JPH04160062A - Production of superconducting material - Google Patents

Production of superconducting material

Info

Publication number
JPH04160062A
JPH04160062A JP2284064A JP28406490A JPH04160062A JP H04160062 A JPH04160062 A JP H04160062A JP 2284064 A JP2284064 A JP 2284064A JP 28406490 A JP28406490 A JP 28406490A JP H04160062 A JPH04160062 A JP H04160062A
Authority
JP
Japan
Prior art keywords
phase
block
quenched
superconducting
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2284064A
Other languages
Japanese (ja)
Other versions
JP3160900B2 (en
Inventor
Eiji Natori
栄治 名取
Tatsuya Shimoda
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP28406490A priority Critical patent/JP3160900B2/en
Publication of JPH04160062A publication Critical patent/JPH04160062A/en
Application granted granted Critical
Publication of JP3160900B2 publication Critical patent/JP3160900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To increase critical current density and to improve mechanical strength and durability by heating a quenched block obtd. by quenching molten starting materials and by hot working the heated block in a liq.-crystal mixed phase state. CONSTITUTION:Starting materials such as Y2O3, BaCO3 and CuO are mixed, calcined in an oxygen atmosphere, pulverized, melted by heating at 1,350-1,450 deg.C for 3-10min and quenched to obtain a quenched block. This block is heated at 1,050-1,150 deg.C and hot worked in a liq.-crystal mixed phase state at 970-1,000 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は送電線、アンテナ、超伝導マグネット、超伝導
軸受け、エネルギー貯蔵(ロードレベリング)等に用い
るバルク的な超伝導材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to bulk superconducting materials used for power transmission lines, antennas, superconducting magnets, superconducting bearings, energy storage (load leveling), and the like.

[従来の技術] 臨界温度が液体窒素温度77Kを越え幅広い応用が期待
されるいわゆる高温超伝導体はHousuton大学の
C,W、Chuらが発見したLn−Ba−Cu−0系(
Lnは希土類元素を示す)、Arkansau大学のA
、M、Hermannらの発見したTl−Ba−Ca−
Cu−0系、金属材料技術研究所の前出の発見したB1
−3r−Ca−Cu−0系の3種類に大別できる。 (
これらは安定性・再現性共に高い物質であるため公認の
高温超伝導体であるがこの他にもLa−3r−Nb−0
系、Tl−3r−V−0系等が鹿児島大学、日立等から
報告されている。)これらを用いた超伝導材料の従来の
製造方法をバルク(デバイスに用いられる薄膜に対向し
た言葉)超伝導材料の代表例である線材で説明する。そ
の基本工程は粉末粉体冶金協会の昭和63年度春期大会
講演概要集p26〜27に述べられているように銀製チ
ューブ(シース)に予め作製した超伝導粉末を充填し、
線引き・ロール圧延等により成形加工した後銀チューブ
内部の粉末を焼結する工程より成っていた。
[Prior art] The so-called high-temperature superconductor whose critical temperature exceeds the liquid nitrogen temperature of 77 K and is expected to find wide application is the Ln-Ba-Cu-0 system (
Ln indicates a rare earth element), A of the University of Arkansas
, Tl-Ba-Ca- discovered by M. Hermann et al.
Cu-0 series, B1 discovered by the Institute of Metal Materials Technology
-3r-Ca-Cu-0 type. (
These are substances with high stability and reproducibility, so they are officially recognized high-temperature superconductors, but in addition to La-3r-Nb-0,
Kagoshima University, Hitachi, etc. have reported the Tl-3r-V-0 series and the like. ) The conventional manufacturing method of superconducting materials using these materials will be explained using wire rods, which are typical examples of bulk (a word opposed to thin films used in devices) superconducting materials. The basic process is to fill a silver tube (sheath) with pre-prepared superconducting powder, as described in the Powder Metallurgy Association's 1986 Spring Conference Abstracts, pages 26-27.
The process consisted of sintering the powder inside the silver tube after forming it by wire drawing, roll rolling, etc.

[発明が解決しようとする課題] しかしながら従来の製造方法では■高温超伝導体は結晶
構造に起因して異方性が強い物質であるにも関わらず結
晶方向の制御が成されていない。線引きや圧延を行なう
事により僅か配向するが粉体は互いに干渉して回転しず
らい状態にあるため配向度は低い。■粒界部等に非超伝
導体相を析出し易く超伝導体相が連続的に成長しない。
[Problems to be Solved by the Invention] However, in the conventional manufacturing method, (1) the crystal orientation of a high-temperature superconductor is not controlled even though it is a material with strong anisotropy due to its crystal structure. Although it is slightly oriented by drawing or rolling, the degree of orientation is low because the powders interfere with each other and are difficult to rotate. ■Non-superconductor phases tend to precipitate at grain boundaries, etc., and superconductor phases do not grow continuously.

■粉体を成形した後の焼結であるため空孔が多く密度が
低い。
■Since the powder is sintered after being molded, there are many pores and the density is low.

等の原因によりコンスタントに得られる臨界電流密度は
103A/cm2(77K)台前半と低いものになって
いた。また空孔が多いと機械強度が弱くなるだけでなく
表面積が多くなるため劣化し易く耐久性(耐環境性)も
悪くしていた。
Due to these reasons, the constantly obtainable critical current density was as low as 103 A/cm2 (77 K). Furthermore, when there are many pores, not only does the mechanical strength become weak, but also the surface area becomes large, which makes it easy to deteriorate and deteriorates the durability (environmental resistance).

本発明はこの様な問題を解決するものであり、臨界電流
密度が高く、機械的強度、耐久性(耐環境?りに優れた
超伝導材料を得んとするものである。
The present invention is intended to solve these problems, and aims to provide a superconducting material that has a high critical current density, excellent mechanical strength, and durability (environmental resistance).

[課題を解決するための手段] 上記の問題を解決するため本発明の超伝導材料の製造方
法はバルク的な超伝導材料の製造方法に於いて基本工程
が原料を溶融する工程、溶融物を急冷しクエンチ塩を得
る工程、クエンチ塩を加熱した後液相と結晶相との混相
状態で熱間加工する工程よりなることを特徴とする。尚
熱間加工後結晶成長をより促進し且つ歪を除去するため
アニール処理を行なう場合もある。
[Means for Solving the Problems] In order to solve the above problems, the method for manufacturing a superconducting material of the present invention is a method for manufacturing a bulk superconducting material in which the basic process is a step of melting raw materials and a step of melting the melt. It is characterized by comprising a step of rapidly cooling to obtain a quench salt, and a step of heating the quench salt and then hot working it in a mixed phase state of a liquid phase and a crystalline phase. After hot working, an annealing treatment may be performed to further promote crystal growth and remove strain.

[実施例コ 以下実施例に従い本発明の詳細な説明する。[Example code] The present invention will be described in detail below with reference to Examples.

実施例−1 先ず原料Y2O3、BaCO3、CuO粉末を混合分散
した後900℃酸素雰囲気中で15時間仮焼する。次に
仮焼物を粉砕攪拌した後1350°C〜1450°Cに
加熱し溶融する。溶融時間が長いとY2O3は凝集し不
均一な分散状態となるため溶融は3〜10分間と比較的
短い時間で行なう事が好ましい。次にこの溶融物を冷却
されているシース内に鋳込む。この時溶融物は急冷され
るためアモルファス相の中に微細なY2O3粒子が分散
した状態のクエンチ塩となる。
Example-1 First, raw materials Y2O3, BaCO3, and CuO powder were mixed and dispersed, and then calcined for 15 hours in an oxygen atmosphere at 900°C. Next, the calcined product is pulverized and stirred, and then heated to 1350°C to 1450°C to melt it. If the melting time is too long, Y2O3 will aggregate and become non-uniformly dispersed, so melting is preferably carried out for a relatively short time of 3 to 10 minutes. This melt is then cast into a sheath that is cooled. Since the melt is rapidly cooled at this time, it becomes a quench salt in which fine Y2O3 particles are dispersed in an amorphous phase.

次に該クエンチ塩をシースと共に1050℃〜1150
℃に於て圧延する。圧延により圧延初期では211相成
長の核となるY 203、更にYBa2Cu307−x
(超伝導相:以下123相とする)成長の核となる21
−1相をより均一に分散させる。
Next, the quench salt was heated to 1050°C to 1150°C along with the sheath.
Roll at ℃. During rolling, Y203, which becomes the nucleus of 211 phase growth in the early stage of rolling, and further YBa2Cu307-x
(Superconducting phase: hereinafter referred to as 123 phase) 21 which is the core of growth
-1 phase is dispersed more uniformly.

周知のように123相は211相と液相(3Bacu0
2+2cu○)との包晶反応により生々するため211
相と液相の分散が不均一の場合非超伝導体(211相等
)相が多くなり超伝導体相の繋りを切断する。っまり1
23相を連続的に成長させるには211相を均一に分散
させる必要があるが所定の条件下に於ける圧延はミキシ
ング効果により211相の分散を均一にする効果がある
As is well known, the 123 phase is the 211 phase and the liquid phase (3Bacu0
211 to become vivid due to peritectic reaction with 2+2cu○)
If the phase and liquid phase are not uniformly dispersed, non-superconductor (211 phase, etc.) phases will increase and the connection between the superconductor phases will be severed. Totally 1
In order to continuously grow the 23 phase, it is necessary to uniformly disperse the 211 phase, and rolling under predetermined conditions has the effect of uniformly dispersing the 211 phase due to the mixing effect.

次に圧延を行いながら970℃〜1000 ’C即ち1
23相(主相)、211相、液相の混相状態まで冷却、
その麺圧延を止め更に室温まで徐冷する。この圧延によ
り結晶は加圧方向にパラレルにC軸を配向させられる。
Next, while rolling,
Cooled to a mixed phase state of 23 phases (main phase), 211 phases, and liquid phase,
The rolling of the noodles is stopped and the noodles are slowly cooled to room temperature. By this rolling, the C-axis of the crystals is oriented parallel to the pressing direction.

この様にして得られた超伝導材料の臨界電流密度をシー
スを剥離した後測定した。測定温度は77にである。結
果を第1表の比較例と共に第2表に示す。
The critical current density of the superconducting material thus obtained was measured after the sheath was peeled off. The measured temperature is 77°C. The results are shown in Table 2 together with the comparative examples in Table 1.

第1表 第2表 表に示されているように本発明の製造方法より成る超伝
導材料は顕著に臨界電流密度が向上しているのが判る。
As shown in Tables 1 and 2, it can be seen that the superconducting material produced by the manufacturing method of the present invention has a significantly improved critical current density.

実施例−2 実施例−1と同様に20mmx20mm高さ20mm厚
さ2mmの折型シースに溶融物を鋳込みクエンチ塊を得
る。その後折型シースに蓋をし密閉する。ここで密閉す
るのは熱間加工時の液相飛散を防ぐためである。次に熱
間ブレス機により1100°C〜1150°C即ち21
1相と液相との混相状態まで加熱し20%圧縮、更に1
000℃〜970℃即ち123相、211相と液相との
混相状態に冷却し60%圧縮加工を行なう。次にシース
剥離後900°C酸素雰囲気中に於いて5時間アニール
処理を行い超伝導材料を得た。
Example 2 As in Example 1, a quenched mass was obtained by casting the melt into a folded sheath of 20 mm x 20 mm, height 20 mm, and thickness 2 mm. Then, cover the folded sheath and seal it. The purpose of sealing here is to prevent liquid phase from scattering during hot working. Next, use a hot press machine to
It is heated to a mixed phase state of 1 phase and liquid phase, compressed by 20%, and further 1
It is cooled to a mixed phase state of 000° C. to 970° C., that is, a 123 phase, a 211 phase, and a liquid phase, and subjected to 60% compression processing. Next, after peeling off the sheath, annealing treatment was performed at 900° C. in an oxygen atmosphere for 5 hours to obtain a superconducting material.

第3表 得られた試料の臨界電流密度を測定した。測定温度は7
7にである。結果を第3表に示す0表より実施例−1同
様に顕著に臨界電流相が向上しているのが判る。
Table 3 The critical current density of the obtained sample was measured. The measured temperature is 7
It's on 7th. From Table 0 showing the results in Table 3, it can be seen that the critical current phase is significantly improved as in Example-1.

これら実施例材料と比較例材料をX線回折・光学顕微鏡
・SEM観察等により比較したところ本発明よりなる超
伝導材料は比較例より結晶配向度が高く、123相が連
続的に成長し且つ空孔は少ないものであった。また溶融
を行なう比較例すは比較例aより空孔の数は顕著に少な
いが細長い髭(ボイド)が見られた。この髭の幅は比較
例aとほぼ同じであるが長さは数十倍〜数百倍長いため
場合によっては致命的になる事が考えられる。熱間加工
は髭の発生を抑制する効果もあると言える。
Comparison of these Example materials and Comparative Example materials by X-ray diffraction, optical microscopy, SEM observation, etc. showed that the superconducting material of the present invention had a higher degree of crystal orientation than the Comparative Example, with 123 phases growing continuously and voids. There were few holes. In addition, although the number of pores in the comparative example in which melting was carried out was significantly smaller than that in comparative example a, elongated voids were observed. The width of this whisker is almost the same as that of Comparative Example A, but the length is several tens to hundreds of times longer, which may be fatal in some cases. It can be said that hot processing also has the effect of suppressing the formation of whiskers.

尚本実施例ではYBa2Cu3O7−x材料で説明した
が結晶構造に起因した異方性を持つ材料で結晶相と液相
との混相状態を得られる材料で有れば何等差し支えない
In this embodiment, the YBa2Cu3O7-x material was explained, but any material may be used as long as it has anisotropy due to its crystal structure and can obtain a mixed phase state of a crystalline phase and a liquid phase.

[発明の効果] 以上述べたように本発明によれば異方性の強い物質であ
っても結晶方向を揃え且つ超伝導相を連続的に成長出来
、更に空孔の発生を抑制し高密度化を図れるため高い臨
界電流密度を持つ超伝導材料を得られる。また空孔発生
の抑制は機械的強度を高めるだけでなく表面積の減少に
つながるため劣化を少なくし耐久性(耐環境性)も向上
させることが出来る。
[Effects of the Invention] As described above, according to the present invention, even in materials with strong anisotropy, it is possible to align the crystal orientation and continuously grow a superconducting phase, and furthermore, it is possible to suppress the generation of vacancies and achieve high density. As a result, superconducting materials with high critical current densities can be obtained. In addition, suppressing the generation of pores not only increases mechanical strength but also leads to a decrease in surface area, which reduces deterioration and improves durability (environmental resistance).

以上 出願人 セイコーエプソン株式会社 代理人弁理士 鈴木喜三部 他1名that's all Applicant: Seiko Epson Corporation Representative Patent Attorney Kizobe Suzuki and 1 other person

Claims (1)

【特許請求の範囲】[Claims]  バルク的な超伝導材料の製造方法に於いて基本工程が
原料を溶融する工程、溶融物を急冷しクエンチ塊を得る
工程、クエンチ塊を加熱した後液相と結晶相との混相状
態で熱間加工する工程よりなることを特徴とする超伝導
材料の製造方法。
The basic steps in the manufacturing method of bulk superconducting materials are: melting the raw materials, rapidly cooling the melt to obtain a quenched lump, heating the quenched lump and then heating it in a mixed phase state of liquid phase and crystalline phase. A method for producing a superconducting material, comprising a processing step.
JP28406490A 1990-10-22 1990-10-22 Manufacturing method of superconducting material Expired - Fee Related JP3160900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28406490A JP3160900B2 (en) 1990-10-22 1990-10-22 Manufacturing method of superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28406490A JP3160900B2 (en) 1990-10-22 1990-10-22 Manufacturing method of superconducting material

Publications (2)

Publication Number Publication Date
JPH04160062A true JPH04160062A (en) 1992-06-03
JP3160900B2 JP3160900B2 (en) 2001-04-25

Family

ID=17673827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28406490A Expired - Fee Related JP3160900B2 (en) 1990-10-22 1990-10-22 Manufacturing method of superconducting material

Country Status (1)

Country Link
JP (1) JP3160900B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279126A (en) * 1993-03-25 1994-10-04 Natl Inst For Res In Inorg Mater Formation of oriented thick film of bismuth-containing superconducting ceramic
US6740259B1 (en) * 1999-04-27 2004-05-25 Qinetiq Limited Method of manufacture of ceramic materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279126A (en) * 1993-03-25 1994-10-04 Natl Inst For Res In Inorg Mater Formation of oriented thick film of bismuth-containing superconducting ceramic
US6740259B1 (en) * 1999-04-27 2004-05-25 Qinetiq Limited Method of manufacture of ceramic materials

Also Published As

Publication number Publication date
JP3160900B2 (en) 2001-04-25

Similar Documents

Publication Publication Date Title
US5306700A (en) Dense melt-based ceramic superconductors
JPH0440289B2 (en)
JP2839415B2 (en) Method for producing rare earth superconducting composition
EP0493007B1 (en) Rare earth oxide superconducting material and process for producing the same
JPH1121126A (en) Production of oxide superconducting bulk
JPH04160062A (en) Production of superconducting material
US5981442A (en) Neodymium-barium-copper-oxide bulk superconductor and process for producing the same
JPH04164864A (en) Production of superconducting material
US5736489A (en) Method of producing melt-processed polycrystalline YBa2 Cu3 O.sub.
JP2914799B2 (en) Manufacturing method of oxide superconducting bulk material
JP4019132B2 (en) RE-Ba-Cu-O-based oxide superconductor and method for producing the same
JPH04164865A (en) Production of superconducting material
JPH04182345A (en) Production of oxide superconducting material
JP3159764B2 (en) Manufacturing method of rare earth superconductor
JP2545443B2 (en) Method for manufacturing oxide superconductor
JP2971504B2 (en) Method for producing Bi-based oxide superconductor
JPH07187671A (en) Oxide superconductor and its production
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
Sastry et al. Fabrication of (Hg, Re)-Ba-Ca-Cu-O (1223) single phase fibers for current leads
JPH0448518A (en) Manufacture of bismuth-based superconductor
Tang et al. CRITICAL CURRENTS AND MICROSTRUCTURE OF YBCO SUPERCONDUCTORS PREPARED BY LIQUID PHASE PROCESS
JPH04164856A (en) Production of superconducting material
JPH03265523A (en) Bismuth-containing oxide superconductor and production thereof
JPH06183730A (en) Production of oxide superconductive bulky material
JPH03112810A (en) Production of oxide superconducting film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080223

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees