JPH03163714A - Manufacture of oxide superconductive conductor - Google Patents
Manufacture of oxide superconductive conductorInfo
- Publication number
- JPH03163714A JPH03163714A JP2192475A JP19247590A JPH03163714A JP H03163714 A JPH03163714 A JP H03163714A JP 2192475 A JP2192475 A JP 2192475A JP 19247590 A JP19247590 A JP 19247590A JP H03163714 A JPH03163714 A JP H03163714A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- heat treatment
- metal tube
- treatment process
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004020 conductor Substances 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 6
- 239000000843 powder Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 30
- 238000010438 heat treatment Methods 0.000 claims abstract description 27
- 229910052751 metal Inorganic materials 0.000 claims abstract description 23
- 239000002184 metal Substances 0.000 claims abstract description 23
- 239000000463 material Substances 0.000 claims abstract description 18
- 239000001301 oxygen Substances 0.000 claims abstract description 12
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000011162 core material Substances 0.000 claims description 22
- 239000002887 superconductor Substances 0.000 claims description 21
- 239000002994 raw material Substances 0.000 claims description 5
- 239000000155 melt Substances 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims 1
- 239000013078 crystal Substances 0.000 abstract description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000010949 copper Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910003271 Ni-Fe Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 229910002708 Au–Cu Inorganic materials 0.000 description 1
- 229910017398 Au—Ni Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- -1 Ni-Cr-Co Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 229910021069 Pd—Co Inorganic materials 0.000 description 1
- 229910018879 Pt—Pd Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012733 comparative method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、マグネットワイヤ、電力ケーブル、電力貯蔵
リンク、磁気シールド、マイスナー効果k
本用機器等に用いられる酸化物超電導導体の製造方法に
関する.
〔従来の技術及びその課題〕
最近周知のようにY−Ba−Cu−0系、BiSr−C
a−Cu−0系、Tj2−Ba−Ca −Cu−0系等
の酸化物超電導体が見出された。この酸化物超電導体は
、液体窒素等の安価な冷却媒体で超電導となる臨界温度
(T,)の高い物質である為各分野で実用化研究が進め
られている.上記酸化物超電導体は層状ペロブスカイト
型結晶構造の為結晶異方性が強く、電流はCu−0原子
を含むab面に流れ易く、従って通電方向に対し垂直な
方向にC軸を配向させるのが高い臨界電流密度(Jc
)を得るのに必要な要件であり、又結晶粒界は通電障害
となる為、通電方向に対して結晶粒界を低減させること
が肝要である。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing oxide superconducting conductors used in magnet wires, power cables, power storage links, magnetic shields, Meissner effect devices, etc. [Prior art and its problems] As is well known recently, Y-Ba-Cu-0 system, BiSr-C
Oxide superconductors such as a-Cu-0 series and Tj2-Ba-Ca-Cu-0 series were discovered. This oxide superconductor is a material with a high critical temperature (T,) that becomes superconducting when an inexpensive cooling medium such as liquid nitrogen is used, so research into practical application is progressing in various fields. The above oxide superconductor has a layered perovskite crystal structure, so it has strong crystal anisotropy, and current flows easily in the a-b plane containing Cu-0 atoms. High critical current density (Jc
), and since grain boundaries pose an obstacle to current flow, it is important to reduce the grain boundaries in the direction of current flow.
ところで、これらの酸化物超電導体は脆い為に金属のよ
うな加工を施すことができず、これを所定形状の酸化物
超電導導体となすには、例えば酸化物超電導体となし得
る原料物質をAg製パイプ等に充填して所定形状に伸延
加工し、しかるのちこれに所定の加熱処理を施して酸化
物超電導体に固相反応せしめる方法が適用されている.
しかしながらこのようにして得られた酸化物超電導体は
、結晶配向がランダムな多結晶&llvaからなる上、
結晶粒界が弱結合状態の為に結晶粒界での通電抵抗が大
きく、従って高いJc値が得られないという問題があっ
た.
又PVD法やCVD法等の気相戒長法により配同性の高
い酸化物超電導体を基体上に形威する方法が提案された
が、基体に結晶構造が酸化物超電導体に類似した単結晶
体を用い、この上にエビタキシャル威長させて製造する
為に条件を厳密に制御する必要があり、又rs.IIl
後長時間の加熱処理を要するなど生産性に劣るものであ
った.〔課題を解決するための手段及び作用〕本発明は
かかる状況に鑑み鋭意研究を行った結果なされたもので
その目的とするところは、超電導特性に優れた酸化物超
電導導体を効率よく製造する方法を提供することにある
.
即ち本発明は、酸化物超電導体の原料粉末を低酸素分圧
の雰囲気中で仮焼成したのちこれを粉砕分級して調整し
た仮焼成粉体を、芯材を所定位置に配置した金属管内に
充填し、次いでこれを伸延加工して金属管内面と芯材間
又は芯材同士間の仮焼成粉体層の厚さを0.001〜1
.0mとなし、しかるのち、この伸延加工材に、上記仮
焼成粉体層が部分的に溶融する温度以上の温度T.にて
加熱したのち0.01〜100℃/sxnの速度で冷却
する第1熱処理工程、及び酸素含有雰囲気中にて上記温
度T,より20〜150゜C低い温度T2にて加熱する
第2熱処理工程を順次施すことを特徴とするものである
.
本発明方法において用いられる仮焼成粉体とは、例えば
アルカリ土金属、希土類元素及び銅の酸化物、炭酸塩、
硫酸塩、硝酸塩、硫化物、ハロゲン化物、アルコキシド
類又はそれぞれの元素単体や合金などの酸化物超電導体
の原料粉末を所定量混合し、10”’〜2 0 0To
rrの酸素分圧の雰囲気中で500〜1000℃に加熱
して得られる物質を粉砕分級したものであって、これを
酸素含有雰囲気中で加熱処理することにより酸化物超電
導体に反応するものである.
本発明方法において、上記仮焼成粉体を充填する金属管
及び上記金属管内に配置する芯材としては、酸化物超電
導体と非反応性で且つ導電性並びに熱伝導性に優れた金
属製のものが用いられ、例えばAg,Ag−PdSAg
−AuSAg−Cu,Ag−MgSAg−PL,Ag−
1r,Au,Au−Ni,Au−Cu,Au−Ag−C
u,Au−Pd−Ag,Au−1 r,Pt,Pt−1
r,Pt−Pd,Pd%Pd−Ni,Pd−Co,N
i−Cr,Ni−Cr−Co,Ni−Fe,Ni−Fe
−CoSFe−Cr,Fe−Ni−Cr(SUS)等の
材料製のものが好適である.上記において、金属管と芯
材の材料は異なるものであっても差支えないが、同一材
料の方が加工が容易になされ好ましいものである.
本発明方法において、金属管及び芯材の形状及び構威は
、伸延加工後の仮焼成粉体層の各部位の厚さが0.00
1〜1.0mの範囲に入るものであれば特に限定される
ものではなく、形状は丸型、楕円、四角形等任意の形状
のものが使用できる.以下に本発明方法により製造され
る酸化物超電導導体の構或を第1〜4図に示した断面図
を参照して説明する.
即ち第1図に示した本発明の酸化物超電導導体は、断面
円型の金属管1内の中心に円柱状芯材2が配置されたも
の、又第2図に示した導体は断面円型の金属管1内に径
の異なる2個の円筒状芯材3と1個の円柱状芯材2とを
同心状に配置し多芯化したもの、又第3図に示した導体
は断面平角型の金属管4内に1個の平角筒状芯材5と1
個の平角柱状芯材6とを同心状に配置し、多芯化したも
の、又第4図に示した導体は、高いIC値を得るため断
面円型の金属管1内に複数の円柱状芯材2を所定間隔を
あけて配置し、それぞれの金属管及び芯材の間隙に仮焼
成粉体7を充填し、大導体化したものである.
而して仮焼成粉体を充填した金属管を伸延加工する方法
には、圧延、押出、プレス、溝ロール圧延、スエージン
グ、引抜き等の任意の伸延加工方法が適用される.
本発明方法において、上記の伸延加工材の内層の仮焼成
粉体層は、前記の第1の熱処理工程によってC軸配向し
て結晶化するものであって、その加熱温度T,は、例え
ばBt系酸化物超電導体の場合で、凡そ880〜920
℃又はこれ以上の温度で、上記仮焼成粉体層の少なくと
も一部が融解する温度である.
而して加熱温度T1は組戒等の条件毎に熱分析を行って
融解温度を実測して決めることが望ましい.
本発明方法において、温度T.からの冷却速度は100
℃/■inを超えると結晶化が損なわれ、又0. 0
1 ”C /sin未満の低速では、相分離と結晶粒の
粗大化が起きるので0.01〜100℃/sinとする
必要がある.
本発明方法において、上記の結晶化した酸化物超電導体
層に第2の加熱処理工程を施すことにより、結晶構造の
調整並びに酸素の補給がなされ、Jc等の特性が更に向
上する.
上記の第2の熱処理工程での加熱温度Tオを第1の熱処
理工程の加熱温度T,より20〜150℃低い温度に限
定した理由は、温度T2が温度T1より20゜C未満低
い温度では、結晶構造の調整がなされず、又150゜C
を超える低い温度では酸素の補給が十分になされない為
である.上記温度T2は温度T1より20〜100℃低
い温度が特に好ましいものである.
本発明方法において、伸延加工材の金属管内面と芯材間
又は芯材同士間の仮焼成粉体層の厚さを0.001〜1
.0−に限定した理由は、0.001W未満では仮焼成
粉体層の密度分布の僅かな変動によって伸延加工中に断
線を生じたり或いは性能が劣化したりする為であり、又
1. O msを超えると、第1の加熱処理工程におい
て結晶のC軸配向並びに長手方向への結晶戒長が十分に
なされなくなる為である.
本発明方法において、金属管に充填する原料物質を低酸
素雰囲気中にて仮焼成し粉砕分級した仮焼成粉体と限定
した理由は、かかる方法で調製した仮焼成粉体が酸素欠
損状態となって活性化し、その結果超電導体への反応が
迅速になされること、又仮焼成粉体は融点が低下して金
属管にAg等の融点の比較的低い金属を適用できること
、又Bi系酸化物超電導体にあっては、酸素欠損状態に
おいてTcの高い相が単一に生戒すること等の利点が得
られる為である.
本発明方法においては、被覆用金属管及び芯材の材料又
は形状を選択することによって用途を種々広げることが
可能であって、例えば材料に高強度材を用いれば、強度
を要する用途に、又Ag等の熱的、電気的伝導性の高い
材料を用いた場合はクエンチ現象に対する安定化材とし
ても作用し得るものであり、更に金属管は外部のHtO
やC O t等の有害ガスや外部磁場から酸化物超電導
体層を保護する作用も有するものである.
又靭性に富む材料を薄く又は細く加工して用いれば可撓
性が得られるので、コイル、マグネット等の曲げ加工を
要する分野に適用することができる.
又酸化物超電導体は熱処理によって脆化するので、予め
コイル、マグネット等に威形しておいてから熱処理する
ようにする方法も有用である.更に芯材に薄、細形状の
材料を多数本用い酸化物超電導体層の占有面積を大なら
しめて、電流容量の大きい導体を得ることができる.
〔実施例〕
以下に本発明を実施例により詳細に説明する.B iz
os 、SrO%Cab%CuOをBi:Sr:Ca:
Cuが原子比で2:2:1:2になるように配合して混
合し、この混合粉末を酸素分圧1. 4 X 1 0−
’Torrの雰囲気にて850℃3H仮焼威し、この仮
焼成体を粉砕分級して平均粒径8μのBi.Sr.Ca
CugO.の仮焼成粉を作製した.
而して上記仮焼成粉を第1図に示したと同じ構戒の中心
にAg製の円柱状芯材を配置したAg製管に充填し、こ
れを圧延及び伸線加工により種々径の断面円形の伸延加
工材となし、次いでこれを大気中で上記仮焼成粉体の液
相線温度近傍の温度T.にて30分間保持し、次いで上
記温度から所定速度にて温度T.まで冷却し、上記温度
Ttにて30時間保持したのちこれを室温に冷却して酸
化物超電導導体となした.上記において、温度T1、T
8及びT,からT2への冷却速度は種々に変化させた.
又上記において酸化物超電導体層の厚さは、芯材径は一
定とし管径を変えて変化させた.斯くの如くして得られ
た各々の酸化物超電導導体について、Tc及びJcを測
定した.Jcは液体窒素(77K)中にて4端子法によ
り、磁場をかけた場合とかけない場合について測定した
.結果は酸化物超電導体層の厚さを併記して第1表に示
した.
第1表より明らかなように本発明方法品(1〜7)は、
T,、Jcがともに高い値を示した.vFに磁場をかけ
た状態においてもJCは高い値が維持され耐磁場特性に
優れたものであった.これに対し、比較方法品のNo8
,.9は伸延加工材の仮焼成粉体層の厚さが本発明の限
定値外にあるもので、前者は厚すぎた為にC軸配向並び
に通電方向への結晶威長が十分になされずにJcが低い
値のものとなった.又後者は細くまで強加工した為に仮
焼成粉体層の密度が不均一となってJ,が低下した.又
NolOは第1加熱処理工程の加熱温度T1が低すぎて
仮焼成粉体が溶融しなかった為、又Noll,12は第
2加熱処理工程の加熱温度Ttが本発明の限定値外であ
った為、又Nol3は加熱温度T,からT.への冷却速
度が速すぎた為いずれも結晶のC軸配向又は/及び通電
方向への結晶威長が十分になされずその結果Tc,Jc
が低い値のものとなった.
〔効果〕
以上述べたように本発明方法によれば、Jc等の超電導
特性に優れ大容量送電が可能な酸化物超電導導体を効率
よく製造することができるので、工業上顕著な効果を奏
する.By the way, these oxide superconductors cannot be processed like metals because they are brittle, and in order to make them into oxide superconductors of a predetermined shape, for example, the raw material that can be made into oxide superconductors must be Ag. A method is used in which the material is filled into a manufactured pipe, etc., stretched into a predetermined shape, and then subjected to a predetermined heat treatment to cause a solid phase reaction to occur in the oxide superconductor.
However, the oxide superconductor obtained in this way is composed of polycrystals with random crystal orientation, and
Since the grain boundaries are in a weakly bonded state, the current carrying resistance at the grain boundaries is large, and therefore a high Jc value cannot be obtained. In addition, a method has been proposed in which an oxide superconductor with high conformity is formed on a substrate using a vapor phase method such as a PVD method or a CVD method. It is necessary to strictly control the conditions for manufacturing by using rs. IIl
Productivity was poor, as it required a long heat treatment afterwards. [Means and effects for solving the problem] The present invention was made as a result of intensive research in view of the above situation, and its purpose is to provide a method for efficiently manufacturing an oxide superconducting conductor with excellent superconducting properties. The goal is to provide the following. That is, in the present invention, raw material powder for an oxide superconductor is pre-sintered in an atmosphere with a low oxygen partial pressure, and then the pre-sintered powder prepared by pulverizing and classifying is placed in a metal tube in which a core material is placed at a predetermined position. The thickness of the pre-sintered powder layer between the inner surface of the metal tube and the core material or between the core materials is 0.001 to 1.
.. 0 m, and then the elongated material is heated to a temperature T higher than the temperature at which the pre-sintered powder layer partially melts. A first heat treatment step of heating at a temperature and then cooling at a rate of 0.01 to 100 °C/sxn, and a second heat treatment of heating at a temperature T2 that is 20 to 150 °C lower than the above temperature T in an oxygen-containing atmosphere. It is characterized by performing the steps sequentially. The pre-calcined powder used in the method of the present invention includes, for example, oxides, carbonates, etc. of alkaline earth metals, rare earth elements, and copper.
A predetermined amount of raw material powder for oxide superconductors such as sulfates, nitrates, sulfides, halides, alkoxides, or individual elements or alloys of each element is mixed, and 10'' to 200 To
It is a pulverized and classified material obtained by heating to 500 to 1000°C in an atmosphere with an oxygen partial pressure of be. In the method of the present invention, the metal tube filled with the pre-sintered powder and the core material placed in the metal tube are made of metal that is non-reactive with the oxide superconductor and has excellent electrical and thermal conductivity. are used, for example Ag, Ag-PdSAg
-AuSAg-Cu,Ag-MgSAg-PL,Ag-
1r, Au, Au-Ni, Au-Cu, Au-Ag-C
u, Au-Pd-Ag, Au-1 r, Pt, Pt-1
r, Pt-Pd, Pd%Pd-Ni, Pd-Co, N
i-Cr, Ni-Cr-Co, Ni-Fe, Ni-Fe
-CoSFe-Cr, Fe-Ni-Cr (SUS) and other materials are suitable. In the above, the metal tube and the core material may be made of different materials, but it is preferable to use the same material because it is easier to process. In the method of the present invention, the shape and structure of the metal tube and core material are such that the thickness of each part of the pre-sintered powder layer after stretching is 0.00.
There is no particular limitation as long as it falls within the range of 1 to 1.0 m, and any shape such as round, oval, or square can be used. The structure of the oxide superconducting conductor manufactured by the method of the present invention will be explained below with reference to the cross-sectional views shown in FIGS. 1 to 4. That is, the oxide superconducting conductor of the present invention shown in FIG. 1 has a cylindrical core material 2 placed at the center of a metal tube 1 with a circular cross section, and the conductor shown in FIG. 2 has a circular cross section. The conductor shown in Fig. 3 has a rectangular cross section, and has two cylindrical core members 3 with different diameters and one cylindrical core member 2 arranged concentrically in a metal tube 1. One rectangular cylindrical core material 5 and 1 is placed inside the metal tube 4 of the mold.
In order to obtain a high IC value, the conductor shown in FIG. The core materials 2 are arranged at predetermined intervals, and the gap between each metal tube and the core material is filled with pre-sintered powder 7 to make it a large conductor. Any stretching method such as rolling, extrusion, pressing, groove roll rolling, swaging, or drawing can be applied to the method of stretching the metal tube filled with the calcined powder. In the method of the present invention, the pre-sintered powder layer as the inner layer of the drawn material is crystallized with C-axis orientation in the first heat treatment step, and the heating temperature T is, for example, Bt In the case of oxide superconductors, approximately 880 to 920
℃ or higher, which is the temperature at which at least a portion of the above-mentioned pre-fired powder layer melts. Therefore, it is desirable to determine the heating temperature T1 by conducting a thermal analysis and actually measuring the melting temperature for each set of conditions. In the method of the present invention, the temperature T. The cooling rate from
℃/■in will impair crystallization; 0
At a low speed of less than 1"C/sin, phase separation and coarsening of crystal grains occur, so it is necessary to set the speed to 0.01 to 100°C/sin. In the method of the present invention, the above-mentioned crystallized oxide superconductor layer By applying the second heat treatment step to the crystal structure, the crystal structure is adjusted and oxygen is supplied, and the properties such as Jc are further improved. The reason for limiting the temperature to 20 to 150°C lower than the heating temperature T in the process is that if temperature T2 is less than 20°C lower than temperature T1, the crystal structure will not be adjusted;
This is because oxygen supply is not sufficient at low temperatures exceeding . It is particularly preferable that the temperature T2 is 20 to 100°C lower than the temperature T1. In the method of the present invention, the thickness of the pre-sintered powder layer between the inner surface of the metal tube of the drawn material and the core material or between the core materials is set to 0.001 to 1.
.. The reason why it is limited to 0- is that if it is less than 0.001 W, slight fluctuations in the density distribution of the pre-fired powder layer may cause wire breakage during stretching or deteriorate the performance. This is because if it exceeds 0 ms, the C-axis orientation of the crystal and the crystal length in the longitudinal direction cannot be sufficiently achieved in the first heat treatment step. In the method of the present invention, the raw material to be filled into the metal tube is limited to pre-sintered powder that has been pre-sintered in a low-oxygen atmosphere, pulverized and classified, because the pre-sintered powder prepared by this method is in an oxygen-deficient state. As a result, the melting point of the calcined powder decreases, allowing the application of metals with relatively low melting points such as Ag to metal tubes. This is because superconductors have the advantage of having a single phase with a high Tc in an oxygen-deficient state. In the method of the present invention, it is possible to widen the range of applications by selecting the materials and shapes of the metal tube for coating and the core material. When a material with high thermal and electrical conductivity such as Ag is used, it can also act as a stabilizing material against the quenching phenomenon, and the metal tube also prevents external HtO
It also has the effect of protecting the oxide superconductor layer from harmful gases such as C and C O t and external magnetic fields. In addition, flexibility can be obtained by processing a material with high toughness into a thin or thin shape, so it can be applied to fields that require bending, such as coils and magnets. Also, since oxide superconductors become brittle when heat treated, it is also useful to form them into coils, magnets, etc. in advance and then heat treat them. Furthermore, by using a large number of thin, narrow-shaped materials for the core material and increasing the area occupied by the oxide superconductor layer, a conductor with a large current capacity can be obtained. [Example] The present invention will be explained in detail below using Examples. Biz
os, SrO%Cab%CuO:Bi:Sr:Ca:
Cu is mixed in an atomic ratio of 2:2:1:2, and the mixed powder is heated to an oxygen partial pressure of 1. 4 X 1 0-
The calcined body was calcined at 850°C for 3 hours in an atmosphere of 'Torr, and the calcined body was crushed and classified to produce Bi. Sr. Ca
CugO. A pre-calcined powder was prepared. Then, the pre-sintered powder was filled into an Ag tube with a cylindrical Ag core placed at the center of the same structure as shown in Figure 1, and then rolled and wire-drawn to form circular cross-sections of various diameters. This is then heated in the atmosphere to a temperature T. near the liquidus temperature of the pre-sintered powder. The temperature is then maintained at T. for 30 minutes, and then the temperature is increased from the above temperature to T. After cooling to temperature Tt and maintaining it for 30 hours, it was cooled to room temperature to form an oxide superconducting conductor. In the above, temperatures T1, T
The cooling rate from 8 and T to T2 was varied. In the above, the thickness of the oxide superconductor layer was varied by changing the tube diameter while keeping the core diameter constant. Tc and Jc were measured for each of the oxide superconducting conductors thus obtained. Jc was measured using the four-terminal method in liquid nitrogen (77K) with and without a magnetic field applied. The results are shown in Table 1 along with the thickness of the oxide superconductor layer. As is clear from Table 1, the method products (1 to 7) of the present invention are:
Both T and Jc showed high values. Even when a magnetic field was applied to vF, JC maintained a high value and had excellent magnetic field resistance. In contrast, comparative method product No.
、. In No. 9, the thickness of the pre-sintered powder layer of the elongated material was outside the limit of the present invention, and in the former case, the thickness was too thick, so that the C-axis orientation and the crystal elongation in the current direction were not sufficiently achieved. Jc became a low value. In addition, because the latter was subjected to strong processing to the point of thinning, the density of the pre-fired powder layer became non-uniform, resulting in a decrease in J. Further, in No. 12, the heating temperature T1 in the first heat treatment step was too low and the pre-fired powder did not melt, and in No. 12, the heating temperature Tt in the second heat treatment step was outside the limit value of the present invention. Therefore, No. 3 has a heating temperature of T, to T. Because the cooling rate to
has a low value. [Effects] As described above, according to the method of the present invention, it is possible to efficiently produce an oxide superconducting conductor that has excellent superconducting properties such as Jc and is capable of transmitting large amounts of power, and therefore has a significant industrial effect.
第1〜4図は本発明方法により製造される酸化物超電導
導体の実施例を示すそれぞれ断面説明図である.
1.4・・・金属管、 2,3,5.6・・・芯材、7
・・・仮焼成粉体.1 to 4 are cross-sectional explanatory views showing examples of oxide superconducting conductors manufactured by the method of the present invention. 1.4...Metal tube, 2,3,5.6...Core material, 7
...Preliminary calcined powder.
Claims (1)
焼成したのち、これを粉砕分級して調整した仮焼成粉体
を、芯材を所定位置に配置した金属管内に充填し、次い
でこれを伸延加工して金属管内面と芯材間又は芯材同士
間の仮焼成粉体層の厚さを0.001〜1.0mmとな
し、しかるのち、この伸延加工材に、上記仮焼成粉体層
が部分的に溶融する温度以上の温度T_1にて加熱した
のち0.01〜100℃/minの速度で冷却する第1
熱処理工程、及び酸素含有雰囲気中にて上記温度T_1
より20〜150℃低い温度T_2にて加熱する第2熱
処理工程を順次施すことを特徴とする酸化物超電導導体
の製造方法。After pre-sintering the raw material powder of the oxide superconductor in an atmosphere with low oxygen partial pressure, the pre-sintered powder prepared by crushing and classifying it is filled into a metal tube with a core material placed in a predetermined position. This is stretched so that the thickness of the pre-sintered powder layer between the inner surface of the metal tube and the core material or between the core materials is 0.001 to 1.0 mm, and then the above-mentioned pre-sintered powder layer is applied to this elongated material. The first step is heated at a temperature T_1 higher than the temperature at which the powder layer partially melts and then cooled at a rate of 0.01 to 100°C/min.
The above temperature T_1 in the heat treatment process and in an oxygen-containing atmosphere
A method for producing an oxide superconducting conductor, comprising sequentially performing a second heat treatment step of heating at a temperature T_2 that is 20 to 150°C lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2192475A JP3050573B2 (en) | 1989-08-03 | 1990-07-20 | Manufacturing method of oxide superconducting conductor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1-202023 | 1989-08-03 | ||
JP20202389 | 1989-08-03 | ||
JP2192475A JP3050573B2 (en) | 1989-08-03 | 1990-07-20 | Manufacturing method of oxide superconducting conductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03163714A true JPH03163714A (en) | 1991-07-15 |
JP3050573B2 JP3050573B2 (en) | 2000-06-12 |
Family
ID=26507335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2192475A Expired - Lifetime JP3050573B2 (en) | 1989-08-03 | 1990-07-20 | Manufacturing method of oxide superconducting conductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3050573B2 (en) |
-
1990
- 1990-07-20 JP JP2192475A patent/JP3050573B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP3050573B2 (en) | 2000-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0281444B1 (en) | Process for manufacturing a superconducting wire of compound oxide-type ceramic | |
US4906609A (en) | Fabrication of superconducting oxide wires by powder-in-tube method | |
EP0505015B1 (en) | Superconducting wire and method of manufacturing the same | |
JPH03163714A (en) | Manufacture of oxide superconductive conductor | |
JP3034255B2 (en) | Superconductor, superconductor wire, and method of manufacturing superconducting wire | |
EP0304076B1 (en) | Method of manufacturing superconductive products | |
JP3049314B1 (en) | Manufacturing method of oxide superconducting composite wire | |
JP3050572B2 (en) | Manufacturing method of oxide superconducting conductor | |
EP0704862A2 (en) | Superconducting wire and manufacturing method for the same | |
JP3029153B2 (en) | Manufacturing method of multilayer ceramic superconductor | |
US5429791A (en) | Silver-high temperature superconductor composite material manufactured based on powder method, and manufacturing method therefor | |
JP2556545B2 (en) | Method for manufacturing oxide superconducting wire | |
JP3053411B2 (en) | Manufacturing method of oxide superconducting wire | |
JP3086237B2 (en) | Manufacturing method of oxide superconducting wire | |
JP2593520B2 (en) | Method for producing oxide-based superconducting wire | |
JPH0371520A (en) | Manufacture of ceramics superconductor | |
JPH03122918A (en) | Manufacture of ceramics superconductive conductor | |
JPH01163913A (en) | Manufacture of oxide superconductive wire | |
JPS63225410A (en) | Compound superconductive wire and its manufacture | |
JPH0528857A (en) | Manufacture of ceramic superconductor | |
JPH0343915A (en) | Manufacture of multiple-cored superconductor | |
JPH02158012A (en) | Manufacture of oxide superconductive liner body | |
JPH0757571A (en) | Manufacture of bi oxide superconducting wire | |
JPH01115805A (en) | Production of oxide superconductor | |
JPH02278616A (en) | Manufacture of multicore-type oxide superconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080331 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090331 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100331 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110331 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110331 Year of fee payment: 11 |