JP3050573B2 - Manufacturing method of oxide superconducting conductor - Google Patents

Manufacturing method of oxide superconducting conductor

Info

Publication number
JP3050573B2
JP3050573B2 JP2192475A JP19247590A JP3050573B2 JP 3050573 B2 JP3050573 B2 JP 3050573B2 JP 2192475 A JP2192475 A JP 2192475A JP 19247590 A JP19247590 A JP 19247590A JP 3050573 B2 JP3050573 B2 JP 3050573B2
Authority
JP
Japan
Prior art keywords
temperature
calcined powder
oxide superconductor
heat treatment
metal tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2192475A
Other languages
Japanese (ja)
Other versions
JPH03163714A (en
Inventor
憲嗣 榎本
直樹 宇野
祐行 菊地
章二 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2192475A priority Critical patent/JP3050573B2/en
Publication of JPH03163714A publication Critical patent/JPH03163714A/en
Application granted granted Critical
Publication of JP3050573B2 publication Critical patent/JP3050573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、マグネットワイヤ、電力ケーブル、電力貯
蔵リンク、磁気シールド、マイスナー効果応用機器等に
用いられる酸化物超電導導体の製造方法に関する。
The present invention relates to a method for manufacturing an oxide superconducting conductor used for a magnet wire, a power cable, a power storage link, a magnetic shield, a Meissner effect application device, and the like.

〔従来の技術及びその課題〕[Conventional technology and its problems]

最近周知のようにY−Ba−Cu−O系、Bi−Sr−Ca−Cu
−O系、Tl−Ba−Ca−Cu−O系等の酸化物超電導体が見
出された。この酸化物超電導体は、液体窒素等の安価な
冷却媒体で超電導となる臨界温度(Tc)の高い物質であ
る為各分野で実用化研究が進められている。
As is well known recently, Y-Ba-Cu-O system, Bi-Sr-Ca-Cu
Oxide superconductors such as -O-based and Tl-Ba-Ca-Cu-O-based were found. Since this oxide superconductor is a substance having a high critical temperature (Tc) which becomes superconducting with an inexpensive cooling medium such as liquid nitrogen, research into practical use in various fields is underway.

上記酸化物超電導体は層状ペロブスカイト型結晶構造
の為結晶異方性が強く、電流はCu−O原子を含むab面に
流れ易く、従って通電方向に対し垂直な方向にC軸を配
向させるのが高い臨界電流密度(Jc)を得るのに必要な
要件であり、又結晶粒界は通電障害となる為、通電方向
に対して結晶粒界面を低減させることが肝要である。
The oxide superconductor has a layered perovskite type crystal structure and therefore has a strong crystal anisotropy, and the current easily flows to the ab plane containing Cu-O atoms. This is a necessary condition for obtaining a high critical current density (Jc), and since the crystal grain boundary becomes an obstacle to energization, it is important to reduce the crystal grain interface in the energization direction.

ところで、これらの酸化物超電導体は脆い為に金属の
ような加工を施すことができず、これを所定形状の酸化
物超電導導体となすには、例えば酸化物超電導体となし
得る原料物質をAg製パイプ等に充填して所定形状に伸延
加工し、しかるのちこれに所定の加熱処理を施して酸化
物超電導体に固相反応せしめる方法が適用されている。
By the way, these oxide superconductors cannot be processed like a metal because they are brittle.To make them into oxide oxide superconductors of a predetermined shape, for example, a raw material that can be made oxide superconductor is Ag. A method has been applied in which the material is filled into a pipe made of steel or the like, and is elongated into a predetermined shape, and then subjected to a predetermined heat treatment to cause a solid-phase reaction with the oxide superconductor.

しかしながらこのようにして得られた酸化物超電導体
は、結晶配向がランダムな多結晶組織からなる上、結晶
粒界が弱結合状態の為に結晶粒界での通電抵抗が大き
く、従って高いJc値が得られないという問題があった。
However, the oxide superconductor obtained in this way has a polycrystalline structure with a random crystal orientation and has a large current-carrying resistance at the crystal grain boundaries due to the weak coupling state of the crystal grain boundaries, and therefore has a high Jc value. There was a problem that can not be obtained.

又PVD法やCVD法等の気相成長法により配向性の高い酸
化物超電導体を基体上に形成する方法が提案されたが、
基体に結晶構造が酸化物超電導体に類似した単結晶体を
用い、この上にエピタキシャル成長させて製造する為に
条件を厳密に制御する必要があり、又成膜後長時間の加
熱処理を要するなど生産性に劣るものであった。
Also, a method of forming a highly oriented oxide superconductor on a substrate by a vapor phase growth method such as a PVD method or a CVD method has been proposed.
It is necessary to strictly control the conditions for producing a substrate by using a single crystal having a crystal structure similar to that of an oxide superconductor and epitaxially growing it on the substrate, and requiring a long heat treatment after film formation. The productivity was poor.

〔課題を解決するための手段及び作用〕[Means and Actions for Solving the Problems]

本発明はかかる状況に鑑み鋭意研究を行った結果なさ
れたものでその目的とするところは、超電導特性に優れ
た酸化物超電導導体を効率よく製造する方法を提供する
ことにある。
The present invention has been made as a result of intensive studies in view of such a situation, and an object of the present invention is to provide a method for efficiently manufacturing an oxide superconducting conductor having excellent superconducting characteristics.

即ち本発明は、酸化物超電導体の原料粉末を酸素分圧
10-5〜200Torrの雰囲気中で仮焼成したのち、これを粉
砕分級して調整した仮焼成粉体を、芯材を所定位置に配
置した金属管内に充填し、次いでこれを伸延加工して金
属管内面と芯材間又は芯材同士間の仮焼成粉体層の厚さ
を0.001〜1.0mmとなし、しかるのち、この伸延加工材
に、酸素含有雰囲気中で上記仮焼成粉体層が部分的に溶
融する温度以上の温度T1にて加熱したのち0.01〜100℃/
minの速度で冷却する第1熱処理工程、及び前記第1熱
処理工程を経て結晶化した酸化物超電導体層を酸素含有
雰囲気中にて上記温度T1より20〜150℃低い温度T2にて
加熱する第2熱処理工程を順次施すことを特徴とするも
のである。
That is, the present invention relates to a method in which the raw material powder of an oxide superconductor is subjected to an oxygen partial pressure.
After calcining in an atmosphere of 10 -5 to 200 Torr, the calcined powder obtained by pulverizing and classifying the calcined powder is filled into a metal tube having a core material arranged at a predetermined position, and then this is elongated to form a metal. The thickness of the calcined powder layer between the inner surface of the tube and the core material or between the core materials is set to 0.001 to 1.0 mm. Thereafter, the calcined powder layer is partially applied to the dissected material in an oxygen-containing atmosphere. After heating at a temperature T1 higher than the temperature at which
a first heat treatment step of cooling at a rate of min, and a step of heating the oxide superconductor layer crystallized through the first heat treatment step at a temperature T2 lower than the temperature T1 by 20 to 150 ° C. in an oxygen-containing atmosphere. Two heat treatment steps are sequentially performed.

本発明方法において用いられる仮焼成粉体とは、例え
ばアルカリ土金属、希土類元素及び銅の酸化物、炭酸
塩、硫酸塩、硝酸塩、硫化物、ハロゲン化物、アルコキ
シド類又はそれぞれの元素単体や合金などの酸化物超電
導体の原料粉末を所定量混合し、10-5〜200Torrの酸素
分圧の雰囲気中で500〜1000℃に加熱して得られる物質
を粉砕分級したものであって、これを酸素含有雰囲気中
で加熱処理することにより酸化物超電導体に反応するも
のである。
The calcined powder used in the method of the present invention includes, for example, alkaline earth metals, rare earth elements and copper oxides, carbonates, sulfates, nitrates, sulfides, halides, alkoxides or elemental or alloys of each element. A material obtained by mixing a predetermined amount of the raw material powder of the oxide superconductor of No. 1 and heating to 500 to 1000 ° C. in an atmosphere having an oxygen partial pressure of 10 −5 to 200 Torr is crushed and classified. It reacts with the oxide superconductor by heat treatment in the containing atmosphere.

本発明方法において、上記仮焼成粉体を充填する金属
管及び上記金属管内に配置する芯材としては、酸化物超
電導体と非反応性で且つ導電性並びに熱伝導性に優れた
金属製のものが用いられ、例えばAg、Ag−Pd、Ag−Au、
Ag−Cu、Ag−Mg、Ag−Pt、Ag−Ir、Au、Au−Ni、Au−C
u、Au−Ag−Cu、Au−Pd−Ag、Au−Ir、Pt−Ir、Pt−I
r、Pt−Pd、Pd、Pd−Ni、Pd−Co、Ni−Cr、Ni−Cr−C
o、Ni−Fe、Ni−Fe−Co、Fe−Cr、Fe−Ni−Cr(SUS)等
の材料製のものが好適である。
In the method of the present invention, the metal tube filled with the calcined powder and the core material arranged in the metal tube are made of a metal that is non-reactive with the oxide superconductor and has excellent electrical conductivity and thermal conductivity. Is used, for example, Ag, Ag-Pd, Ag-Au,
Ag-Cu, Ag-Mg, Ag-Pt, Ag-Ir, Au, Au-Ni, Au-C
u, Au-Ag-Cu, Au-Pd-Ag, Au-Ir, Pt-Ir, Pt-I
r, Pt-Pd, Pd, Pd-Ni, Pd-Co, Ni-Cr, Ni-Cr-C
Those made of materials such as o, Ni-Fe, Ni-Fe-Co, Fe-Cr, and Fe-Ni-Cr (SUS) are preferable.

上記において、金属管と芯材の材料は異なるものであ
っても差支えないが、同一材料の方が加工が容易になさ
れ好ましいものである。
In the above description, the materials of the metal tube and the core material may be different, but the same material is preferable because it is easily processed.

本発明方法において、金属管及び芯材の形状及び構成
は、伸延加工後の仮焼成粉体層の各部位の厚さが0.001
〜1.0mmの範囲に入るものであれば特に限定されるもの
ではなく、形状は丸型、楕円、四角形等任意の形状のも
のが使用できる。
In the method of the present invention, the shape and configuration of the metal tube and the core material are such that the thickness of each part of the calcined powder layer after the elongation is 0.001.
The shape is not particularly limited as long as it is within the range of 1.0 mm, and any shape such as a round shape, an elliptical shape, and a square shape can be used.

以下に本発明方法により製造される酸化物超電導導体
の構成を第1〜4図に示した断面図を参照して説明す
る。
Hereinafter, the configuration of the oxide superconductor manufactured by the method of the present invention will be described with reference to the cross-sectional views shown in FIGS.

即ち第1図に示した本発明の酸化物超電導導体は、断
面円型の金属管1内の中心に円柱状芯材2が配置された
もの、又第2図に示した導体は断面円型の金属管1内に
径の異なる2個の円筒状芯材3と1個の円柱状芯材2と
を同心状に配置し多芯化したもの、又第3図に示した導
体は断面平角型の金属管4内に1個の平角筒状芯材5と
1個の平角柱状芯材6とを同心状に配置し、多芯化した
もの、又第4図に示した導体は、高いIc値を得るため断
面円型の金属管1内に複数の円柱状芯材2を所定間隔を
あけて配置し、それぞれの金属管及び芯材の間隙に仮焼
成粉体7を充填し、大導体化したものである。
That is, the oxide superconducting conductor of the present invention shown in FIG. 1 has a cylindrical core 2 disposed at the center in a metal tube 1 having a circular cross section, and the conductor shown in FIG. A cylindrical core material 3 and a cylindrical core material 2 having different diameters are arranged concentrically in a metal tube 1 to form a multi-core structure. The conductor shown in FIG. One rectangular tube-shaped core material 5 and one rectangular prism-shaped core material 6 are concentrically arranged in a metal tube 4 of a mold and multi-core, and the conductor shown in FIG. In order to obtain an Ic value, a plurality of columnar cores 2 are arranged at predetermined intervals in a metal tube 1 having a circular cross section, and the calcined powder 7 is filled in the gap between each metal tube and the core material. It is a conductor.

而して仮焼成粉体を充填した金属管を伸延加工する方
法には、圧延、押出、プレス、溝ロール圧延、スエージ
ング、引抜き等の任意の伸延加工方法が適用される。
As a method for elongating the metal tube filled with the calcined powder, any elongation method such as rolling, extrusion, pressing, groove roll rolling, swaging, drawing or the like is applied.

本発明方法において、上記の伸延加工材の内層の仮焼
成粉体層は、前記の第1の熱処理工程によってC軸配向
して結晶化するものであって、その加熱温度T1は、例え
ばBi系酸化物超電導体の場合で、凡そ880〜920℃又はこ
れ以上の温度で、上記仮焼成粉体層の少なくとも一部が
融解する温度である。
In the method of the present invention, the calcined powder layer as the inner layer of the above-mentioned stretch-processed material is to be crystallized by C-axis orientation in the first heat treatment step, and the heating temperature T 1 is, for example, Bi. In the case of a system oxide superconductor, it is a temperature at which at least a part of the calcined powder layer is melted at a temperature of about 880 to 920 ° C. or higher.

而して加熱温度T1は組成等の条件毎に熱分析を行って
融解温度を実測して決めることが望ましい。
Thus to heat temperatures T 1 is desirably determined by measuring the melting temperature by performing the thermal analysis for each condition such as composition.

本発明方法において、温度T1からの冷却速度は100℃/
minを超えると結晶化が損なわれ、又0.01℃/min未満の
低速では、相分離と結晶粒の粗大化が起きるので0.01〜
100℃/minとする必要がある。
In the method of the present invention, the cooling rate from the temperature T 1 of the 100 ° C. /
If it exceeds min, crystallization is impaired, and at a low speed of less than 0.01 ° C / min, phase separation and coarsening of crystal grains occur, so
It is necessary to be 100 ° C / min.

本発明方法において、上記の結晶化した酸化物超電導
体層に第2の加熱処理工程を施すことにより、結晶構造
の調整並びに酸素の補給がなされ、Jc等の特性が向上す
る。
In the method of the present invention, by subjecting the crystallized oxide superconductor layer to the second heat treatment step, the crystal structure is adjusted and oxygen is supplied, and characteristics such as Jc are improved.

上記の第2の熱処理工程での加熱温度T2を第1の熱処
理工程の加熱温度T1より20〜150℃低い温度に限定した
理由は、温度T2が温度T1より20℃未満低い温度では、結
晶構造の調整がなされず、又150℃を超える低い温度で
は酸素の補給が十分になされない為である。上記温度T2
は温度T1より20〜100℃低い温度が特に好ましいもので
ある。
Additional reasons for the heating temperature T 2 in the second heat treatment step is limited to the first heating temperature T 1 of from 20 to 150 ° C. lower temperature in the heat treatment step, temperature T 2 is temperature T 1 of from less than 20 ° C. lower temperature In this case, the crystal structure is not adjusted, and oxygen is not sufficiently replenished at a low temperature exceeding 150 ° C. Above temperature T 2
Is 20 to 100 ° C. lower than the temperature T 1 is is particularly preferred.

本発明方法において、伸延加工材の金属管内面と芯材
間又は芯材同士間の仮焼成粉体層の厚さを0.001〜1.0mm
に限定した理由は、0.001mm未満では仮焼成粉体層の密
度分布の僅かな変動によって伸延加工中に断線を生じた
り或いは性能が劣化したりする為であり、又1.0mmを超
えると、第1の加熱処理工程において結晶のC軸配向並
びに長手方向への結晶成長が十分になされなくなる為で
ある。
In the method of the present invention, the thickness of the calcined powder layer between the inner surface of the metal tube and the core material or between the core materials of the rolled material is 0.001 to 1.0 mm.
The reason is that if it is less than 0.001 mm, a slight change in the density distribution of the pre-fired powder layer may cause disconnection or degrade the performance during the elongation process. This is because the C-axis orientation of the crystal and the crystal growth in the longitudinal direction are not sufficiently performed in the first heat treatment step.

本発明方法において、金属管に充填する原料物質を低
酸素雰囲気中にて仮焼成し粉砕分級した仮焼成粉体と限
定した理由は、かかる方法で調製した仮焼成粉体が酸素
欠損状態となって活性化し、その結果超電導体への反応
が迅速になされること、又仮焼成粉体は融点が低下して
金属管にAg等の融点の比較的低い金属を適用できるこ
と、又Bi系酸化物超電導体にあっては、酸素欠損状態に
おいてTcの高い相が単一に生成すること等の利点が得ら
れる為である。
In the method of the present invention, the reason why the raw material to be filled into the metal tube is limited to the preliminarily calcined powder that is preliminarily calcined and pulverized and classified in a low oxygen atmosphere because the preliminarily calcined powder prepared by this method is in an oxygen-deficient state. Activation, resulting in a rapid reaction to the superconductor. Also, the calcined powder has a reduced melting point so that a metal with a relatively low melting point, such as Ag, can be applied to the metal tube. This is because a superconductor has advantages such as a single phase having a high Tc in an oxygen-deficient state.

本発明方法においては、被覆用金属管及び芯材の材料
又は形状を選択することによって用途を種々広げること
が可能であって、例えば材料に高強度材を用いれば、強
度を要する用途に、又Ag等の熱的、電気的伝導性の高い
材料を用いた場合はクエンチ現象に対する安定化材とし
ても作用し得るものであり、更に金属管は外部のH2OやC
O2等の有害ガスや外部磁場から酸化物超電導体層を保護
する作用も有するものである。
In the method of the present invention, it is possible to expand the use in various ways by selecting the material or shape of the coating metal tube and the core material.For example, if a high-strength material is used for the material, thermal such Ag, in the case of using high electrical conductivity materials are those capable of acting as a stabilizing material for the quenching phenomenon, further metal pipe outside the H 2 O and C
It also has an action of protecting the oxide superconductor layer from harmful gases such as O 2 and an external magnetic field.

又靱性に富む材料を薄く又は細く加工して用いれば可
撓性が得られるので、コイル、マグネット等の曲げ加工
を要する分野に適用することができる。
Further, if a material having high toughness is processed thinly or thinly, flexibility can be obtained, so that the present invention can be applied to a field requiring bending such as a coil and a magnet.

又酸化物超電導体は熱処理によって脆化するので、予
めコイル、マグネット等に成形しておいてから熱処理す
るようにする方法も有用である。
In addition, since the oxide superconductor is embrittled by the heat treatment, it is also useful to form the oxide superconductor into a coil, a magnet or the like in advance, and then heat-treat the coil.

更に芯材に薄、細形状の材料を多数本用い酸化物超電
導体層の占有面積を大ならしめて、電流容量の大きい導
体を得ることができる。
Furthermore, by using a large number of thin and fine materials for the core material, the area occupied by the oxide superconductor layer can be increased, and a conductor having a large current capacity can be obtained.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to Examples.

Bi2O3、SrO、CaO、CuOをBi:Sr:Ca:Cuが原子比で2:2:
1:2になるように配合して混合し、この混合粉末を酸素
分圧1.4×10-1Torrの雰囲気にて850℃3H仮焼成し、この
仮焼成体を粉砕分級して平均粒径8μmのBi2Sr2CaCu2O
xの仮焼成粉を作製した。
Bi: Sr: Ca: Cu atomic ratio of Bi 2 O 3 , SrO, CaO, CuO is 2: 2:
The mixed powder was mixed and mixed at a ratio of 1: 2, and the mixed powder was pre-fired at 850 ° C. for 3 H in an atmosphere with an oxygen partial pressure of 1.4 × 10 −1 Torr. Bi 2 Sr 2 CaCu 2 O
x calcined powder was prepared.

而して上記仮焼成粉を第1図に示したと同じ構成の中
心にAg製の円柱状芯材を配置したAg製管に充填し、これ
を圧延及び伸線加工により種々径の断面円形の伸延加工
材となし、次いでこれを大気中で上記仮焼成粉体の液相
線温度近傍の温度T1にて30分間保持し、次いで上記温度
から所定速度にて温度T2まで冷却し、上記温度T2にて30
時間保持したのちこれを室温に冷却して酸化物超電導導
体となした。上記において、温度T1、T2及びT1からT2
の冷却速度は種々に変化させた。
Then, the above-mentioned calcined powder was filled into an Ag tube in which an Ag cylindrical core material was arranged at the center of the same structure as shown in FIG. 1, and this was rolled and drawn to form circular cross sections of various diameters. distraction workpiece and without, then it was held for 30 minutes at a temperature T 1 of the liquidus temperature near the calcined powder in the atmosphere, then cooled from the temperature to temperature T 2 at a predetermined speed, the 30 at temperature T 2
After holding for a time, this was cooled to room temperature to form an oxide superconductor. In the above, the temperatures T 1 , T 2 and the cooling rate from T 1 to T 2 were varied.

又上記において酸化物超電導体層の厚さは、芯材径は
一定とし管径を変えて変化させた。
In the above, the thickness of the oxide superconductor layer was changed by changing the pipe diameter while keeping the core diameter constant.

斯くの如くして得られた各々の酸化物超電導導体につ
いて、Tc及びJcを測定した。Jcは液体窒素(77K)中に
て4端子法により、磁場をかけた場合とかけない場合に
ついて測定した。結果は酸化物超電導体層の厚さを併記
して第1表に示した。
Tc and Jc were measured for each of the oxide superconductors thus obtained. Jc was measured by a four-terminal method in liquid nitrogen (77K) with and without applying a magnetic field. The results are shown in Table 1 together with the thickness of the oxide superconductor layer.

第1表より明らかなように本発明方法品(1〜7)
は、Tc、Jcがともに高い値を示した。特に磁場をかけた
状態においてもJcは高い値が維持され耐磁場特性に優れ
たものであった。
As is clear from Table 1, the products of the present invention (1 to 7)
Showed high values of both Tc and Jc. In particular, even when a magnetic field was applied, Jc was maintained at a high value, and the magnetic field resistance was excellent.

これに対し、比較方法品のNo8,9は伸延加工材の仮焼
成粉体層の厚さが本発明の限定値外にあるもので、前者
は厚すぎた為にC軸配向並びに通電方向への結晶成長が
十分になされずにJcが低い値のものとなった。又後者は
細くまで強加工した為に仮焼成粉体層の密度が不均一と
なってJcが低下した。又No10は第1加熱処理工程の加熱
温度T1が低すぎて仮焼成粉体が溶融しなかった為、又No
11,12は第2加熱処理工程の加熱温度T2が本発明の限定
値外であった為、又No13は加熱温度T1からT2への冷却速
度が速すぎた為いずれも結晶のC軸配向又は/及び通電
方向への結晶成長が十分になされずその結果Tc、Jcが低
い値のものとなった。
On the other hand, No. 8 and 9 of the comparative method products are those in which the thickness of the calcined powder layer of the rolled material is out of the limit value of the present invention, and the former is too thick, so that the C-axis orientation and the energizing direction are different. Was not sufficiently grown, and Jc was low. In the latter, the density of the calcined powder layer became non-uniform due to strong processing to a small thickness, and Jc decreased. In No. 10, the heating temperature T 1 in the first heat treatment step was too low and the calcined powder was not melted.
11 and 12 because the heating temperature T 2 of the second heat treatment step had limited value outside of the present invention, also No13 the C of any crystal for the cooling rate is too fast from the heating temperatures T 1 to T 2 Crystal growth in the axial orientation and / or in the direction of current flow was not sufficient, resulting in low values of Tc and Jc.

〔効果〕〔effect〕

以上述べたように本発明方法によれば、Jc等の超電導
特性に優れ大容量送電が可能な酸化物超電導導体を効率
よく製造することができるので、工業上顕著な効果を奏
する。
As described above, according to the method of the present invention, an oxide superconducting conductor having excellent superconducting characteristics such as Jc and capable of transmitting a large amount of power can be efficiently produced, and thus has a remarkable industrial effect.

【図面の簡単な説明】 第1〜4図は本発明方法により製造される酸化物超電導
導体の実施例を示すそれぞれ断面説明図である。 1,4…金属管、2,3,5,6…芯材、7…仮焼成粉体。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 4 are cross-sectional explanatory views showing an embodiment of an oxide superconductor manufactured by the method of the present invention. 1,4 ... Metal tube, 2,3,5,6 ... Core material, 7 ... Pre-fired powder.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−243316(JP,A) 特開 昭64−72419(JP,A) 特開 昭63−277575(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 12/00 - 13/00 C04B 35/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-243316 (JP, A) JP-A 64-72419 (JP, A) JP-A-63-277575 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01B 12/00-13/00 C04B 35/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化物超電導体の原料粉末を酸素分圧10-5
〜200Torrの雰囲気中で仮焼成したのち、これを粉砕分
級して調整した仮焼成粉体を、芯材を所定位置に配置し
た金属管内に充填し、次いでこれを伸延加工して金属管
内面と芯材間又は芯材同士間の仮焼成粉体層の厚さを0.
001〜1.0mmとなし、しかるのち、この伸延加工材に、酸
素含有雰囲気中で上記仮焼成粉体層が部分的に溶融する
温度以上の温度T1にて加熱したのち0.01〜100℃/minの
速度で冷却する第1熱処理工程、及び前記第1熱処理工
程を経て結晶化した酸化物超電導体層を酸素含有雰囲気
中にて上記温度T1より20〜150℃低い温度T2にて加熱す
る第2熱処理工程を順次施すことを特徴とする酸化物超
電導体の製造方法。
1. An oxide superconductor raw material powder having an oxygen partial pressure of 10 -5.
After calcining in an atmosphere of ~ 200 Torr, the calcined powder obtained by pulverizing and classifying the calcined powder is filled into a metal tube in which a core material is arranged at a predetermined position, and then this is stretched to form an inner surface of the metal tube. Set the thickness of the calcined powder layer between core materials or between core materials to 0.
001 to 1.0 mm, and then, after heating this stretched material at a temperature T1 or higher at which the calcined powder layer partially melts in an oxygen-containing atmosphere, 0.01 to 100 ° C / min. A first heat treatment step of cooling at a rate and a second heat treatment of heating the oxide superconductor layer crystallized through the first heat treatment step at a temperature T2 lower than the above temperature T1 by 20 to 150 ° C. in an oxygen-containing atmosphere. A method for producing an oxide superconductor, comprising sequentially performing steps.
JP2192475A 1989-08-03 1990-07-20 Manufacturing method of oxide superconducting conductor Expired - Lifetime JP3050573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2192475A JP3050573B2 (en) 1989-08-03 1990-07-20 Manufacturing method of oxide superconducting conductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-202023 1989-08-03
JP20202389 1989-08-03
JP2192475A JP3050573B2 (en) 1989-08-03 1990-07-20 Manufacturing method of oxide superconducting conductor

Publications (2)

Publication Number Publication Date
JPH03163714A JPH03163714A (en) 1991-07-15
JP3050573B2 true JP3050573B2 (en) 2000-06-12

Family

ID=26507335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2192475A Expired - Lifetime JP3050573B2 (en) 1989-08-03 1990-07-20 Manufacturing method of oxide superconducting conductor

Country Status (1)

Country Link
JP (1) JP3050573B2 (en)

Also Published As

Publication number Publication date
JPH03163714A (en) 1991-07-15

Similar Documents

Publication Publication Date Title
EP0281444B1 (en) Process for manufacturing a superconducting wire of compound oxide-type ceramic
EP0505015B1 (en) Superconducting wire and method of manufacturing the same
US4906609A (en) Fabrication of superconducting oxide wires by powder-in-tube method
US5661114A (en) Process of annealing BSCCO-2223 superconductors
US5360784A (en) Method for manufacturing an oxide superconducting tape
US6246007B1 (en) Oxide superconductive wire and process for manufacturing the same
JP3050573B2 (en) Manufacturing method of oxide superconducting conductor
EP0449222B1 (en) Thallium oxide superconductor and method of preparing the same
EP0308326B1 (en) A process for producing an elongated superconductor
JP3050572B2 (en) Manufacturing method of oxide superconducting conductor
JP3034255B2 (en) Superconductor, superconductor wire, and method of manufacturing superconducting wire
EP0304076B1 (en) Method of manufacturing superconductive products
EP0409150B1 (en) Superconducting wire
EP0676817B2 (en) Method of preparing high-temperature superconducting wire
JP3086237B2 (en) Manufacturing method of oxide superconducting wire
JP2563411B2 (en) Manufacturing method of oxide superconducting wire
JP2556545B2 (en) Method for manufacturing oxide superconducting wire
US5346883A (en) Method of manufacturing superconductive products
JP2593520B2 (en) Method for producing oxide-based superconducting wire
JPH02192619A (en) Manufacture of oxide superconductor
JPH01115805A (en) Production of oxide superconductor
JPS63225410A (en) Compound superconductive wire and its manufacture
JPH0982154A (en) Manufacture of oxide superconduting wire
JPH0757571A (en) Manufacture of bi oxide superconducting wire
JPH04124057A (en) Production of ceramic superconductor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080331

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11