JPH0345301A - Manufacture of oxide superconductive tape wire - Google Patents
Manufacture of oxide superconductive tape wireInfo
- Publication number
- JPH0345301A JPH0345301A JP1181498A JP18149889A JPH0345301A JP H0345301 A JPH0345301 A JP H0345301A JP 1181498 A JP1181498 A JP 1181498A JP 18149889 A JP18149889 A JP 18149889A JP H0345301 A JPH0345301 A JP H0345301A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- pressure
- tape
- superconductor
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000002887 superconductor Substances 0.000 claims abstract description 18
- 239000000843 powder Substances 0.000 claims abstract description 11
- 238000005245 sintering Methods 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 10
- 238000010304 firing Methods 0.000 claims abstract description 8
- 239000011248 coating agent Substances 0.000 claims abstract description 6
- 238000000576 coating method Methods 0.000 claims abstract description 6
- 239000012298 atmosphere Substances 0.000 claims abstract description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052737 gold Inorganic materials 0.000 claims abstract description 4
- 239000011261 inert gas Substances 0.000 claims abstract description 4
- 239000001301 oxygen Substances 0.000 claims abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 4
- 229910052709 silver Inorganic materials 0.000 claims abstract description 3
- 229910000510 noble metal Inorganic materials 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 17
- 239000002184 metal Substances 0.000 abstract description 17
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 3
- 229910052786 argon Inorganic materials 0.000 abstract description 2
- 238000001354 calcination Methods 0.000 abstract description 2
- 150000001875 compounds Chemical class 0.000 abstract description 2
- 229910052697 platinum Inorganic materials 0.000 abstract description 2
- 239000010970 precious metal Substances 0.000 abstract 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- -1 oxides Chemical class 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 125000005609 naphthenate group Chemical group 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- LEDMRZGFZIAGGB-UHFFFAOYSA-L strontium carbonate Chemical compound [Sr+2].[O-]C([O-])=O LEDMRZGFZIAGGB-UHFFFAOYSA-L 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical class [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野J
本発明は、酸化物超伝導体のテープ線材の製造方法に関
するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application J] The present invention relates to a method for manufacturing an oxide superconductor tape wire.
「従来の技術1
La−Sr−Go−0系、La−Ba−Cu−0系、Y
−Ba−Go−0系、B1−Pb−3r−Ca−(:u
−0系及びT卜Ba−Ca−Cu−0系等の酸化物系超
伝導体は、臨界温度が金属系超伝導体に比べかなり高い
優れた特性を有する化合物である。現在、これらの材料
をテープ線材化する試みがなされている。テープ線材の
製造法としては、ト記酸化物超伝導体粉末をAg、 G
o等の金属パイプに充填し、この充填パイプを圧延伸す
ることによりテープ化する方法が採られていた。“Conventional technology 1 La-Sr-Go-0 system, La-Ba-Cu-0 system, Y
-Ba-Go-0 system, B1-Pb-3r-Ca-(:u
Oxide-based superconductors such as -0 series and T-Ba-Ca-Cu-0 series are compounds that have excellent properties with significantly higher critical temperatures than metal-based superconductors. At present, attempts are being made to make these materials into tape wires. As for the manufacturing method of the tape wire, the oxide superconductor powder mentioned above is mixed with Ag, G
A method has been adopted in which a metal pipe such as a metal pipe is filled with the resin and the filled pipe is rolled and stretched to form a tape.
「発明が解決しようとする課題]
前記の方法で超伝導テープ線材を製造する場合、金属パ
イプに粉末を充填するために、充填密度が低かったり、
また、充填密度にムラができるなどして、圧延伸して得
られる超伝導テープその6のの断面積が一定にならず、
したがって臨界電流密度が小さくなる等の問題点があっ
た。“Problems to be Solved by the Invention” When manufacturing a superconducting tape wire by the method described above, since the metal pipe is filled with powder, the packing density may be low or
In addition, due to uneven packing density, etc., the cross-sectional area of the superconducting tape No. 6 obtained by rolling and drawing is not constant.
Therefore, there were problems such as a decrease in critical current density.
[課題を解決するための手段]
不発旧名らは、酸化物超伝導体の線材化について、加圧
焼結による緻密化、テープ状への延伸及び熱処理条件な
どにつき研究した結果、結晶配向の改善された緻密なテ
ープ線材に加工する方法を見出し、本発明を完成するに
到った。[Means for solving the problem] As a result of research on making oxide superconductors into wires, including densification through pressure sintering, stretching into a tape shape, and heat treatment conditions, they found improvements in crystal orientation. The present invention was completed by discovering a method for processing a dense tape wire rod.
すなわち本発明は、酸化物超伝導体の粉末を。That is, the present invention uses powder of an oxide superconductor.
不活性ガスの雰囲気下に、その焼結温度で、 100〜
1000kg/cm”の圧力で加圧焼結し、得られた焼
結体表面をAg、Au、PL等の貴金属で被覆した後、
延伸してテープ状とし、酸素の存在下に再度焼成を行な
うことを特徴とする酸化物超伝導テープ線材の製造方法
である。Under an atmosphere of inert gas and at its sintering temperature, 100~
After pressure sintering at a pressure of 1000 kg/cm'' and coating the surface of the obtained sintered body with noble metals such as Ag, Au, and PL,
This is a method for producing an oxide superconducting tape wire, which is characterized by stretching the tape into a tape shape and firing it again in the presence of oxygen.
凰紅扮1
加圧焼結に用いる酸化物超伝導体粉末は、酸化物超伝導
体を構成する金属の化合物を、予め混合し仮焼したもの
を粉砕したものである。Huanghonggang 1 The oxide superconductor powder used for pressure sintering is pulverized after pre-mixing and calcining the metal compounds that make up the oxide superconductor.
混合に用いる原料は、酸化物、炭酸化物、硝酸化物等の
無機塩又はナフテン酸塩、アセチルアセトナート、オク
チル酸塩、ステアリン酸塩等の有機塩が用いいられる。The raw materials used for mixing include inorganic salts such as oxides, carbonates, and nitrates, or organic salts such as naphthenates, acetylacetonates, octylates, and stearates.
各超伝導体の組成にしたがって、その原料を例えば、
(La+−11MIII 1cuo41但しM=Ba、
Sr、0≦X≦0.2)、LnBazCu30w (
但しLn=Y、 La、 Eu、 Gd、 Dy、 H
o、 Er、 Yb) 。According to the composition of each superconductor, its raw material is, for example, (La+-11MIII 1cuo41, where M=Ba,
Sr, 0≦X≦0.2), LnBazCu30w (
However, Ln=Y, La, Eu, Gd, Dy, H
o, Er, Yb).
BixPbySrCaCu20w (但し0,7≦X
≦1.0.0≦y≦0.3.1.4≦2≦2.OL又は
TjJa2CazCu+Ow
になるように配合し、メタノール、エタノール、イソプ
ロパツール等の低級アルコール中でl〜30時間混合し
、約+00°Cで乾燥後、790〜810℃でlO〜3
0時間仮煩した後、粉砕する。BixPbySrCaCu20w (however, 0,7≦X
≦1.0.0≦y≦0.3.1.4≦2≦2. OL or TjJa2CazCu+Ow, mixed in a lower alcohol such as methanol, ethanol, isopropanol, etc. for 1~30 hours, dried at about +00°C, and then heated at 790~810°C to 10~30 hours.
After incubating for 0 hours, grind.
廉こ薙易
上記で得られた仮焼粉末の加圧焼結は、ファインセラミ
ックスの焼成、成形に使用されるプレス装置であるHI
P (熱間静水圧プレス)又はホットプレスが用いられ
る。加圧焼結はアルゴン等の不活性ガスの雰囲気内で行
なわれ、焼成温度は各超伝導体組成によって選ばれる。Pressure sintering of the calcined powder obtained above is carried out using HI, a press machine used for firing and molding fine ceramics.
P (hot isostatic press) or hot press is used. Pressure sintering is performed in an atmosphere of an inert gas such as argon, and the firing temperature is selected depending on the composition of each superconductor.
例えば、(La+−xMll) 1cu04の場合10
00〜1100℃、Ln B a 2 Cu 30 w
の場合900−1000℃、BizPbySrCaCu
、Owの場合800〜900℃及びTIBa2Ca2C
u30wの場合800〜950℃である。For example, (La+-xMll) 10 for 1cu04
00-1100℃, Ln Ba 2 Cu 30 w
900-1000℃, BizPbySrCaCu
, 800-900℃ for Ow and TIBa2Ca2C
In the case of u30w, it is 800 to 950°C.
焼結体の形状は、棒状にして後工程の圧延伸を容易にす
る。寸法は目的とする超伝導テープの長さにより異なる
ので、特に限定はしない。The shape of the sintered body is made into a rod shape to facilitate rolling and stretching in the subsequent process. The dimensions are not particularly limited as they vary depending on the length of the intended superconducting tape.
金属コーティング
得られた焼結体の表面へ被覆はされる金属としては、A
g、 Au、 Pt等の酸化しにくい金属が用いられる
。Metal Coating The metal to be coated on the surface of the obtained sintered body is A.
Metals that are difficult to oxidize, such as Au, Pt, etc., are used.
得られた焼結体の表面への金属の被覆は、溶融金属の溶
媒、真空蒸着、スパッタリングやCOO法等によって行
なうことができる。被覆金属層の厚さは通常100μm
以上が必要で、これより薄い被覆層では、延伸する際、
金属が破損する場合がある。The surface of the obtained sintered body can be coated with metal by using a molten metal in a solvent, vacuum evaporation, sputtering, COO method, or the like. The thickness of the coating metal layer is usually 100 μm
If the coating layer is thinner than this, when stretching,
Metal may be damaged.
また、蒸着、スパックリング又は無電解メツキによって
生成した膜を電気メツキによって厚ぐすることができる
。Also, films produced by vapor deposition, spuckling or electroless plating can be thickened by electroplating.
延狸
金属コーティングされた焼結体は被覆膜とと・もに延伸
してテープ状に成形される。延伸は、室温で圧延ロール
によりテープ化する。圧延の際、酸化物超伝導体が半溶
融の状態を示す温度に加熱しながら行なっても良い。テ
ープの厚さと幅は使用目的に合わせて決定する。The sintered body coated with stretched metal is stretched and formed into a tape shape together with the coating film. Stretching is performed at room temperature using a pressure roll to form a tape. The rolling may be carried out while being heated to a temperature at which the oxide superconductor is in a semi-molten state. The thickness and width of the tape are determined according to the intended use.
簗垂
延伸された線材テープは、その超伝導体に適した焼成温
度で、#素の存在下に1〜100時間強熱処理され、炉
内で放冷した後取出される。The stretched wire tape is ignited for 1 to 100 hours in the presence of # element at a firing temperature suitable for the superconductor, and is taken out after cooling in the furnace.
[実施例1
Bi20a 、 PbO、SrCO3,CaCO3及び
CuOの各粉末を、金属の配合比がBi:Pb:Sr:
(:a:Cu = 0.96:0.24:l:l:1.
6になるように配合し、メタノール中で24時間混合し
た後、100℃で乾燥して混合粉末を得た。[Example 1 Each powder of Bi20a, PbO, SrCO3, CaCO3 and CuO was mixed with a metal blending ratio of Bi:Pb:Sr:
(:a:Cu=0.96:0.24:l:l:1.
6, mixed in methanol for 24 hours, and dried at 100°C to obtain a mixed powder.
得られた混合粉末を、空気中、800℃で10時間仮焼
し、更に粉砕した。The obtained mixed powder was calcined in air at 800° C. for 10 hours and further pulverized.
この仮焼粉末を、アルゴン雰囲気下に、温度800℃の
ホットプレスで500kg/cm2の圧力で2時間加圧
焼成し、厚さ3mm、幅1(1mm、長さ50mmの緻
密な焼結体を得た。This calcined powder was pressure-sintered in an argon atmosphere with a hot press at a temperature of 800°C for 2 hours at a pressure of 500 kg/cm2 to form a dense sintered body with a thickness of 3 mm, a width of 1 mm, and a length of 50 mm. Obtained.
得られた焼結体にスパッタ法で厚さ101mのAgの被
膜を作り、次いで電気メツキによりAg被膜を500
umまで厚くした。A 101 m thick Ag film was formed on the obtained sintered body by sputtering, and then a 500 m thick Ag film was applied by electroplating.
It was thickened to um.
この被膜焼結体を、室温で圧延ロールにより厚さ100
amのテープに延伸し、得られた延伸テープを空気中
で850℃で強熱処理した後、炉内で放冷して取出し、
厚さ+0011m、幅20mm、長さ 750mm0)
超伝導線材テープを得た。This coated sintered body was rolled to a thickness of 100 mm at room temperature.
am tape, and the resulting stretched tape was ignited in air at 850°C, then left to cool in a furnace and taken out.
Thickness +0011m, width 20mm, length 750mm0)
A superconducting wire tape was obtained.
得られた超伝導線材テープについて、臨界温度、臨界電
流密度を直流四端子法により測定し、また、テープの結
晶相をX線回折により調べた。The critical temperature and critical current density of the obtained superconducting wire tape were measured by a DC four-terminal method, and the crystal phase of the tape was examined by X-ray diffraction.
その結果は次のとおりであった。The results were as follows.
臨界温度 : 107 K
臨界電流密度: 11000 A/cm2結品相
:はぼlloK級超伝導相てあり、C軸方向に配向して
いた。Critical temperature: 107 K Critical current density: 11000 A/cm2 Solid phase
: It had a loK-class superconducting phase and was oriented in the C-axis direction.
なお、テープ中の超伝導層の相対密度(理論密度に刻す
る割合)も95%以」二であった。The relative density (ratio of the theoretical density) of the superconducting layer in the tape was also 95% or more.
[発明の効果] 本発明の方法によれば、密度の高い、しかも。[Effect of the invention] According to the method of the present invention, the density is high.
配向性の高い、酸化物超伝導テープ線材を製造でき、得
られたテープ線材の臨界電流密度がきわめて優れている
。An oxide superconducting tape wire with high orientation can be manufactured, and the resulting tape wire has an extremely excellent critical current density.
Claims (1)
に、その焼結温度で、100〜1000kg/cm^2
の圧力で加圧焼結し、得られた焼結体表面をAg、Au
、Pt等の貴金属で被覆した後、延伸してテープ状とし
、酸素の存在下に再度焼成を行なうことを特徴とする酸
化物超伝導テープ線材の製造方法。(1) Oxide superconductor powder is sintered at a sintering temperature of 100 to 1000 kg/cm^2 in an inert gas atmosphere.
The surface of the obtained sintered body is sintered at a pressure of Ag, Au.
A method for manufacturing an oxide superconducting tape wire, which comprises coating the wire with a noble metal such as Pt, stretching it into a tape shape, and firing it again in the presence of oxygen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1181498A JPH0345301A (en) | 1989-07-13 | 1989-07-13 | Manufacture of oxide superconductive tape wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1181498A JPH0345301A (en) | 1989-07-13 | 1989-07-13 | Manufacture of oxide superconductive tape wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0345301A true JPH0345301A (en) | 1991-02-26 |
Family
ID=16101813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1181498A Pending JPH0345301A (en) | 1989-07-13 | 1989-07-13 | Manufacture of oxide superconductive tape wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0345301A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63242432A (en) * | 1987-03-30 | 1988-10-07 | Calsonic Corp | Welding tube for heat exchanger and its manufacture |
US5682944A (en) * | 1992-11-25 | 1997-11-04 | Nippondenso Co., Ltd. | Refrigerant condenser |
US6003592A (en) * | 1992-11-25 | 1999-12-21 | Denso Corporation | Refrigerant condenser |
WO2003100795A1 (en) * | 2002-05-24 | 2003-12-04 | Sumitomo Electric Industries, Ltd. | Oxide superconducting wire producing method |
JP2011044437A (en) * | 2010-11-16 | 2011-03-03 | Sumitomo Electric Ind Ltd | Superconducting cable |
-
1989
- 1989-07-13 JP JP1181498A patent/JPH0345301A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63242432A (en) * | 1987-03-30 | 1988-10-07 | Calsonic Corp | Welding tube for heat exchanger and its manufacture |
JPH0741331B2 (en) * | 1987-03-30 | 1995-05-10 | カルソニック株式会社 | Welding tube for heat exchanger and manufacturing method thereof |
US5682944A (en) * | 1992-11-25 | 1997-11-04 | Nippondenso Co., Ltd. | Refrigerant condenser |
US5730212A (en) * | 1992-11-25 | 1998-03-24 | Nippondenso Co., Ltd. | Refrigerant condenser |
US6003592A (en) * | 1992-11-25 | 1999-12-21 | Denso Corporation | Refrigerant condenser |
WO2003100795A1 (en) * | 2002-05-24 | 2003-12-04 | Sumitomo Electric Industries, Ltd. | Oxide superconducting wire producing method |
US6993823B2 (en) | 2002-05-24 | 2006-02-07 | Sumitomo Electric Industries, Ltd. | Method of manufacturing oxide superconducting wire |
KR100900417B1 (en) * | 2002-05-24 | 2009-06-01 | 스미토모덴키고교가부시키가이샤 | Oxide superconducting wire producing method |
JP2011044437A (en) * | 2010-11-16 | 2011-03-03 | Sumitomo Electric Ind Ltd | Superconducting cable |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0303249B1 (en) | Method of manufacturing oxide superconductor, and method of manufacturing composite oxide powder which is the precursor of the oxide superconductor | |
JP3089294B2 (en) | Manufacturing method of superconducting tape material | |
JPH04292819A (en) | Manufacture of oxide superconductive wire | |
JPH0345301A (en) | Manufacture of oxide superconductive tape wire | |
JP3034255B2 (en) | Superconductor, superconductor wire, and method of manufacturing superconducting wire | |
JPS63285812A (en) | Manufacture of oxide superconductive wire material | |
US5646097A (en) | Method of fabricating a (1223) Tl-Ba-Ca-Cu-O superconductor | |
JP2523632B2 (en) | Superconducting coil and manufacturing method thereof | |
JP2597578B2 (en) | Superconductor manufacturing method | |
JP2573256B2 (en) | Manufacturing method of superconductor member | |
JP3165162B2 (en) | Method for producing oxide superconductor thick film | |
Sah et al. | Comparative studies of pure YBa2Cu3O7-ẟ prepared by modified thermal decomposition method against thermal treatment method | |
JP2598055B2 (en) | Oxide superconducting thin film for electronic devices | |
JP2969221B2 (en) | Manufacturing method of oxide superconductor | |
Koshy et al. | The structural and superconducting properties of the YBa2Cu3O7− δ‐HfO2 system | |
JPH01160860A (en) | Production of sintered material of oxide superconductor | |
JP2760999B2 (en) | Oxide superconducting sintered body and method for producing the same | |
JPS63279513A (en) | Superconductor wire rod and its manufacture | |
JPS63236753A (en) | Production of superconductive ceramic | |
JPH01160875A (en) | Setter for calcining oxide superconductor | |
JPS63285811A (en) | Manufacture of oxide superconductor heavy membrane | |
JPH01161627A (en) | Manufacture of oxide superconducting wire | |
JPH01179722A (en) | Production of oxide superconductor | |
JPH06272021A (en) | Bismuth based oxide superconducting conjugated body and its production | |
JPH01130429A (en) | Manufacture of superconductive material |