JPH03129611A - Manufacture of oxide superconductor - Google Patents
Manufacture of oxide superconductorInfo
- Publication number
- JPH03129611A JPH03129611A JP2192474A JP19247490A JPH03129611A JP H03129611 A JPH03129611 A JP H03129611A JP 2192474 A JP2192474 A JP 2192474A JP 19247490 A JP19247490 A JP 19247490A JP H03129611 A JPH03129611 A JP H03129611A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- heat treatment
- powder layer
- specified
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 6
- 239000002887 superconductor Substances 0.000 title claims description 20
- 239000000843 powder Substances 0.000 claims abstract description 31
- 238000010438 heat treatment Methods 0.000 claims abstract description 30
- 239000000463 material Substances 0.000 claims abstract description 16
- 238000001816 cooling Methods 0.000 claims abstract description 9
- 239000000155 melt Substances 0.000 claims abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 10
- 239000004020 conductor Substances 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 5
- 238000005245 sintering Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 19
- 239000013078 crystal Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000010949 copper Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 229910017944 Ag—Cu Inorganic materials 0.000 description 1
- 229910002708 Au–Cu Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- -1 Ni-Cr-Co Inorganic materials 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 229910018499 Ni—F Inorganic materials 0.000 description 1
- 229910021069 Pd—Co Inorganic materials 0.000 description 1
- 241001474791 Proboscis Species 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野]
本発明は、マグネットワイヤ、電カケープル、電力貯蔵
リンク、磁気シールド、マイスナー効果烏
4用機器等に用いられる酸化物超電導導体の製造方法に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing an oxide superconducting conductor used in magnet wires, power cables, power storage links, magnetic shields, Meissner effect devices, and the like.
最近周知のようにY−Ba−Cu−0系、B15r−C
a−CL!−〇系、Tl−Ba−CaCu−〇系等の酸
化物超電導体が見出された。この酸化Th超電導体は、
液体窒素等の安価な冷却媒体で超電導となる臨界温度(
Tc)の高い物質である為各分野で実用化研究が進めら
れている。As is known recently, Y-Ba-Cu-0 system, B15r-C
a-CL! -Oxide superconductors such as ○ series and Tl-Ba-CaCu- ○ series were discovered. This oxidized Th superconductor is
The critical temperature at which superconductivity occurs with inexpensive cooling media such as liquid nitrogen (
As it is a substance with high Tc), research on its practical application is progressing in various fields.
上記酸化物超電導体は層状ペロブスカイト型結晶構造の
為結晶異方性が強く、電流はCu−○原子を含むab面
に流れ易く、従って通電方向に対し垂直な方向にC軸を
配向させるのが高い臨界電流密度(J、)を得るのに必
要な要件であり、又結晶粒界は通電障害となる為、通電
方向に対して結晶粒界を低減させることが肝要である。The above-mentioned oxide superconductor has a layered perovskite crystal structure, so it has strong crystal anisotropy, and current flows easily in the a-b plane containing Cu-○ atoms. This is a necessary requirement to obtain a high critical current density (J,), and since grain boundaries become a hindrance to current flow, it is important to reduce grain boundaries in the direction of current flow.
ところで、これらの酸化物超電導体は晩い為に金属のよ
うな加工を施すことができず、これを所定形状の酸化物
超電導導体となすには、例えば酸化物超電導体となし得
る原料物質をAg製パイプ等に充填して所定形状に伸延
加工し、しかるのちこれに所定の加熱処理を施して酸化
物超電導体に固相反応せしめる方法が適用されている。By the way, these oxide superconductors cannot be processed like metals because they are slow, and in order to make them into oxide superconductors in a predetermined shape, it is necessary to use raw materials that can be made into oxide superconductors, for example. A method is used in which Ag pipes are filled and stretched into a predetermined shape, and then subjected to a predetermined heat treatment to cause a solid phase reaction to occur in an oxide superconductor.
しかしながらこのようにして得られた酸化物超電導体は
、結晶配向がランダムな多結晶組織からなる上、結晶粒
界が弱結合状態の為に結晶粒界での通電抵抗が大きく、
従って高いJ、値が得られないという問題があった。However, the oxide superconductor obtained in this way has a polycrystalline structure with random crystal orientation, and because the grain boundaries are in a weakly bonded state, the current carrying resistance at the grain boundaries is large.
Therefore, there was a problem that a high J value could not be obtained.
又PVD法やCVD法等の気相成長法により配向性の高
い酸化物超電導体を基体上に形成する方法が提案された
が、基体に結晶構造が酸化物超電導体に類似した単結晶
体を用い、この上にエピタキシャル成長させて製造する
為に条件を厳密に制御する必要があり、又成膜後長時間
の加熱処理を要するなど生産性に劣るものであった。In addition, a method has been proposed in which a highly oriented oxide superconductor is formed on a substrate using a vapor phase growth method such as PVD or CVD. It is necessary to strictly control the conditions for manufacturing by epitaxial growth on the film, and the productivity is poor, such as requiring a long heat treatment after film formation.
〔課題を解決するための手段及び作用]本発明はかかる
状況に鑑み鋭意研究を行った結果なされたものでその目
的とするところは、超電導特性に優れた酸化物超電導導
体を効率よく製造する方法を提供することにある。[Means and effects for solving the problem] The present invention was made as a result of intensive research in view of the above situation, and its purpose is to provide a method for efficiently manufacturing an oxide superconducting conductor with excellent superconducting properties. Our goal is to provide the following.
即ち本発明は、酸化物超電導体の原料粉末を低酸素分圧
の雰囲気中で仮焼成したのち、これを粉砕分級して調整
した仮焼成粉体を金属管に充填し、次いでこれを伸延加
工して内部の仮焼成粉体層が0.001−1.0nn厚
さの伸延加工材となし、しかるのち、この伸延加工材に
、上記仮焼成粉体層が部分的に溶融する温度以上の温度
T、にて加熱したのち0.01〜100℃/minの速
度で冷却する第1熱処理工程、及び酸素含有雰囲気中に
て上記温度T1より20〜150℃低い温度T2にて加
熱する第2熱処理工程を順次施すことを特徴とするもの
である。That is, in the present invention, the raw material powder of an oxide superconductor is pre-sintered in an atmosphere with a low oxygen partial pressure, and then the pre-sintered powder prepared by pulverization and classification is filled into a metal tube, and then this is stretched. The inner pre-sintered powder layer is made into an elongated material with a thickness of 0.001-1.0 nm, and then the elongated material is heated to a temperature higher than that at which the pre-sintered powder layer partially melts. A first heat treatment step of heating at a temperature T and then cooling at a rate of 0.01 to 100 °C/min, and a second heat treatment step of heating at a temperature T2 that is 20 to 150 °C lower than the temperature T1 in an oxygen-containing atmosphere. It is characterized by sequentially performing heat treatment steps.
本発明方法において用いられる仮焼成粉体とは、例えば
アルカリ上金属、希土類元素及び銅の酸化物、炭酸塩、
硫酸塩、硝酸塩、硫化物、ハロゲン化物、アルコキシド
類又はそれぞれの元素単体や合金などの酸化物超電導体
の原料わ)末を所定量混合し、10”’〜200Tor
rの酸素分圧の雰囲気中で500〜1000℃に加熱し
て得られる物質を粉砕分級したものであって、これを酸
素含有雰囲気中で加熱処理することにより酸化物超電導
体に反応するものである。The calcined powder used in the method of the present invention includes, for example, oxides, carbonates, etc. of alkali metals, rare earth elements, and copper.
A predetermined amount of raw materials for oxide superconductors such as sulfates, nitrates, sulfides, halides, alkoxides, or their respective elements or alloys are mixed and heated to 10'' to 200 Torr.
It is a pulverized and classified substance obtained by heating to 500 to 1000°C in an atmosphere with an oxygen partial pressure of be.
本発明方法において、上記仮焼成粉体を充填する金属管
及び上記金属管内に配置する芯材としては、酸化物超電
導体と非反応性で且つ導電性並びに熱伝導性に優れた金
属製のものが用いられ、例えばAg、Ag−Pd、Ag
−AuSAg−Cu。In the method of the present invention, the metal tube filled with the pre-sintered powder and the core material placed in the metal tube are made of metal that is non-reactive with the oxide superconductor and has excellent electrical and thermal conductivity. For example, Ag, Ag-Pd, Ag
-AuSAg-Cu.
Ag−Mg、Ag−Pt、、Ag−1rSAuSAu−
Ni、Au−Cu、Au−Ag−Cu、Au−Pd−A
g5Au−1r、PC,Pt−1r。Ag-Mg, Ag-Pt, Ag-1rSAuSAu-
Ni, Au-Cu, Au-Ag-Cu, Au-Pd-A
g5Au-1r, PC, Pt-1r.
PC−PdSPd、Pd−Ni、、Pd−Co、、Ni
−Cr、、Ni−Cr−Co、Ni−Fe、、Ni−F
e−Co、Fe−Cr5Fe−Ni−Cr(SUS)等
の材料製のものが好適である。PC-PdSPd, Pd-Ni, , Pd-Co, , Ni
-Cr, Ni-Cr-Co, Ni-Fe, Ni-F
Those made of materials such as e-Co and Fe-Cr5Fe-Ni-Cr (SUS) are suitable.
而して仮焼成粉体を充填した金属管を伸延加工する方法
には、圧延、押出、プレス、溝ロール圧延、スェージン
グ、引抜き等の任意の伸延加工方法が適用される。As a method for stretching the metal tube filled with the calcined powder, any stretching method such as rolling, extrusion, pressing, groove roll rolling, swaging, and drawing can be applied.
本発明方法において、上記の伸延加工材の内層の仮焼成
粉体層は、前記の第1の熱処理工程によってC軸配向し
て結晶化するものであって、その加熱温度T1は、例え
ばBi系酸化吻超雷導体の場合で、凡そ880〜920
℃又はこれ以上の温度で、上記仮焼成粉体層の少なくと
も一部が融解する温度である。In the method of the present invention, the pre-sintered powder layer as the inner layer of the drawn material is crystallized with C-axis orientation in the first heat treatment step, and the heating temperature T1 is, for example, Bi-based. Approximately 880 to 920 in the case of oxidized proboscis superlight conductor
℃ or higher, which is a temperature at which at least a portion of the above-mentioned pre-fired powder layer melts.
而して加熱温度T、は組成等の条件毎に熱分析を行って
融解温度を実測して決めることが望ましい
本発明方法において、温度T1からの冷却速度は100
℃/minを超えると結晶化が損なわれ、又0.01°
(:/win未満の低速では、相分離と結晶粒の粗大化
が起きるので0.01〜l OO’C/minとする必
要がある。In the method of the present invention, it is preferable to determine the heating temperature T by conducting thermal analysis and actually measuring the melting temperature for each condition such as composition, and the cooling rate from temperature T1 is 100%.
If the temperature exceeds 0.01°C/min, crystallization will be impaired;
(If the speed is lower than :/win, phase separation and coarsening of crystal grains will occur, so it is necessary to set the speed to 0.01 to 1 OO'C/min.
本発明方法において、上記の結晶化した酸化物超電導体
層に第2の加熱処理工程を施すことにより、結晶構造の
調整並びに酸素の補給がなされ、j6等の特性が更に向
上する。In the method of the present invention, by subjecting the crystallized oxide superconductor layer to the second heat treatment step, the crystal structure is adjusted and oxygen is supplied, and the properties such as j6 are further improved.
上記の第2の熱処理工程での加熱温度T2を第1の熱処
理工程の加熱温度T、より20〜]50℃低い温度に限
定した理由は、温度T2が温度Tより20℃未満低い温
度では、結晶構造の調整がなされず、又150 ’Cを
超える低い温度では酸素の補給が十分になされない為で
ある。上記温度T2は温度T、より20〜100℃低い
温度が特に好ましいものである。The reason why the heating temperature T2 in the second heat treatment step is limited to a temperature 20 to 50 degrees Celsius lower than the heating temperature T in the first heat treatment step is that when the temperature T2 is less than 20 degrees Celsius lower than the temperature T, This is because the crystal structure is not adjusted and oxygen is not sufficiently supplied at low temperatures exceeding 150'C. It is particularly preferable that the temperature T2 is 20 to 100° C. lower than the temperature T.
本発明方法において、伸延加工材の仮焼成粉体層の厚さ
を0.001〜1.0−に限定した理由は、0.001
m1未満では電流容量を大きくとれないことの他、仮焼
成粉体層の密度分布の僅かな変動によって伸延加工中に
断線を生したり或いは性能が劣化したりする為であり、
又1.OMを超えると、第1の加熱処理工程において結
晶のC軸配向並びに長平方向への結晶成長が十分になさ
れなくなる為である。In the method of the present invention, the reason why the thickness of the pre-sintered powder layer of the drawn material is limited to 0.001 to 1.0-1.
If it is less than m1, it is not possible to obtain a large current capacity, and slight fluctuations in the density distribution of the pre-fired powder layer may cause wire breakage or performance deterioration during stretching.
Also 1. This is because if the OM is exceeded, the C-axis orientation of the crystal and the crystal growth in the elongated direction will not be sufficiently achieved in the first heat treatment step.
本発明方法において、金属管に充填する原料物質を低酸
素雰囲気中にて仮焼成し粉砕分級した仮焼成粉体と限定
した理由は、かかる方法で調製した仮焼成粉体が酸素欠
損状態となって活性化し、その結果超電導体への反応が
迅速になされること、又仮焼成粉体は融点が低下して金
属管にAg等の融点の比較的低い金属を適用できること
、又Bi系酸化物超電導体にあっては、酸素欠損状態に
おいてT、の高い相が単一に生成すること等の利点が得
られる為である。In the method of the present invention, the raw material to be filled into the metal tube is limited to pre-sintered powder that has been pre-sintered in a low-oxygen atmosphere, pulverized and classified, because the pre-sintered powder prepared by this method is in an oxygen-deficient state. As a result, the melting point of the calcined powder decreases, allowing the application of metals with relatively low melting points such as Ag to metal tubes. This is because superconductors have advantages such as the formation of a single phase with high T in an oxygen-deficient state.
本発明方法においては、被覆用金属管の材料を選択する
ことによって用途を種々広げることが可能であって、例
えば材料に高強度材を用いれば、強度を要する用途に、
又Ag等の熱的、電気的伝導性の高い材料を用いた場合
はクエンチ現象に対する安定化材としても作用し得るも
のであり、更に金属管は外部のH2OやC02等の有害
ガスや外部Mi場から酸化物超電導体層を保護する作用
も有するものである。In the method of the present invention, it is possible to widen the range of applications by selecting the material of the metal tube for coating.
In addition, when a material with high thermal and electrical conductivity such as Ag is used, it can also act as a stabilizing material against the quench phenomenon. It also has the effect of protecting the oxide superconductor layer from the field.
又靭性に富む材料を薄く加工して用いれば可撓性が得ら
れるので、コイル、マグネット等の曲げ加工を要する分
野に適用することができる。Furthermore, flexibility can be obtained by processing a material with high toughness into a thin layer, so it can be applied to fields that require bending, such as coils and magnets.
又酸化物超電導体は熱処理によって脆化するので、予め
コイル、マグネット等に底形しておいてから熱処理する
ようにする方法も有用である。Furthermore, since oxide superconductors become brittle when subjected to heat treatment, it is also useful to shape the bottom of the coil, magnet, etc. in advance and then heat treat it.
以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.
BjzO*、Sr○、Cab、CuO@B i :Sr
:Ca:Cuが原子比で2:2:1:2になるように配
合して混合し、この〆昆合粉末を酸素分圧1.2 X
10−’Torrの雰囲気にて850℃3H仮焼成し、
この仮焼成体を粉砕分級して平均粒径8−のBizSr
zCaCux○、の仮焼成粉を作製した。BjzO*, Sr○, Cab, CuO@B i :Sr
:Ca:Cu is mixed in an atomic ratio of 2:2:1:2, and the final powder is heated to an oxygen partial pressure of 1.2X.
Temporarily baked at 850°C for 3 hours in an atmosphere of 10-' Torr,
This pre-fired body is pulverized and classified to produce BizSr with an average particle size of 8-
A calcined powder of zCaCux○ was prepared.
而して上記仮焼成粉をAg製管に充填し、これを圧延及
び伸線加工により種々厚さの平角状の伸延加工材となし
、次いでこれを大気中で上記仮焼成粉体の液相線温度近
傍の温度T、にて30分間保持し、次いで上記温度から
所定速度にて温度T。The above pre-sintered powder is filled into an Ag tube, which is rolled and wire-drawn to form rectangular elongated materials of various thicknesses, which are then exposed to the liquid phase of the above-mentioned pre-sintered powder in the atmosphere. The temperature T is maintained near the linear temperature for 30 minutes, and then the temperature T is increased from the above temperature at a predetermined speed.
まで冷却し、上記温度T2にて30時間保持したのちこ
れを室温に冷却して酸化物超電導導体となした。上記に
おいて、温度T1、T2及びT1からT2への冷却速度
は種々に変化させた。After cooling to temperature T2 and maintaining it for 30 hours, it was cooled to room temperature to form an oxide superconducting conductor. In the above, the temperatures T1 and T2 and the cooling rate from T1 to T2 were varied.
斯くの如くして得られた各々の酸化物超電導導体につい
て、Tc及びJcを測定したeJcは液体窒素(77K
)中にて4端子法により、磁場をかけた場合とかけない
場合について測定した。結果は酸化物超電導体層の厚さ
、
つまり伸延加工材
の内層厚さを併記して第1表に示した。For each oxide superconductor obtained in this way, Tc and Jc were measured. eJc was measured using liquid nitrogen (77K
), measurements were made using the four-probe method with and without a magnetic field applied. The results are shown in Table 1 along with the thickness of the oxide superconductor layer, that is, the inner layer thickness of the drawn material.
第1表より明らかなように本発明方法品(1〜7)は、
Tc、Jcがともに高い値を示した。特に磁場をかけた
状態においてもJCは高い値が維持され耐磁場特性に優
れたものであった。As is clear from Table 1, the method products (1 to 7) of the present invention are:
Both Tc and Jc showed high values. In particular, even when a magnetic field was applied, the JC maintained a high value and had excellent magnetic field resistance characteristics.
これに対し、比較方法品のNo8.9は伸延加工材の仮
焼成粉体層の厚さが本発明の限定値外にあるもので、前
者は厚すぎた為にC軸配向並びに通電方向への結晶成長
が十分になされずにJ、が低い値のものとなった。又後
者は薄くまで強加工した為に仮焼成粉体層の密度が不均
一となって伸線中断線を生した。又No1Oは第1加熱
処理工程の加熱温度T+が低すぎて仮焼成粉体が溶融し
なかった為、又No11.12は第2加熱処理工程の加
熱温度T!が本発明の限定値外であった為、又N。On the other hand, in the comparison method product No. 8.9, the thickness of the pre-sintered powder layer of the elongated material was outside the limit value of the present invention, and the former was too thick, so the C-axis orientation and current direction were changed. The crystal growth of J was not sufficiently achieved, resulting in a low value of J. In addition, since the latter was subjected to strong processing until it became thin, the density of the pre-fired powder layer became non-uniform, resulting in wire drawing interruption lines. Also, in No. 10, the heating temperature T+ in the first heat treatment step was too low and the pre-fired powder did not melt, and in No. 11.12, the heating temperature T+ in the second heat treatment step was too low. Since it was outside the limit value of the present invention, it was also N.
13は加熱温度T1からTtへの冷却速度が速すぎた為
いずれも結晶のC軸配向又は/及び通電方向への結晶成
長が十分になされずその結果T9、J、が低い値のもの
となった。In No. 13, the cooling rate from the heating temperature T1 to Tt was too fast, so the C-axis orientation of the crystal and/or the crystal growth in the direction of current flow were not sufficiently achieved in all cases, resulting in low values of T9 and J. Ta.
以上述べたように本発明方法によれば、jo等の超電導
特性に優れた酸化物超電導導体を効率よく製造すること
ができるので、
工業上顕著な効沫
を奏する。As described above, according to the method of the present invention, it is possible to efficiently produce oxide superconducting conductors having excellent superconducting properties such as jo, and therefore it has a significant industrial effect.
Claims (1)
仮焼成したのち、これを粉砕分級して調整した仮焼成粉
体を金属管に充填し、次いでこれを伸延加工して内部の
仮焼成粉体層が0.001〜1.0mm厚さの伸延加工
材となし、しかるのち、この伸延加工材に、上記仮焼成
粉体層が部分的に溶融する温度以上の温度T_1にて加
熱したのち0.01〜100℃/minの速度で冷却す
る第1熱処理工程、及び酸素含有雰囲気中にて上記温度
T_1より20〜150℃低い温度T_2にて加熱する
第2熱処理工程を順次施すことを特徴とする酸化物超電
導導体の製造方法。After pre-sintering the raw material powder for oxide superconductor in an atmosphere with low oxygen partial pressure, the pre-sintered powder is pulverized and classified, and the prepared pre-sintered powder is filled into a metal tube. The fired powder layer is made into an elongated material with a thickness of 0.001 to 1.0 mm, and then this elongated material is heated at a temperature T_1 higher than the temperature at which the pre-sintered powder layer partially melts. After that, a first heat treatment step of cooling at a rate of 0.01 to 100 °C/min, and a second heat treatment step of heating at a temperature T_2 that is 20 to 150 °C lower than the temperature T_1 in an oxygen-containing atmosphere are sequentially performed. A method for producing an oxide superconducting conductor, characterized by:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19021889 | 1989-07-21 | ||
JP1-190218 | 1989-07-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03129611A true JPH03129611A (en) | 1991-06-03 |
JP3050572B2 JP3050572B2 (en) | 2000-06-12 |
Family
ID=16254440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02192474A Expired - Lifetime JP3050572B2 (en) | 1989-07-21 | 1990-07-20 | Manufacturing method of oxide superconducting conductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3050572B2 (en) |
-
1990
- 1990-07-20 JP JP02192474A patent/JP3050572B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP3050572B2 (en) | 2000-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5252550A (en) | Method of producing a composite oxide superconductive wire | |
JP2636049B2 (en) | Method for producing oxide superconductor and method for producing oxide superconducting wire | |
US7445808B2 (en) | Method of forming a superconducting article | |
JPH03129611A (en) | Manufacture of oxide superconductor | |
KR100821209B1 (en) | Manufacturing method of high temperature superconductor thick films by using cu-free precursors on ni substrates | |
JP3049314B1 (en) | Manufacturing method of oxide superconducting composite wire | |
JP2544759B2 (en) | How to make a superconducting thin film | |
US6240620B1 (en) | Making of bismuth 2212 superconducting wire or tape | |
JPH03163714A (en) | Manufacture of oxide superconductive conductor | |
JP3536920B2 (en) | Alloy superconductor and method of manufacturing the same | |
JP2545423B2 (en) | Composite oxide superconducting thin film and method for producing the same | |
JP2567967B2 (en) | Manufacturing method of oxide superconducting wire | |
JP2545422B2 (en) | Composite oxide superconducting thin film and method for producing the same | |
JPH01203298A (en) | Method and apparatus for producing elongated conductor equipped with ceramix oxide superconductive material | |
JPH0371520A (en) | Manufacture of ceramics superconductor | |
JP2525842B2 (en) | Superconducting wire and its manufacturing method | |
JP2544760B2 (en) | Preparation method of superconducting thin film | |
JP3248190B2 (en) | Oxide superconducting wire, its manufacturing method and its handling method | |
JP2919955B2 (en) | Superconducting member manufacturing method | |
Murakami et al. | Introduction to processing methods | |
JP2004319256A (en) | Silver tape, its manufacturing method, and superconducting wire | |
Naylor et al. | Bending strain tolerance of critical current values in Tl-based superconducting tapes | |
JPH03122918A (en) | Manufacture of ceramics superconductive conductor | |
JPH06203669A (en) | Manufacture of bi oxide superconductor | |
JPS63225410A (en) | Compound superconductive wire and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080331 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090331 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100331 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110331 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110331 Year of fee payment: 11 |