) Manufacture of oxide high temperature superconductive conductor
JP3049314B1 (en) Manufacturing method of oxide superconducting composite wire
JPH07282659A (en) Manufacture of high temperature superconducting wire rod
JP3848449B2 (en) Manufacturing method of oxide superconducting wire
JP2569413B2 (en) Method for producing Bi-based oxide superconducting wire
JPH03265523A (en) Bismuth-containing oxide superconductor and production thereof
JP3053411B2 (en) Manufacturing method of oxide superconducting wire
JPH03122918A (en) Manufacture of ceramics superconductive conductor
JP3044732B2 (en) Method for producing bismuth-based oxide superconductor
JPH061616A (en) Production of bi based oxide superconductor
JP2667972B2 (en) Bi-based oxide composite superconducting wire
JPH06223650A (en) Manufacture of bi oxide superconducting wire
JPH0448518A (en) Manufacture of bismuth-based superconductor
JPH0462726A (en) Manufacture of oxide superconductive wire material
JPH06203669A (en) Manufacture of bi oxide superconductor
JPH11149835A (en) Bismuth 2212 superconducting wire and its manufacture
JPH04160062A (en) Production of superconducting material
JPH0378916A (en) Manufacture of oxide superconductive cable or tape
JPH0343915A (en) Manufacture of multiple-cored superconductor
JPH03261007A (en) Manufacture of oxide superconductive wire
JPH03129611A (en) Manufacture of oxide superconductor
JPH04338173A (en) Production of oxide superconducting wire
JPH03174327A (en) Superconductor and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees