JP2002208322A - Oxide superconducting synthetic powder and its manufacturing method - Google Patents

Oxide superconducting synthetic powder and its manufacturing method

Info

Publication number
JP2002208322A
JP2002208322A JP2001002824A JP2001002824A JP2002208322A JP 2002208322 A JP2002208322 A JP 2002208322A JP 2001002824 A JP2001002824 A JP 2001002824A JP 2001002824 A JP2001002824 A JP 2001002824A JP 2002208322 A JP2002208322 A JP 2002208322A
Authority
JP
Japan
Prior art keywords
peak
oxide superconducting
synthetic powder
pbo
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001002824A
Other languages
Japanese (ja)
Other versions
JP4617493B2 (en
Inventor
Masahiro Kojima
正大 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2001002824A priority Critical patent/JP4617493B2/en
Publication of JP2002208322A publication Critical patent/JP2002208322A/en
Application granted granted Critical
Publication of JP4617493B2 publication Critical patent/JP4617493B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxide superconducting synthetic powder of (BiPb)2Sr2Ca2 Cu3OX system that is capable of increasing further the critical current density of the oxide superconducting cable material that is manufactured by PIT method which is a representative manufacturing method of oxide superconducting cable material. SOLUTION: In the oxide superconducting synthetic powder, a peak having 3 or more peak strength ratio when the peak strength on the face of Ca2PbO4 (110) is made 100, exists between the peak of (110) face of Ca2PbO4 and the peak of Ca2PbO4 (020) face, when the measurement of the diffraction X-ray strength using CuK α beam is made. By using this oxide superconducting synthetic powder, the critical current density of the oxide superconducting cable material manufactured by PIT method can be further increased. As a manufacturing method of the oxide superconducting synthetic powder having the above peak, the material powder is fired in the oxidation gas flow.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い臨界電流密度
を得ることができるBi(Pb)2223系酸化物超電
導線材を製造する際に用いる、酸化超電導合成粉および
その製造方法に関する。
TECHNICAL FIELD The present invention relates to an oxidized superconducting synthetic powder used for producing a Bi (Pb) 2223-based oxide superconducting wire capable of obtaining a high critical current density and a method for producing the same.

【0002】[0002]

【従来の技術】現在、酸化物超電導体を線材化する際の
主な作製方法として以下の方法がある。 1.PIT(Powder in Tube)法 2.コーティング法 3.薄膜法 次に、それぞれの方法の概要について説明する。
2. Description of the Related Art At present, the following methods are mainly used for producing oxide superconductors into wires. 1. 1. PIT (Powder in Tube) method 2. Coating method Next, an outline of each method will be described.

【0003】1.のPIT法とは、酸化物超電導体と一
緒に加熱しても、その酸化物超電導体と反応を起こさな
い金属をマトリクスとして準備する(例えばAg、また
はAg合金)。次にこの金属でチューブを作製し、その
中に前記酸化物超電導体の粉末を充填する。そして、伸
線、圧延および熱処理を繰り返しながら細線へと加工し
ていく方法である。このPIT法は、主に(BiPb)
2Sr2Ca2Cu3Ox系の酸化物超電導線材を製造する
のに適した方法である。何故なら、Bi系酸化物超電導
体は結晶粒が板状に成長する特徴があり、ここへPIT
法のような長手方向へ引き延ばす手法を適用すると、板
状結晶粒が長手方向に揃いやすくなる。一方、超電導電
流は板状結晶の長手方向に流れやすい性質を持っている
ので、PIT法により良好な超電導特性を有する線材を
比較的安価に製造することができる。
[0003] 1. In the PIT method, a metal which does not react with the oxide superconductor even when heated together with the oxide superconductor is prepared as a matrix (for example, Ag or an Ag alloy). Next, a tube is made of this metal, and the tube is filled with the oxide superconductor powder. And it is a method of processing into a fine wire while repeating drawing, rolling and heat treatment. This PIT method mainly uses (BiPb)
This is a method suitable for producing a 2 Sr 2 Ca 2 Cu 3 Ox-based oxide superconducting wire. This is because Bi-based oxide superconductors have the feature that crystal grains grow in a plate shape.
When a method of stretching in the longitudinal direction such as the method is applied, plate-like crystal grains are easily aligned in the longitudinal direction. On the other hand, since the superconducting current has a property of easily flowing in the longitudinal direction of the plate-like crystal, a wire having good superconducting properties can be manufactured at a relatively low cost by the PIT method.

【0004】2.のコーティング法とは、酸化物超電導
体の粉末に適宜な有機バインダーを添加してペースト状
にした後、Agテープの表面にコーティングし、これを
熱処理して線材を得る方法である。この方法は主にBi
2Sr2Ca1Cu2y系の酸化物超電導線材を製造する
のに適した方法である。
[0004] 2. Is a method of adding a suitable organic binder to an oxide superconductor powder to form a paste, coating the surface of an Ag tape, and heat treating the Ag tape to obtain a wire. This method is mainly Bi
This is a method suitable for producing a 2 Sr 2 Ca 1 Cu 2 O y -based oxide superconducting wire.

【0005】3.の薄膜法とは、まず金属テープ線材上
に、酸化物超電導体と格子定数が近い、反応性が少ない
等の相性の良い中間層を成膜し、その中間層上に酸化物
超電導体層を積層して線材とする方法である。この方法
は主にY1Ba2Cu3z系の酸化物超電導線材を製造す
るのに適した方法である。何故ならY1Ba2Cu3z
の酸化物超電導体はBi系酸化物超電導体と比較して、
結晶及び結晶成長の2次元性が弱いので例えば前記PI
T法の適用は困難である。この薄膜法においては中間層
の性質が超電導特性に大きな影響を与える。例えば、I
BAD(Ion Beam Assist Depos
ition)法により中間層としてYSZの2次元膜を
形成させたことにより、その上に蒸着成膜されたY1
2Cu3z系の酸化物超電導体の超電導特性が劇的に
向上することが確認されている。しかし、長尺線材製造
技術が未だ開発途上であり、現在のところ実用に必要な
長さの線材は得られていない。
[0005] 3. The thin-film method is to form an intermediate layer with good compatibility, such as having a low lattice constant and a low reactivity, close to the oxide superconductor on a metal tape wire, and forming an oxide superconductor layer on the intermediate layer. This is a method of laminating wires. This method is mainly suitable for producing a Y 1 Ba 2 Cu 3 O z -based oxide superconducting wire. Because the Y 1 Ba 2 Cu 3 O z -based oxide superconductor is compared with the Bi-based oxide superconductor,
Since the two-dimensionality of crystals and crystal growth is weak, for example, the PI
It is difficult to apply the T method. In this thin film method, the properties of the intermediate layer have a great influence on the superconductivity. For example, I
BAD (Ion Beam Assist Depos)
The YSZ two-dimensional film is formed as an intermediate layer by the (Ition) method, and Y 1 B deposited and deposited thereon is formed.
a 2 Cu 3 O z superconducting properties of the oxide superconductor has been confirmed that dramatically improved. However, long wire manufacturing technology is still under development, and a wire having a length necessary for practical use has not been obtained at present.

【0006】以上、現在の代表的な酸化物超電導線材の
製造方法について説明したが、製造の容易性、製造コス
ト、および超電導特性を勘案して最も実用レベルに近い
と考えられるのは1.のPIT法である。現在のとこ
ろ、臨界電流密度が20,000〜25,000A/c
2のものまで得られているが、実用的には35,00
0A/cm2以上の特性が望まれている。
[0006] The above description has been given of the current method of manufacturing a typical oxide superconducting wire. However, considering the ease of manufacturing, the manufacturing cost, and the superconducting characteristics, it is considered that the most practical level is as follows. PIT method. At present, the critical current density is 20,000-25,000 A / c
m 2 , but practically 350,000
A characteristic of 0 A / cm 2 or more is desired.

【0007】[0007]

【発明が解決しようとする課題】マトリクスとしてAg
またはAg合金を用いたPIT法において、さらに臨界
電流密度を上げようと試みる場合、前記金属チューブに
充填される酸化物超電導体の粉末、すなわち酸化物超電
導合成粉の有する諸特性によって、最終的に得られる酸
化物超電導線材の臨界電流密度、等の超電導特性が大き
く変化することが知られている。しかし、どの様な特性
を有する酸化物超電導合成粉を用いれば、高い臨界電流
密度を有する酸化物超電導線材を得ることができるのか
は、いまだに明らかになっていない。本発明は上述の背
景のもとでなされたものであり、主に(BiPb)2
2Ca2Cu3x系の酸化物超電導線材において臨界電
流密度の向上に大きく寄与する、酸化物超電導合成粉と
その製造方法を提供することにある。
SUMMARY OF THE INVENTION Ag as a matrix
Alternatively, in the PIT method using an Ag alloy, when an attempt is made to further increase the critical current density, finally, depending on the properties of the oxide superconductor powder filled in the metal tube, that is, the oxide superconducting synthetic powder, It is known that the superconducting properties such as the critical current density of the obtained oxide superconducting wire greatly change. However, it has not been clarified yet what kind of properties of the oxide superconducting synthetic powder can be used to obtain an oxide superconducting wire having a high critical current density. The present invention has been made under the above-mentioned background, and mainly comprises (BiPb) 2 S
An object of the present invention is to provide an oxide superconducting synthetic powder which greatly contributes to an improvement in critical current density in an r 2 Ca 2 Cu 3 O x -based oxide superconducting wire and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】上述の課題を解決するた
めに、本発明者らが鋭意研究した結果、酸化物超電導合
成粉が満たすべき特性として、X線回折装置を用いX線
としてCuKα線を用い、入射角θでX線照射をおこな
った際、Ca2PbO4の(110)面のピークとCa2
PbO4(020)面のピークとの間である、2θで1
7.70°〜17.90°にピークを有する物質を含有
していることが重要であることを見出し、本発明を完成
したものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have conducted intensive studies. As a characteristic to be satisfied by the oxide superconducting synthetic powder, an X-ray diffractometer is used to convert CuKα radiation into X-rays. When X-ray irradiation is performed at an incident angle θ, the peak of the (110) plane of Ca 2 PbO 4 and Ca 2
1 at 2θ between the peak of the PbO 4 (020) plane
The inventors have found that it is important to contain a substance having a peak at 7.70 ° to 17.90 °, and have completed the present invention.

【0009】すなわち第1の発明は、マトリクスとして
AgまたはAg合金を用いるBi−Pb−Sr−Ca−
Cu系酸化物超電導線の製造の際に用いられる酸化物超
電導合成粉であって、X線回折装置を用いて、前記酸化
物超電導合成粉にCuKα線を照射した際の回折X線強
度の測定結果を、縦軸を回折X線強度とし、横軸を回折
角度とするグラフに表した場合に、Ca2PbO4の(1
10)面のピークとCa2PbO4(020)面のピーク
との間に、Ca2PbO4(110)面のピーク強度を1
00とした場合に3以上のピーク強度比を有するピーク
が存在することを特徴とする酸化物超電導合成粉であ
る。
That is, the first invention is directed to a Bi—Pb—Sr—Ca— using Ag or Ag alloy as a matrix.
Measurement of diffracted X-ray intensity when irradiating CuKα ray to the oxide superconducting synthetic powder using an X-ray diffractometer using an oxide superconducting synthetic powder used in the production of a Cu-based oxide superconducting wire When the results are shown in a graph in which the vertical axis represents the diffraction X-ray intensity and the horizontal axis represents the diffraction angle, (1) of Ca 2 PbO 4
The peak intensity of the Ca 2 PbO 4 (110) plane is 1 between the peak of the 10) plane and the peak of the Ca 2 PbO 4 (020) plane.
The oxide superconducting synthetic powder is characterized in that there is a peak having a peak intensity ratio of 3 or more when it is set to 00.

【0010】第2の発明は、前記CuKα線の照射にお
いて、入射角θをもって照射した際、Ca2PbO4
(110)面のピークとCa2PbO4(020)面のピ
ークとの間に存在するピークが2θで17.70°〜1
7.90°の位置にあることを特徴とする第1の発明に
かかる酸化物超電導合成粉である
[0010] The second invention is the irradiation of the CuKα line, when irradiated with a incident angle theta, between the peaks of the Ca 2 PbO 4 (020) plane of the (110) plane of the Ca 2 PbO 4 The existing peak is 17.70 ° to 1 at 2θ.
7. An oxide superconducting synthetic powder according to the first invention, which is located at a position of 90 °.

【0011】第3の発明は、前記CuKα線の照射にお
いて、Ca2PbO4の(110)面のピークとCa2
bO4(020)面のピークとの間にPbOのピークが
存在することを特徴とする第1の発明にかかる酸化物超
電導合成粉である。
[0011] A third aspect of the present invention is that the peak of the (110) plane of Ca 2 PbO 4 and the Ca 2 P
a bO 4 (020) plane oxide superconducting synthetic powder according to the first invention, characterized in that the peak of PbO is present between the peaks of.

【0012】第4の発明は、第1から第3の発明のいず
れかにかかる酸化物超電導合成粉を用い、且つマトリク
スとしてAgまたはAg合金を用いて作製したことを特
徴とする酸化物超電導線である。
According to a fourth aspect of the present invention, there is provided an oxide superconducting wire manufactured using the oxide superconducting synthetic powder according to any one of the first to third aspects and using Ag or an Ag alloy as a matrix. It is.

【0013】第5の発明は、前記酸化物超電導合成粉の
製造方法であって、Bi化合物、Pb化合物、Sr化合
物、Ca化合物およびCu化合物の粉末を混合し、温度
750〜850℃、時間10〜20時間、酸化性ガスフ
ロー中にて焼成することを特徴とする第1から第3の発
明にかかる酸化物超電導合成粉の製造方法である。
The fifth invention is a process for producing the above-mentioned oxide superconducting synthetic powder, which comprises mixing powders of a Bi compound, a Pb compound, a Sr compound, a Ca compound and a Cu compound, at a temperature of 750 to 850 ° C. for 10 hours. A method for producing an oxide superconducting synthetic powder according to the first to third aspects of the present invention, wherein firing is performed in an oxidizing gas flow for up to 20 hours.

【0014】[0014]

【発明の実施の形態】本発明者らは、上述の課題を解決
するために、様々な試行錯誤を続けた結果、以下に記載
するような方法で酸化物超電導合成粉を製造すると、こ
れを用いた酸化物超電導線材において臨界電流密度の向
上に大きく寄与するすることを発見した。以下、まずそ
の製造方法について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted various trials and errors in order to solve the above-mentioned problems. As a result, when an oxide superconducting synthetic powder is produced by the method described below, It was discovered that the oxide superconducting wire used greatly contributed to the improvement of the critical current density. Hereinafter, the manufacturing method will be described first.

【0015】(原料準備および混合工程)Bi化合物、
Pb化合物、Sr化合物、Ca化合物およびCu化合物
の粉末を所望のモル比となるように混合する。このと
き、Bi化合物としてはBi23が、Pb化合物として
はPbOが、Sr化合物としてはSrCO3が、Ca化
合物としてはCaCO3、CaO、Ca(OH)2が、C
u化合物としてはCuOが好ましかった。また上述の原
料以外でも、湿式共沈法等にてBi、Pb、Sr、C
a、Cuの各元素を所要のモル比になるよう調製した原
料も好ましかった。
(Raw material preparation and mixing step) Bi compound,
Powders of the Pb compound, the Sr compound, the Ca compound and the Cu compound are mixed so as to have a desired molar ratio. At this time, Bi 2 O 3 as a Bi compound, PbO as a Pb compound, SrCO 3 as a Sr compound, CaCO 3 , CaO, Ca (OH) 2 as a Ca compound, C
CuO was preferred as the u compound. In addition to the above-mentioned raw materials, Bi, Pb, Sr, C
Raw materials prepared by adjusting each element of a and Cu to have a required molar ratio were also preferable.

【0016】(仮焼工程)混合した原料粉末を次の条件
で仮焼した。仮焼温度は600〜1,000℃より好ま
しくは750〜850℃で、仮焼時間は3〜50時間、
仮焼雰囲気は大気(酸素分圧20%)あるいはそれ以上
の酸素分圧を有するガスを仮焼炉の内容積1立方メート
ルに対して少なくとも50ml/min以上のフローを
保つこととした。この工程により仮焼粉を得た。
(Calcination Step) The mixed raw material powder was calcined under the following conditions. The calcination temperature is preferably 750 to 850 ° C, more preferably 600 to 1,000 ° C, and the calcination time is 3 to 50 hours.
As the calcining atmosphere, a gas having an oxygen (partial pressure of 20%) or a gas having an oxygen partial pressure of at least 50 ml / min or more per 1 cubic meter of the calcining furnace was maintained. By this step, calcined powder was obtained.

【0017】(粉砕・乾燥工程)仮焼工程で得られた仮
焼粉を、Zrボール等の粉砕メディア、トルエン等の有
機溶媒と共にセラミックスポットに入れて、回転台にセ
ットしボール粉砕をおこなった。この粉砕のねらいは、
仮焼粉を細かく粉砕して均一性を向上させるとともに、
次工程の焼成における熱的反応性を上げることが目的で
ある。粉砕が完了したスラリー状の仮焼粉は乾燥機で乾
燥させる。
(Pulverizing / Drying Step) The calcined powder obtained in the calcining step was put into a ceramic spot together with a pulverizing medium such as a Zr ball and an organic solvent such as toluene, and set on a turntable to perform ball pulverization. . The purpose of this grinding is
The calcined powder is finely ground to improve uniformity,
The purpose is to increase the thermal reactivity in the subsequent firing. The slurry calcined powder that has been pulverized is dried by a dryer.

【0018】(再仮焼工程)乾燥が完了した仮焼粉を再
度仮焼する。仮焼温度、仮焼時間、および仮焼雰囲気は
最初の仮焼工程と同条件とした。この工程により再仮焼
粉を得た。
(Recalcining Step) The calcined powder that has been dried is calcined again. The calcination temperature, calcination time, and calcination atmosphere were the same as those in the first calcination step. Through this step, a recalcined powder was obtained.

【0019】(再粉砕・乾燥工程)再仮焼工程で得られ
た再仮焼粉を、再度、粉砕・乾燥した。粉砕・乾燥条件
は最初の粉砕・乾燥工程と同条件とした。
(Remilling / Drying Step) The recalcined powder obtained in the recalcining step was ground and dried again. The grinding and drying conditions were the same as those of the first grinding and drying step.

【0020】(再仮焼、再粉砕・乾燥の繰り返し実施工
程)乾燥が完了した再仮焼粉は、この後も適宜、再仮
焼、再粉砕・乾燥の各工程を繰り返し実施して、目的と
する酸化物超電導合成粉試料を得た。
(Repeating process of re-calcination, re-crushing and drying) The re-calcined powder having been dried is repeatedly subjected to the steps of re-calcination, re-grinding and drying as appropriate. An oxide superconducting synthetic powder sample was obtained.

【0021】(酸化物超電導合成粉試料の特性測定、回
折X線強度の測定)上述の酸化物超電導合成粉製造工程
で得られた酸化物超電導合成粉試料に対し、線材化して
その超電導特性を測定すると同時に、X線回折装置を用
いて、前記酸化物超電導合成粉にCuKα線を照射した
際の回折X線強度の測定結果と、超電導特性との関係を
検討した。この検討の結果、本発明者は以下に記載する
ような、回折X線強度の測定結果と超電導特性との関連
を突き止めることに成功した。
(Measurement of Characteristics of Oxide Superconducting Synthetic Powder Sample and Measurement of Diffraction X-ray Intensity) The oxide superconducting synthetic powder sample obtained in the above-mentioned oxide superconducting synthetic powder manufacturing process was formed into a wire and the superconducting properties were measured. Simultaneously with the measurement, the relationship between the measurement result of the diffraction X-ray intensity when the oxide superconducting synthetic powder was irradiated with CuKα radiation using an X-ray diffractometer and the superconductivity was examined. As a result of this study, the present inventor has succeeded in finding the relationship between the measurement result of the diffraction X-ray intensity and the superconductivity as described below.

【0022】図1に、良好な超電導特性を有していた酸
化物超電導合成粉試料の、2θが17°〜19°の範囲
における回折X線強度を示す。但し、図1は粉末試料へ
の入射角θに対する回折角2θ横軸にとり、回折X線の
強度を縦軸にとったチャートを示すグラフである。回折
X線強度は、Ca2PbO4の(110)面のピークすな
わち2θ:約17.6°(以下「ピーク」と記載す
る。)、Ca2PbO4の(020)面のピークすなわち
2θ:18.1°(以下「ピーク」と記載する。)、
および2θ:17.8°(以下「ピーク」と記載す
る。)に、主な3個のピークを有していた。(但し、前
記ピーク値の値は、X線回折装置の機種、校正方法等の
差により±1%程度変動する。) このうちピークの存在とその強度が試料の超電導特性
と大きな相関を有する一方、酸化物超電導合成粉試料の
製造工程によりその強度が大きく変化することを見出
し、本発明を完成したものである。
FIG. 1 shows the diffraction X-ray intensity of the oxide superconducting synthetic powder sample having good superconducting properties when 2θ is in the range of 17 ° to 19 °. However, FIG. 1 is a graph showing a chart in which the horizontal axis represents the diffraction angle 2θ with respect to the incident angle θ to the powder sample, and the vertical axis represents the intensity of the diffracted X-rays. The diffracted X-ray intensity is the peak of the (110) plane of Ca 2 PbO 4 , that is, 2θ: about 17.6 ° (hereinafter referred to as “peak”), and the peak of the (020) plane of Ca 2 PbO 4 , that is, 2θ: 18.1 ° (hereinafter referred to as “peak”),
And 2θ: 17.8 ° (hereinafter referred to as “peak”), having three main peaks. (However, the value of the peak value fluctuates by about ± 1% due to the difference in the type of the X-ray diffractometer, the calibration method, and the like.) Among these, the presence and intensity of the peak have a large correlation with the superconductivity of the sample. The present inventors have found that the strength of the oxide superconducting synthetic powder sample varies greatly depending on the manufacturing process, and have completed the present invention.

【0023】すなわち、前記酸化物超電導合成粉試料を
線材化した際に、ピークの存在が確認できない試料を
線材化した場合、臨界電流密度は9,600A/cm2
であるのに対し、ピークの強度を100とした場合
に、ピークの強度の比が3以上ある試料を線材化した
場合、臨界電流密度は31,000A/cm2以上の著
しい向上を示すのである。さらに、前記ピークの強度
を100とした場合に、ピークの強度の比が8以上あ
る試料を線材化した場合、臨界電流密度は実用的に望ま
れる35,000A/cm2を超えて37,000A/
cm2以上を示し、強度の比が28ある試料を線材化し
た場合、臨界電流密度は52,000A/cm2以上を
示すことも判明した。ここで、ピークとピークとの
強度の比を求める方法について図1、2を用いて説明す
る。但し、図2とは図1に、後述するピークとピーク
との強度比を算出する過程を記載したものである。ま
ず、図1において、[ピークの回折X線強度]=ピー
クの強度+バックグラウンド、[ピークの回折X線
強度]=ピークの強度+ピークの位置におけるピー
クの裾の部分の強度+バックグラウンド、と考えられ
る。ここでバックグラウンドの値は、ピークの存在しな
い、2θが18.99°〜19.00°の範囲における
回折X線強度の平均値とする。(この値を図2において
2点鎖線で記載した。) 次に、ピークの位置におけるピークの裾の部分の強
度は、ピークにローレンツ関数を当てはめ、その関数
のピーク3の位置、2θ=17.8°における強度を算
出することで求めることが出来る。(ローレンツ関数の
値を図2において点線で記載した。) (このようにして ピークとピークの強度は、図2
における実線の部分として求められる。) すなわち、ピークとピークとの強度比は、以下のよ
うに算出すればよい。 強度比=[(ピークの回折X線強度−ピークの位置
におけるピークの裾の部分の強度−バックグラウン
ド)/(ピークの回折X線強度−バックグラウン
ド)]×100 そして、このピークの強度はPbOの存在を示唆して
いることから、本発明における、前記臨界電流密度の著
しい向上にはPbOの存在が重要な働きをしていると考
えられる。
That is, when the above oxide superconducting synthetic powder sample is formed into a wire, when a sample in which the presence of a peak is not confirmed is formed into a wire, the critical current density is 9,600 A / cm 2.
On the other hand, when the peak intensity is 100 and a sample having a peak intensity ratio of 3 or more is made into a wire, the critical current density shows a remarkable improvement of 31,000 A / cm 2 or more. . Further, when the peak intensity is set to 100 and a sample having a peak intensity ratio of 8 or more is formed into a wire, the critical current density exceeds 35,000 A / cm 2 which is practically desired, and is 37,000 A. /
cm 2 or more are shown, when the ratio of the intensity is linear Zaika samples with 28, the critical current density was also found to exhibit 52,000A / cm 2 or more. Here, a method of obtaining the ratio of peak to peak intensity will be described with reference to FIGS. However, FIG. 2 shows a process of calculating a peak-to-peak intensity ratio described later in FIG. First, in FIG. 1, [diffraction X-ray intensity of the peak] = peak intensity + background, [diffraction X-ray intensity of the peak] = intensity of the peak + intensity of the foot of the peak at the position of the peak + background, it is conceivable that. Here, the value of the background is the average value of the diffracted X-ray intensities in the range of 18.99 ° to 19.00 ° where 2θ does not exist. (This value is indicated by a two-dot chain line in FIG. 2.) Next, the intensity of the skirt portion of the peak at the peak position is determined by applying the Lorentz function to the peak, the peak 3 position of the function, 2θ = 17. It can be obtained by calculating the intensity at 8 °. (The value of the Lorentz function is indicated by the dotted line in FIG. 2.)
Is obtained as a part of a solid line in. That is, the peak-to-peak intensity ratio may be calculated as follows. Intensity ratio = [(Diffraction X-ray intensity of the peak-Intensity of the foot of the peak at the position of the peak-Background) / (Diffraction X-ray intensity of the peak-Background)] × 100 And the intensity of this peak is PbO. Therefore, it is considered that the presence of PbO plays an important role in the remarkable improvement of the critical current density in the present invention.

【0024】一方、前記酸化物超電導合成粉試料の製造
工程により、ピークの強度は大きく変動し、後述する
製造条件を満足しない場合はピークを有しない試料と
なってしまうのである。この前記ピークとピークと
の強度の比が3以上ある酸化物超電導合成粉試料は、仮
焼工程において、大気(酸素分圧20%)あるいはそれ
以上の酸素分圧を有するガスのフローを保ちながら試料
を仮焼した際に顕著に生成するのである。そして、前記
ガスのフローは十分な量を保つとともに、初回の仮焼開
始から最後の仮焼終了まで継続しておこなうことが必要
である。すなわち、試料を熱処理しているしている際
は、常に前記ガスのフローを保つことが重要である。反
対に、外部との雰囲気のやり取りのない密閉空間、また
は窒素100%、Ar100%といった非酸化性ガスの
フロー下においては、前記ピークの強度比が3以上あ
る試料は生成しないことも判明した。
On the other hand, the peak intensity fluctuates greatly in the manufacturing process of the oxide superconducting synthetic powder sample, and if the manufacturing conditions described later are not satisfied, the sample has no peak. The oxide superconducting synthetic powder sample having the peak-to-peak intensity ratio of 3 or more is subjected to a calcination step while maintaining the flow of the gas having an atmospheric partial pressure (oxygen partial pressure of 20%) or higher. It is formed remarkably when the sample is calcined. Then, it is necessary to keep the flow of the gas at a sufficient level and to continue the flow from the start of the first calcination to the end of the last calcination. That is, it is important to keep the flow of the gas constantly when the sample is being heat-treated. Conversely, it was also found that a sample having an intensity ratio of the peak of 3 or more was not generated in a closed space where there was no exchange of atmosphere with the outside or under a flow of a non-oxidizing gas such as 100% nitrogen and 100% Ar.

【0025】上述した酸化物超電導合成粉試料の生成機
構、および超電導特性への寄与の機構は、完全には明ら
かでないが、おおよそつぎのように推論される。すなわ
ちPbを含有しない、いわゆるBi2223系超電導体
は、短時間の焼成では、120K付近の臨界温度を有す
る高温相への単相化が非常に困難である。しかしここへ
Pbを添加しBi(Pb)2223系とすることでこの
問題点を解決できることが知られている。一方、Pbを
添加することで、試料の熱処理温度、時間によって、C
2PbO4、PbO、PbO2、Pb34、Pb23
の様々なPb化合物が生成する。
The formation mechanism of the above-described oxide superconducting synthetic powder sample and the mechanism of its contribution to the superconducting properties are not completely clear, but are inferred as follows. That is, it is very difficult to convert a so-called Bi2223-based superconductor containing no Pb into a single phase into a high-temperature phase having a critical temperature of around 120 K by firing for a short time. However, it is known that this problem can be solved by adding Pb to Bi (Pb) 2223 system. On the other hand, by adding Pb, depending on the heat treatment temperature and time of the sample, C
Various Pb compounds such as a 2 PbO 4 , PbO, PbO 2 , Pb 3 O 4 , and Pb 2 O 3 are formed.

【0026】ここで、前記酸化物超電導合成粉試料の存
在形態は、前記Bi2223系の高温相の単相ではな
く、Bi(Pb)2212系、Ca2PbO4、CaCu
2を主とした未反応相の混合として構成されている。
このような未反応相で構成された酸化物超電導合成粉試
料がAgまたはAg合金チューブに充填され、圧延、伸
線、熱処理等の各処理を繰り返す過程で、高温相である
Bi(Pb)2223系への単相化が進行するのであ
る。この過程において、従来その役割が重視されてこな
かったPbOが、所定量以上存在すると、マトリクスで
あるAgまたはAg合金との界面において、前記高温相
の生成反応が安定化され、この部分における超電導特性
が大きく改善されるとともに、界面以外の部分において
もBi(Pb)2223系への単相化が良好且つ完全に
近いかたちで進行するのではないかと考えられる。そし
て、上記工程により調製された酸化物超電導合成粉を用
いて、例えばPIT法にて酸化物超電導線を作製すれ
ば、高い臨界電流密度を有する酸化物超電導線を得るこ
とが出来る。
Here, the existence form of the oxide superconducting synthetic powder sample is not a single phase of the Bi2223-based high-temperature phase but a Bi (Pb) 2212-based, Ca 2 PbO 4 , CaCu
It is constituted as a mixture of unreacted phases mainly composed of O 2 .
The oxide superconducting synthetic powder sample composed of such an unreacted phase is filled in an Ag or Ag alloy tube, and in the process of repeating each process such as rolling, drawing, and heat treatment, Bi (Pb) 2223, which is a high temperature phase. The formation of a single phase into the system proceeds. In this process, when PbO, whose role has not been emphasized in the past, is present in a predetermined amount or more, the generation reaction of the high-temperature phase is stabilized at the interface with Ag or the Ag alloy as a matrix, and the superconducting property in this part is stabilized. Is greatly improved, and it can be considered that the formation of a single phase into the Bi (Pb) 2223 system proceeds in a favorable and nearly perfect manner in a portion other than the interface. Then, if an oxide superconducting wire is manufactured by using, for example, the PIT method using the oxide superconducting synthetic powder prepared in the above step, an oxide superconducting wire having a high critical current density can be obtained.

【0027】(実施例)純度3N以上、メディアン粒径
で1〜数μmのBi23、PbO、SrCO3、CaC
3、CuOの各原料粉末をBi:Pb:Sr:Ca:
Cu=1.85:0.35:1.90:2.05:3.
05の組成比となるよう秤量し、混合する。次に、混合
した原料粉末を次の条件で仮焼した。仮焼温度は750
〜850℃で、仮焼時間は10〜20時間、仮焼雰囲気
は100%の酸素ガスとし、仮焼炉の内容積1立方メー
トルに対して、図5に示すように、5l/min、2l
/min、1l/min、0.5l/min、0.1l
/min、および0.05l/min、のフローを保ち
6種類の仮焼粉を得た。この仮焼粉を、Zrボール等の
粉砕メディア、有機溶媒(トルエン)と共にセラミック
スポットに入れて、回転台にセットしボール粉砕をおこ
なった後、乾燥機で乾燥させた。本実施例においては、
この仮焼−粉砕−乾燥の操作サイクルを同条件の下で3
回繰り返しておこない、図5に示す6種類の酸化物超電
導合成粉試料(試料1〜6)を得た。
(Example) Bi 2 O 3 , PbO, SrCO 3 , CaC having a purity of 3N or more and a median particle size of 1 to several μm
Each raw material powder of O 3 and CuO was converted to Bi: Pb: Sr: Ca:
Cu = 1.85: 0.35: 1.90: 2.05: 3.
The components are weighed and mixed so that the composition ratio becomes 05. Next, the mixed raw material powder was calcined under the following conditions. Calcination temperature is 750
8850 ° C., calcination time is 10-20 hours, calcination atmosphere is 100% oxygen gas, and 5 l / min, 2 l, as shown in FIG.
/ Min, 1 l / min, 0.5 l / min, 0.1 l
/ Min, and 0.05 l / min, and 6 types of calcined powder were obtained. The calcined powder was put in a ceramic spot together with a grinding medium such as a Zr ball and an organic solvent (toluene), set on a rotating table, and ground with a ball, followed by drying with a dryer. In this embodiment,
This operation cycle of calcination-pulverization-drying was performed under the same conditions for 3 cycles.
This was repeated twice to obtain six types of oxide superconducting synthetic powder samples (samples 1 to 6) shown in FIG.

【0028】次に、この6種の試料に対し、線材化して
その超電導特性を測定する、と同時に回折X線強度の測
定を実施した。まず、超電導特性の測定について説明す
る。前記6種の試料のそれぞれを1.2g秤量し、中空
部が3.8φ×95mmL肉厚が10mmの円筒状ゴム
型に充填した。ゴム型の両端開口部をゴム栓で密閉し、
水の侵入を防ぐためにビニールテープを用いて隙間を塞
いでから、冷間静水圧プレス(CIP)を用いて最大圧
力1.5ton/cm2で加圧成形し、約1.95φ×
90mmLの成形体を得た。この成形体を、内径2.0
mmφ、外径3.0mmφ×100mmLのAgパイプ
の中に挿入し、伸線、圧延の後、835〜845℃でト
ータル150時間の熱処理を加えることにより、幅約
5.0mm、厚さ約0.2mmのテープ状をしたAgシ
ース酸化物超電導線材を得た。この線材において、断面
の超電導部分の領域は、幅約4.0mm、厚さ約0.0
7mmであった。尚、測定は4端子法を用い、電圧端子
間に1μV/cmの電圧が発生したときの電流値を臨界
電流値と定義した。この結果を図5に示す。
Next, these six types of samples were formed into wires, and their superconducting characteristics were measured. At the same time, the diffraction X-ray intensity was measured. First, measurement of superconducting characteristics will be described. 1.2 g of each of the six samples was weighed and filled into a cylindrical rubber mold having a hollow part of 3.8 mm x 95 mmL and a thickness of 10 mm. Seal both ends of the rubber mold with rubber stoppers,
After closing the gap using vinyl tape to prevent water from entering, press molding with a maximum isostatic pressure of 1.5 ton / cm 2 using a cold isostatic press (CIP) to obtain about 1.95φ ×
A 90 mmL molded body was obtained. This molded body is treated with an inner diameter of 2.0
It is inserted into an Ag pipe having an outer diameter of 3.0 mmφ × 100 mmL, drawn, rolled, and then subjected to a heat treatment at 835 to 845 ° C. for a total of 150 hours. A 2 mm tape-shaped Ag-sheathed oxide superconducting wire was obtained. In this wire, the superconducting portion of the cross section has a width of about 4.0 mm and a thickness of about 0.0 mm.
7 mm. The measurement was performed using a four-terminal method, and a current value when a voltage of 1 μV / cm was generated between the voltage terminals was defined as a critical current value. The result is shown in FIG.

【0029】次に、X線回折装置による回折X線強度の
測定について説明する。X線回折装置として(株)リガ
ク製、RINT−1000を用い下記の条件を設定し
た。 使用X線:CuKα 測定環境:管球 Cu 管電圧 40kV サンプリング幅 0.002° 走査速度 0.050° 発散スリット 1/2° 散乱スリット 1/2° 受光スリット 0.15mm モノクロ受光スリット 0.45mm 測定範囲 17〜19°(2θ) 前記6種の試料のそれぞれを4g秤量し、15mmφの
金型に充填する。そして、一軸圧5kg/cm2で加圧
圧粉したものを回折X線強度の測定用試料とし、前記X
線回折装置にて測定をおこなった。その測定結果を図3
に示す。またこの測定結果より、ピークの強度を10
0とした場合のピークの強度の比を求めた結果を図5
に示した。以上の結果より、ピークの強度の比が3以
上ある試料を線材化した場合、臨界電流密度は31,0
00A/cm2以上の著しい向上を示すことが判明し
た。さらに、前記ピークの強度を100とした場合
に、ピークの強度の比が8以上ある試料を線材化した
場合、臨界電流密度は実用的に望まれる35,000A
/cm2を超えて37,000A/cm2以上を示し、強
度の比が28ある試料を線材化した場合、臨界電流密度
は52,000A/cm2以上を示すことも判明した。
Next, the measurement of the diffraction X-ray intensity by the X-ray diffractometer will be described. The following conditions were set using RINT-1000 manufactured by Rigaku Corporation as an X-ray diffractometer. X-ray used: CuKα Measurement environment: tube Cu tube voltage 40 kV Sampling width 0.002 ° Scanning speed 0.050 ° Diverging slit 1/2 ° Scattering slit 1/2 ° Receiving slit 0.15mm Monochrome receiving slit 0.45mm Measurement Range: 17 to 19 ° (2θ) 4 g of each of the above six types of samples is weighed and filled into a 15 mmφ mold. Then, a sample obtained by pressurizing and compacting at a uniaxial pressure of 5 kg / cm 2 was used as a sample for measuring diffraction X-ray intensity.
The measurement was performed with a line diffractometer. Figure 3 shows the measurement results.
Shown in From the measurement results, the peak intensity was 10
FIG. 5 shows the result of calculating the ratio of the peak intensities when 0 was set.
It was shown to. From the above results, when a sample having a peak intensity ratio of 3 or more was formed into a wire, the critical current density was 31,0.
It was found to show a remarkable improvement of more than 00 A / cm 2 . Further, when the peak intensity is set to 100 and a sample having a peak intensity ratio of 8 or more is formed into a wire, the critical current density is 35,000 A, which is practically desired.
/ Cm 2 and shows the 37,000A / cm 2 or more beyond, when the ratio of the intensity is linear Zaika samples with 28, the critical current density was also found to exhibit 52,000A / cm 2 or more.

【0030】(比較例)Bi23、PbO、SrC
3、CaCO3、CuOの各原料粉末をBi:Pb:S
r:Ca:Cu=1.85:0.35:1.90:2.
05:3.05の組成比となるよう秤量し、混合する。
次に、混合した原料粉末を次の条件で仮焼した。仮焼温
度は750〜850℃で、仮焼時間は10〜20時間、
外部との雰囲気流通のない密閉炉中でおこない、仮焼粉
を得た。得られた仮焼粉に対し、実施例と同条件にて、
仮焼−粉砕−乾燥の操作サイクルを繰り返しておこな
い、比較例試料を得た。
(Comparative Example) Bi 2 O 3 , PbO, SrC
The raw material powders of O 3 , CaCO 3 and CuO are converted to Bi: Pb: S
r: Ca: Cu = 1.85: 0.35: 1.90: 2.
Weigh and mix to obtain a composition ratio of 05: 3.05.
Next, the mixed raw material powder was calcined under the following conditions. The calcination temperature is 750-850 ° C, the calcination time is 10-20 hours,
The calcination was performed in a closed furnace without circulation of atmosphere to the outside to obtain a calcined powder. For the obtained calcined powder, under the same conditions as in the example,
An operation cycle of calcination-pulverization-drying was repeated to obtain a comparative sample.

【0031】比較例試料に対し、実施例試料と同様に線
材化してその超電導特性を測定する、と同時に回折X線
強度の測定を実施した。その結果、臨界電流値は27
A、臨界電流密度は9,600A/cm2であり、回折
X線強度の測定結果は図4のようであった。以上のこと
より、 Ca2PbO4の(110)面のピークとCa2
PbO4(020)面のピークとの間に、Ca2PbO4
(110)面のピーク強度を100とした場合に3以上
のピーク強度比を有するピークが存在しない酸化物超電
導合成粉試料を線材化しても、臨界電流密度の高いもの
を得ることは出来なかった。
The comparative sample was formed into a wire in the same manner as the example sample, and the superconducting characteristics were measured. At the same time, the diffraction X-ray intensity was measured. As a result, the critical current value is 27
A, the critical current density was 9,600 A / cm 2 , and the measurement result of the diffraction X-ray intensity was as shown in FIG. From the above, the peak of the (110) plane of the Ca 2 PbO 4 and Ca 2
Between the peak of the PbO 4 (020) plane and Ca 2 PbO 4
When the peak intensity of the (110) plane was set to 100, even if the oxide superconducting synthetic powder sample having no peak having a peak intensity ratio of 3 or more was formed into a wire, a high critical current density could not be obtained. .

【0032】[0032]

【発明の効果】以上詳述したように、PIT法によって
製造される酸化物超電導線材の臨界電流密度、等の超電
導特性を向上させることを目的とし、(BiPb)2
2Ca 2Cu3x系の酸化物超電導合成粉であって、前
記合成粉にCuKα線を用いた回折X線強度の測定をお
こなった際、2θで17.75°〜17.85°にピー
クを有することを特徴とする合成粉を用いることで、前
記酸化物超電導線材の臨界電流密度を大きく向上させる
ことが実現でき、実用レベルに迄到達することが出来
た。
As described in detail above, the PIT method
Superconductivity such as critical current density of manufactured oxide superconducting wire
(BiPb) with the aim of improving the conductivityTwoS
rTwoCa TwoCuThreeOxOxide superconducting synthetic powder
Measure the diffraction X-ray intensity using CuKα radiation for the synthetic powder.
When this happens, the peak is increased from 17.75 ° to 17.85 ° in 2θ.
The use of synthetic powder characterized by having
Greatly improve the critical current density of the oxide superconducting wire
Can be realized and can reach the practical level.
Was.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例にかかる(BiPb)2Sr2
2Cu3x系酸化物超電導合成粉における回折X線強
度の測定結果例のチャートを示すグラフである。
FIG. 1 shows (BiPb) 2 Sr 2 C according to an embodiment of the present invention.
It is a graph showing a chart of measurement example of the diffracted X-ray intensity in a 2 Cu 3 O x based oxide superconducting synthetic powder.

【図2】本発明の実施例にかかる(BiPb)2Sr2
2Cu3x系酸化物超電導合成粉における回折X線強
度の測定結果より、ピーク強度の比を求める方法を記載
したグラフである。
FIG. 2 shows (BiPb) 2 Sr 2 C according to an embodiment of the present invention.
From the measurement results of the diffracted X-ray intensity in a 2 Cu 3 O x based oxide superconducting synthetic powder is a graph describing a method for determining the ratio of the peak intensity.

【図3】本発明の実施例にかかる、酸化物超電導合成粉
試料1〜6における回折X線強度の測定結果例のチャー
トを示すグラフである。
FIG. 3 is a graph showing a chart of an example of measurement results of diffraction X-ray intensities of oxide superconducting synthetic powder samples 1 to 6 according to an example of the present invention.

【図4】本発明の比較例にかかる(BiPb)2Sr2
2Cu3x系酸化物超電導合成粉における回折X線強
度の測定結果例のチャートを示すグラフである。
FIG. 4 shows (BiPb) 2 Sr 2 C according to a comparative example of the present invention.
It is a graph showing a chart of measurement example of the diffracted X-ray intensity in a 2 Cu 3 O x based oxide superconducting synthetic powder.

【図5】本発明の実施例にかかる、酸化物超電導合成粉
試料1〜6の調製において、仮焼の際における雰囲気の
酸素ガスフロー量と、得られた試料のピーク強度比と、
得られた試料から作製された酸化物超電導線材の臨界電
流値および臨界電流密度と、の関係を記載した表を示す
図である。
FIG. 5 is a graph showing the relationship between the oxygen gas flow rate in the atmosphere during calcination and the peak intensity ratio of the obtained sample in the preparation of oxide superconducting synthetic powder samples 1 to 6 according to the example of the present invention.
It is a figure which shows the table | surface which described the relationship with the critical current value and critical current density of the oxide superconducting wire produced from the obtained sample.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 マトリクスとしてAgまたはAg合金を
用いるBi−Pb−Sr−Ca−Cu系酸化物超電導線
の製造の際に用いられる酸化物超電導合成粉であって、 X線回折装置を用いて、前記酸化物超電導合成粉にCu
Kα線を照射した際の回折X線強度の測定結果を、縦軸
を回折X線強度とし、横軸を回折角度とするグラフに表
した場合に、 Ca2PbO4の(110)面のピークとCa2PbO
4(020)面のピークとの間に、Ca2PbO4(11
0)面のピーク強度を100とした場合に3以上のピー
ク強度比を有するピークが存在することを特徴とする酸
化物超電導合成粉。
1. An oxide superconducting synthetic powder used in the production of a Bi-Pb-Sr-Ca-Cu-based oxide superconducting wire using Ag or an Ag alloy as a matrix, using an X-ray diffractometer. , The oxide superconducting synthetic powder
When the measurement result of the diffraction X-ray intensity at the time of irradiating the Kα ray is shown in a graph in which the vertical axis represents the diffraction X-ray intensity and the horizontal axis represents the diffraction angle, the peak of the (110) plane of Ca 2 PbO 4 is obtained. And Ca 2 PbO
4 between the (020) plane peak and Ca 2 PbO 4 (11
0) An oxide superconducting synthetic powder characterized in that there is a peak having a peak intensity ratio of 3 or more when the peak intensity of the plane is 100.
【請求項2】 前記CuKα線の照射において、入射角
θをもって照射した際、 Ca2PbO4の(110)面のピークとCa2PbO
4(020)面のピークとの間に存在するピークが2θ
で17.70°〜17.90°の位置にあることを特徴
とする請求項1に記載の酸化物超電導合成粉。
In the irradiation device according to claim 2, wherein the CuKα line, when irradiated with a incident angle theta, the peak of the (110) plane of the Ca 2 PbO 4 and Ca 2 PbO
4 The peak existing between the peak on the (020) plane is 2θ
The oxide superconducting synthetic powder according to claim 1, wherein the powder is located at a position of 17.70 ° to 17.90 °.
【請求項3】 前記CuKα線の照射において、Ca2
PbO4の(110)面のピークとCa2PbO4(02
0)面のピークとの間にPbOのピークが存在すること
を特徴とする請求項1に記載の酸化物超電導合成粉。
3. The method according to claim 2 , wherein the irradiation with the CuKα ray comprises adding Ca 2
Peak of (110) plane of PbO 4 and Ca 2 PbO 4 (02
2. The oxide superconducting synthetic powder according to claim 1, wherein a peak of PbO exists between the peak of the 0) plane and the peak of the PbO.
【請求項4】 請求項1から3のいずれかに記載の酸化
物超電導合成粉を用い、且つマトリクスとしてAgまた
はAg合金を用いて作製したことを特徴とする酸化物超
電導線。
4. An oxide superconducting wire produced by using the oxide superconducting synthetic powder according to any one of claims 1 to 3 and using Ag or an Ag alloy as a matrix.
【請求項5】 前記酸化物超電導合成粉の製造方法であ
って、Bi化合物、Pb化合物、Sr化合物、Ca化合
物およびCu化合物の粉末を混合し、温度750〜85
0℃、時間10〜20時間、酸化性ガスフロー中にて焼
成することを特徴とする請求項1から3のいずれかに記
載の酸化物超電導合成粉の製造方法。
5. The method for producing an oxide superconducting synthetic powder, comprising mixing powders of a Bi compound, a Pb compound, a Sr compound, a Ca compound, and a Cu compound, and mixing the powder at a temperature of 750 to 85.
The method for producing an oxide superconducting synthetic powder according to any one of claims 1 to 3, wherein the firing is performed in an oxidizing gas flow at 0 ° C for a time of 10 to 20 hours.
JP2001002824A 2001-01-10 2001-01-10 Oxide superconducting synthetic powder and manufacturing method thereof Expired - Fee Related JP4617493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001002824A JP4617493B2 (en) 2001-01-10 2001-01-10 Oxide superconducting synthetic powder and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001002824A JP4617493B2 (en) 2001-01-10 2001-01-10 Oxide superconducting synthetic powder and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002208322A true JP2002208322A (en) 2002-07-26
JP4617493B2 JP4617493B2 (en) 2011-01-26

Family

ID=18871265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001002824A Expired - Fee Related JP4617493B2 (en) 2001-01-10 2001-01-10 Oxide superconducting synthetic powder and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4617493B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236979A (en) * 2005-02-21 2006-09-07 Dowa Mining Co Ltd Oxide superconductor thick film and its manufacturing method, and paste used for manufacturing the same
EP2343956A1 (en) 2002-07-17 2011-07-13 NGK Spark Plug Co., Ltd. Copper paste and wiring board using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982153A (en) * 1995-09-14 1997-03-28 Sumitomo Electric Ind Ltd Manufacture of oxide superconducting wire
JPH09223426A (en) * 1996-02-14 1997-08-26 Sumitomo Electric Ind Ltd Manufacture of oxide superconducting wire material
JPH09295813A (en) * 1996-04-30 1997-11-18 Hitachi Cable Ltd Oxide superconducting material, production of superconducting material and superconducting wire rod

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982153A (en) * 1995-09-14 1997-03-28 Sumitomo Electric Ind Ltd Manufacture of oxide superconducting wire
JPH09223426A (en) * 1996-02-14 1997-08-26 Sumitomo Electric Ind Ltd Manufacture of oxide superconducting wire material
JPH09295813A (en) * 1996-04-30 1997-11-18 Hitachi Cable Ltd Oxide superconducting material, production of superconducting material and superconducting wire rod

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2343956A1 (en) 2002-07-17 2011-07-13 NGK Spark Plug Co., Ltd. Copper paste and wiring board using the same
JP2006236979A (en) * 2005-02-21 2006-09-07 Dowa Mining Co Ltd Oxide superconductor thick film and its manufacturing method, and paste used for manufacturing the same

Also Published As

Publication number Publication date
JP4617493B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP2002208322A (en) Oxide superconducting synthetic powder and its manufacturing method
JP2966442B2 (en) Bi-based oxide superconductor and method for producing wire thereof
Calestani et al. Effects of the annealing conditions on the structural and superconducting properties of Bi2− xPbxSr2Y0. 2Ca0. 8Cu2Oz
JPH05105449A (en) Superconductive material containing bismuth and process for producing same
Bernhard et al. Formation of superconducting Bi2− yPbySr2Ca2Cu3Ox from coprecipitated oxalates
Lee et al. Preparation of Bi2Sr2CaCu2O y films on alumina substrates with a CuAl2O4 buffer layer
JPH0345301A (en) Manufacture of oxide superconductive tape wire
JPH01261230A (en) Superconductor, superconducting wire and production of said wire
JP3287028B2 (en) Tl, Pb-based oxide superconducting material and method for producing the same
Ochsenkühn-Petropulu et al. Optimization of the sintering process by DSC for the preparation of high-temperature superconductors
JPS63236753A (en) Production of superconductive ceramic
Abraham et al. Elaboration of Tl0. 5Pb0. 5Sr2CaCu2Ox Superconducting phases by an ultrasonic spray–pyrolysis process
Legros et al. Fabrication of pure YBaCuO powders with controlled microstructure
Koshy et al. The structural and superconducting properties of the YBa2Cu3O7− δ‐HfO2 system
JP2716698B2 (en) Method for producing superconducting oxide
JPS63282152A (en) Orientation of superconductor crystal
Holesinger et al. Relationships between processing temperature and microstructure in isothermal melt processed Bi-2212 thick films
JPS63303814A (en) Oxide superconductor
JPH01122921A (en) Method for treating oxide superconductor
JPH02157152A (en) Production of superconducting material
Fischer et al. Evolution of the microstructure in (Bi, Pb)/sub 2/Sr/sub 2/Ca/sub 2/Cu/sub 3/O/sub x//Ag wires and its influence on the critical current density
JPS63302967A (en) Sorting of oxide superconducting material
JPH07109170A (en) Production of bi-based oxide superconductor and material for forming the same
JPH04292418A (en) Oxide superconductor and its production
JPS63239112A (en) Preparation of superconductive material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101005

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees