JPS63302967A - Sorting of oxide superconducting material - Google Patents

Sorting of oxide superconducting material

Info

Publication number
JPS63302967A
JPS63302967A JP62138577A JP13857787A JPS63302967A JP S63302967 A JPS63302967 A JP S63302967A JP 62138577 A JP62138577 A JP 62138577A JP 13857787 A JP13857787 A JP 13857787A JP S63302967 A JPS63302967 A JP S63302967A
Authority
JP
Japan
Prior art keywords
oxide superconducting
superconducting material
fine powder
superconductivity
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62138577A
Other languages
Japanese (ja)
Other versions
JPH0616864B2 (en
Inventor
Tadashi Ohachi
忠 大鉢
Shinzo Yoshikado
進三 吉門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP62138577A priority Critical patent/JPH0616864B2/en
Publication of JPS63302967A publication Critical patent/JPS63302967A/en
Publication of JPH0616864B2 publication Critical patent/JPH0616864B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/021Separation using Meissner effect, i.e. deflection of superconductive particles in a magnetic field

Abstract

PURPOSE:To carry out sorting of a superconducting material and to prepare a ceramic superconductive body in a short time by pulverizing an oxide superconducting material formed by the heat treatment, holding the pulverized product at a temp. exhibiting superconductivity, then impressing magnetic field to the pulverized product. CONSTITUTION:An oxide superconducting material is formed by executing heat treatment, then the material is pulverized to fine powder, and the fine powder is held at a temp. where the pulverized product exhibits superconductivity. The pulverized product is sorted to fine powder which exhibits superconductivity at that temp., and fine powder which does not exhibit superconductivity at the same temp. Preferred oxide superconducting material described above is one expressed by formula I (wherein x is 0-1; y is 2.0-4.0; z is 1.0-4.0; w is 4.0-10.0; A is at least a kind of the group IIIa element of the periodic table; B is at least a kind of the group IIa element of the periodic table). More preferable material may be obtd. if a halogen element is added further to the material of the formula I.

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は酸化物超電導(超伝導ともいうがここでは超電
導という)材料の作製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application of the Invention The present invention relates to a method for producing an oxide superconducting (also referred to as superconducting, but hereinafter referred to as superconducting) material.

「従来の技術」 従来、超電導材料は、水銀、鉛等の元素、NbN 。"Conventional technology" Conventionally, superconducting materials include elements such as mercury and lead, and NbN.

Nb=Ge、 Nb3Ga等の合金またはNb3 (A
l o、 aGeo、 り等の金属化合物が用いられて
いる。しかしこれらのTc(超電導臨界温度)オンセッ
トは25Kまでであった。
Alloys such as Nb=Ge, Nb3Ga or Nb3 (A
Metal compounds such as LO, aGeo, and RI are used. However, the Tc (superconducting critical temperature) onset of these was up to 25K.

他方、近年、セラミック系の超電導材料が注目されてい
る。この材料は最初IBMのチューリッヒ研究所よりB
a−La−Cu−0(バラクオ)系酸化物高温超電導体
として報告され、さらにLSCO(第二銅酸−ランタン
ーストロンチューム)として知られてきた。
On the other hand, ceramic-based superconducting materials have attracted attention in recent years. This material was first obtained from IBM's Zurich laboratory.
It has been reported as an a-La-Cu-0 (baraquo)-based oxide high temperature superconductor, and has been further known as LSCO (cupric acid-lanthanum strontium).

「従来の問題点」 しかし、これら酸化物セラミックスの超電導材料のTc
は30Kがその限界であった。
``Conventional problems'' However, the Tc of these oxide ceramic superconducting materials
The limit was 30K.

このため、このTcおよびTcoをさらに高くし、望む
べくは液体窒素温度C11K ”)またはそれ以上で動
作せしめることが強く求められていた。
Therefore, it has been strongly desired to further increase Tc and Tco, and preferably to operate at a liquid nitrogen temperature of C11K'') or higher.

「問題を解決すべき手段」 本発明は、かかる高温で超電導を呈するべく、新型を構
成すべき素材を探し求めた。その結果、Tc(超電導の
始まる温度)も100〜260KまたTc。
"Means to Solve the Problem" The present invention sought a new type of material that would exhibit superconductivity at such high temperatures. As a result, Tc (the temperature at which superconductivity begins) is also 100-260K.

(電気抵抗の零となる温度)は90〜260Kにまで向
上させ得ることが明らかになった。
It has become clear that the temperature at which the electrical resistance becomes zero can be increased to 90 to 260K.

本発明における超電導性酸化物材料は、(八I−1+ 
 Bx)ycuzo+mXv  x  =  O〜l+
  3+  =2.0 〜4.0  好ましくは2.5
〜3.5. z =1.0〜4.0好ましくは1.5〜
3.5. w =4.0〜10.0好ましくは6〜B、
v =0.01〜3で一般的に示し得るものである。A
は元素周期表いわゆるIIIa族における1種または複
数種の元素であり、BはBa(バリューム)またはSr
(ストロンチューム)等の元素周期表におけるIl’a
族の1種または複数種の元素より選ばれている。さらに
Xはハロゲン元素であり、w+v=2となるべくヘイカ
ンシに充填している。
The superconducting oxide material in the present invention is (8I-1+
Bx) ycuzo+mXv x = O~l+
3+ = 2.0 to 4.0 preferably 2.5
~3.5. z = 1.0~4.0 preferably 1.5~
3.5. w = 4.0-10.0 preferably 6-B,
It can generally be expressed as v = 0.01 to 3. A
is one or more elements in the so-called IIIa group of the periodic table of elements, and B is Ba (valium) or Sr.
Il'a in the periodic table of elements such as (strontium)
selected from one or more elements of the group. Furthermore, X is a halogen element, and is filled as closely as possible so that w+v=2.

本発明ではさらにAを前記した1lla族の材料のうち
、特にイソトリューム族(Eu、Gd、Tb、Dy、H
o、Er。
In the present invention, A is particularly selected from among the above-mentioned 1lla group materials (Eu, Gd, Tb, Dy, H).
o, Er.

Tm、 Yb、 Lu、 Sc、 Y)を用いる。Tm, Yb, Lu, Sc, Y) are used.

本発明は出発材料のハロゲン化物、酸化物または炭酸化
物を混合し、加熱しつつ加圧するいわゆるホットプレス
方式を特徴としている。さらに本発明は、一度加圧して
仮焼成する。さらにこれを微粉末化する。この微粉末を
ハロゲン元素、例えば弗素または塩素を有する液体また
は気体にさらし、このハロゲン元素を粉末中に添加する
。このハロゲン元素が添加された微粉末、または添加さ
れない微粉末に対し、マイスナ効果を利用し、超電導特
性の良好な微粉末と良好でない微粉末とを分類すること
を本発明の目的としている。そして良好な微粉末のみを
集めてこれを加圧しタブレット化し、本焼成を行う。こ
の時、これと同時またはこの後に加圧する工程を有せし
めている。
The present invention is characterized by a so-called hot press method in which starting materials such as halides, oxides, or carbonates are mixed and heated and pressed. Furthermore, in the present invention, pressure is applied once and temporary firing is performed. This is further pulverized. This fine powder is exposed to a liquid or gas containing a halogen element, such as fluorine or chlorine, and the halogen element is added into the powder. The object of the present invention is to use the Meissner effect to classify fine powders with good superconducting properties and fine powders with poor superconducting properties for fine powders to which a halogen element is added or not. Then, only good fine powders are collected and pressed into tablets, which are then subjected to main firing. At this time, a step of applying pressure is included at the same time or after this.

本発明の一般式において、好ましくはとして示したX+
y+2+−の値は一般に成分調整がしやすい配分である
In the general formula of the present invention, preferably X+
The value of y+2+- is generally a distribution that makes it easy to adjust the components.

本発明は未発門人によりなされた特許願「超電導セラミ
ックスの作製方法」 (昭和62年3月25日特願昭6
2−072486)をさらに改良し、そのTcoをハロ
ゲン元素を酸素ベイカンシに添加することにより、大き
く向上せしめたものである。
The present invention is a patent application filed by an undiscovered student entitled ``Method for producing superconducting ceramics'' (Patent application filed on March 25, 1986).
2-072486) was further improved, and its Tco was greatly improved by adding a halogen element to the oxygen vacancy.

「作用」 本発明の新型の酸化物超電導材料はきわめて簡単に作る
ことができる。特にこれらはその出発材料として3Nま
たは4Nの純度の酸化物を用い、これをボールミルを用
い微粉末に粉砕し、混合すれば化学量論的に(AI−X
 Bx)ycuzowのX+LZ+−のそれぞれの値を
任意に変更、制御することができる。
"Operation" The new type of oxide superconducting material of the present invention can be made very easily. In particular, these use an oxide with a purity of 3N or 4N as its starting material, which is ground into a fine powder using a ball mill and mixed to achieve a stoichiometric (AI-X
Each value of X+LZ+- of Bx)ycuzow can be arbitrarily changed and controlled.

そしてこの微粉末内のバラツキに対し、本発明の分類方
法により良好なもののみを選別して出来上がったタブレ
ットの成品の品質を一定にすることが可能となった。
With respect to the dispersion within this fine powder, the classification method of the present invention makes it possible to select only the good ones and make the quality of the finished tablet product constant.

本発明において、マイスナ効果を利用するため、この微
粉末を例えば液体窒素中にいれ、その下方向より磁場を
加えることにより、より高く浮く微粉末のみを選別して
採取すればよい。即ちこの分類には何らの高価な設備を
用いなくともよいという他の特徴も有する。
In the present invention, in order to utilize the Meissner effect, it is sufficient to place the fine powder in, for example, liquid nitrogen and apply a magnetic field from below, thereby selecting and collecting only the fine powder that floats higher. That is, this classification also has another feature in that it does not require the use of any expensive equipment.

以下に実施例に従い、本発明を記す。The present invention will be described below with reference to Examples.

「実施例1」 本発明の実施例としてAとしてYb、 BとしてBaを
用いた。
"Example 1" As an example of the present invention, Yb was used as A and Ba was used as B.

出発材料はyb化合物として酸化イッテルジューム(Y
b205) 、 Ba化合物としてBaCO3,銅化合
物としてCuOを用いた。これらは高純度化学工業株式
会社より入手し純度は99.95χまたはそれ以上の微
粉末を用いた。さらにx =0.67(^:B=1:2
)、y=3. z −3、W=6〜8となるべく選んだ
The starting material is ytterdium oxide (Y
b205), BaCO3 was used as the Ba compound, and CuO was used as the copper compound. These were obtained from Kojundo Kagaku Kogyo Co., Ltd. and used as fine powders with a purity of 99.95χ or higher. Furthermore, x = 0.67 (^:B=1:2
), y=3. z −3 and W=6 to 8 were selected as much as possible.

これらを十分乳鉢で混合しカプセルに封入し、30Kg
/cm”の荷重を加えてタブレット化(大きさ10mm
φX3mm)した。さらに酸化性雰囲気、例えば大気中
で500〜1000℃、例えば700℃で8時間加熱酸
化をした。この工程を仮焼成とした。
Mix these thoroughly in a mortar and seal in capsules, weighing 30kg.
/cm” load to make it into a tablet (size 10mm)
φX3mm). Further, heating oxidation was carried out at 500 to 1000°C, for example 700°C, for 8 hours in an oxidizing atmosphere, for example, air. This step was called pre-firing.

次にこれを粉砕し、乳鉢で混合した。そしてその粉末の
平均粉半径が10μm以下好ましくは0.5μm以下の
大きさとなるようにした。
This was then ground and mixed in a mortar. The average powder radius of the powder was adjusted to be 10 μm or less, preferably 0.5 μm or less.

この後、これらを液体窒素(77K)内に入れる。After this, they are placed in liquid nitrogen (77K).

するとこの微粉末はすべて77Kに冷やされる。この後
、この液体窒素の容器の下側より磁場を加える。すると
マイスナ効果によりこの磁場に対し超電導性を有する微
粉末が反発し、結果として浮くことができる。そしてT
coの大きい粉末程高く位置するため、この高さを分類
して、Tcoの大きいもの、中程度のもの、Tcoが液
体窒素温度より低いものとして分類することができる。
All of this fine powder is then cooled to 77K. After this, a magnetic field is applied from the bottom of the liquid nitrogen container. Then, due to the Meissner effect, the superconducting fine powder is repelled by this magnetic field, and as a result, it can float. And T
Since powders with larger co are located higher, powders can be classified based on this height into those with large Tco, those with medium Tco, and those with Tco lower than the liquid nitrogen temperature.

この微粉末に対し、ハロゲン元素である弗素等を添加す
るため、フロン液中に弗化アンモニュームを溶かした溶
液中に浸した。この時、2気圧程度に加圧し、さらに2
00℃程度に加熱すると、弗素を材料中特に酸素ベイカ
ンシ中に含浸させやすい。するとこのフロン中の弗素と
弗化アンモニューム中の弗素とを微粉末の表面および内
部に含浸させることができた。
To add a halogen element such as fluorine to this fine powder, it was immersed in a solution of ammonium fluoride dissolved in a fluorocarbon solution. At this time, pressurize to about 2 atmospheres, and then pressurize to about 2 atmospheres.
When heated to about 00°C, fluorine is easily impregnated into the material, particularly into the oxygen vacancy. Then, the fluorine in the CFC and the fluorine in the ammonium fluoride were able to be impregnated into the surface and inside of the fine powder.

さらにこれをカプセルに封入し10〜3000Kg/c
m 2例えば50Kg/cm2の圧力でタブレットに加
圧しつつ500〜1000℃、例えば750℃の酸化物
雰囲気、例えば大気中で酸化し、本焼成を1〜10時間
、例えば2時間行い、その後徐冷するいわゆるホー/ 
)プレス方式とした。
Furthermore, this is enclosed in a capsule and the amount is 10~3000Kg/c.
m2 While pressurizing the tablet at a pressure of, for example, 50 kg/cm2, oxidize in an oxide atmosphere of 500 to 1000 °C, for example, 750 °C, for example, in the air, perform main firing for 1 to 10 hours, for example, 2 hours, and then slowly cool. The so-called ho/
) Press method was adopted.

このタブレットはベルブスカイト構造が主として観察さ
れるが、その他の新型構造も同時に観察された。
This tablet mainly has a vervskite structure, but other new structures were also observed at the same time.

次にこの試料を酸素を少なくさせた0□−Ar中で加熱
(600〜1100℃、3〜30時間、例えば750℃
、20時間)して、還元させた。この時は加圧をせず、
むしろ大気圧または減圧下がTcoを高める上で好まし
い。すると新型の構造がより顕著に観察されるようにな
った。
Next, this sample was heated in 0□-Ar with reduced oxygen (600-1100°C, 3-30 hours, e.g. 750°C).
, 20 hours) for reduction. At this time, do not apply pressure.
Rather, it is preferable to use atmospheric pressure or reduced pressure in order to increase Tco. Then, the new structure became more noticeable.

この試料を用いて固有抵抗と温度との関係を調べた。す
るとTcオンセットとして227に、 Tcoとして2
25Kを観察することができた。
Using this sample, the relationship between resistivity and temperature was investigated. Then Tc onset is 227, Tco is 2
25K could be observed.

また何ら選別をすることなくタブレットを作った場合、
または液体窒素温度において何らの超電導特性を有さな
い微粉末を用いてタブレットを作った場合もTcoは7
7Kまたはそれ以下でしたなかった・ 「実施例2」 この実施例としてAとしてYおよびYbを1:1 とし
て用いた。また、BとしてBaを用いた。出発材料はY
F3.YbF3を、BaとしてBaCO5、また銅化合
物としてCuOを用いた。その他は実施例1と同様であ
る。
Also, if a tablet is made without any sorting,
Alternatively, if a tablet is made using a fine powder that does not have any superconducting properties at liquid nitrogen temperature, Tco is 7.
7K or less.Example 2 In this example, Y and Yb were used as A in a ratio of 1:1. Moreover, Ba was used as B. Starting material is Y
F3. YbF3, BaCO5 as Ba, and CuO as the copper compound were used. The rest is the same as in Example 1.

Tcオンセットとして209K、Tcoとして208K
を得ることができた。
209K as Tc onset, 208K as Tco
was able to obtain.

「実施例3」 実施例1において、AとしてYF、を用いた。また一度
微粉末化した後、この微粉末を弗化水素気体中にさらし
た。この雰囲気は300℃、50Kg/co+2の圧力
とし、3時間保持した。さらにこれを実施例1に示す如
く、再びタブレット化した。
"Example 3" In Example 1, YF was used as A. Further, after being once pulverized, this fine powder was exposed to hydrogen fluoride gas. This atmosphere was set to 300° C. and a pressure of 50 Kg/co+2, and was maintained for 3 hours. Furthermore, as shown in Example 1, this was again made into tablets.

するとTcオンセット、Tcoともに、さらに3〜5″
にも向上させることができた。
Then, both Tc onset and Tco are further increased by 3~5″
could also be improved.

本発明において、イソトリューム族(Eu、 Ga、 
Tb。
In the present invention, isotorium group (Eu, Ga,
Tb.

Dy、lld、Er、Tm、Yb、Lu、Sc、V)の
元素を弗化物とじて出発材料として用い、複合酸化物材
料とすると、特にTcoを上昇させるのに有効である。
Using elements Dy, lld, Er, Tm, Yb, Lu, Sc, V) together with fluoride as a starting material to form a composite oxide material is particularly effective in increasing Tco.

特にこれらより選ばれた材料を(Al□Bx) ycu
zo−で示される一般式0のベイカンシを充填するため
、この位置に一1価のハロゲン元素、例えば弗素、塩素
、臭素、ヨウ素を添加することは臨界電流を大きく向上
させるためにも有効であった。
In particular, materials selected from these (Al□Bx) ycu
Adding monovalent halogen elements such as fluorine, chlorine, bromine, and iodine to this position in order to fill the vacancy of the general formula 0 represented by zo- is also effective in greatly increasing the critical current. Ta.

「実施例4」 本実施例として、実施例3の変型であるが、イントリュ
ーム族の元素、例えばYを酸化物で添加した。しかしこ
れらはRz(SO4)  ・K、SO,(Rはイントリ
ューム元素)型の複塩として過剰の硫酸力リューム溶液
にとかし、これを実施例1で用いた仮焼成後の粉末に添
加して本発明に示すハロゲン元素をベイカンシの位置に
添加させた。さらにこの後、本焼成を実施例1と同様に
行った。するとこの仮焼成後の溶液の添加方法はその添
加量を精密に制御できる。その結果、実施例1に比べて
さらに最大8にもTcを向上できた。
"Example 4" This example is a modification of Example 3, but an intrum group element, such as Y, was added as an oxide. However, these were dissolved in an excess sulfuric acid solution as a double salt of the Rz(SO4) ・K, SO, (R is an intrum element) type, and this was added to the pre-calcined powder used in Example 1. The halogen element shown in the present invention was added at the vacancy position. Furthermore, after this, main firing was performed in the same manner as in Example 1. Then, in this method of adding the solution after pre-calcination, the amount added can be precisely controlled. As a result, Tc could be further improved by up to 8 compared to Example 1.

「効果」 本発明により、これまでまったく不可能とされていたセ
ラミック超電導体をきわめて緻密に短時間に作ることが
できるようになった。
"Effects" The present invention has made it possible to produce ceramic superconductors extremely precisely and in a short time, which was previously considered impossible.

本発明の選別方法を用いることにより、TcoとTcと
の差が1〜2にとなり、きわめて急峻に超電導を呈する
温度と呈さない温度とを区別することができるようにな
った。
By using the selection method of the present invention, the difference between Tco and Tc became 1 to 2, and it became possible to distinguish between temperatures that extremely sharply exhibit superconductivity and temperatures that do not exhibit superconductivity.

またハロゲン元素を酸素ベイカンシの位置に添加するこ
とにより、Tcoを大きく向上させるに加えて、臨界電
流密度をも向上させることが可能になった。
Furthermore, by adding a halogen element to the oxygen vacancy position, it has become possible to greatly improve Tco and also improve critical current density.

また本発明の分子式で示される酸化物超電導材料はその
超電導の推定メカニズムとして、銅の酸化物が構造にお
いて層構造を有し、その層構造も一分子内で1層または
2層構成を有し、その層内をキャリアが超電導をしてい
るものと推定される。
In addition, the oxide superconducting material represented by the molecular formula of the present invention has a layered structure in which the copper oxide has a layered structure, and the layered structure also has a one-layer or two-layer structure within one molecule, as the presumed mechanism of superconductivity. It is presumed that carriers are superconducting within this layer.

本発明の実施例は、タブレフトにしたものである。しか
しタブレットにするのではなく、仮焼成または本焼成の
後の粉末を溶媒にとかし、基板等にその溶液をコーティ
ングをし、これをハロゲン元素を含有する酸化性雰囲気
で焼成し、さらにその後還元性雰囲気で本焼成をするこ
とによって、薄膜の酸化物超電導材料とすることも可能
である。
The embodiment of the present invention is a tablet left device. However, instead of making tablets, the powder after preliminary firing or final firing is dissolved in a solvent, the solution is coated on a substrate, etc., and this is fired in an oxidizing atmosphere containing a halogen element, and then the reducing By performing main firing in an atmosphere, it is also possible to form a thin film of oxide superconducting material.

本発明により超電導体を容易に低価格で作ることができ
るようになった。
The present invention has made it possible to easily produce superconductors at low cost.

Claims (1)

【特許請求の範囲】 1、加熱工程をへて酸化物超電導材料を形成した後、微
粉末化せしめ、該微粉末を前記材料が超電導を呈する温
度に保持せしめた後、磁場を加えることにより、前記材
料における前記温度で超電導を呈する微粉末と呈さない
微粉末とを選別することを特徴とする酸化物超電導材料
の選別方法。 2、特許請求の範囲第1項において、酸化物超電導材料
は(A_1_−_xB_x)_yCu_zOwx=0〜
1、y=2.0〜4.0、z=1.0〜4.0、w=4
.0〜10.0を有し、Aは元素周期表IIIa族の1種
または複数種より選ばれた元素であり、Bは元素周期表
IIa族の1種または複数種より選ばれた元素よりなるこ
とを特徴とする酸化物超電導材料の選別方法。 3、特許請求の範囲第1項において、酸化物超電導材料
は該材料中にハロゲン元素が添加されたことを特徴とす
る酸化物超電導材料の選別方法。
[Claims] 1. After forming an oxide superconducting material through a heating process, it is pulverized, the fine powder is maintained at a temperature at which the material exhibits superconductivity, and then a magnetic field is applied, A method for sorting oxide superconducting materials, the method comprising sorting fine powders that exhibit superconductivity and fine powders that do not exhibit superconductivity at the temperature in the materials. 2. In claim 1, the oxide superconducting material is (A_1_-_xB_x)_yCu_zOwx=0~
1, y=2.0~4.0, z=1.0~4.0, w=4
.. 0 to 10.0, A is an element selected from one or more elements of Group IIIa of the Periodic Table of Elements, and B is an element selected from Group IIIa of the Periodic Table of Elements.
A method for selecting an oxide superconducting material comprising one or more elements selected from Group IIa. 3. A method for selecting an oxide superconducting material according to claim 1, wherein the oxide superconducting material has a halogen element added thereto.
JP62138577A 1987-06-01 1987-06-01 Selection method of oxide superconducting materials Expired - Lifetime JPH0616864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62138577A JPH0616864B2 (en) 1987-06-01 1987-06-01 Selection method of oxide superconducting materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62138577A JPH0616864B2 (en) 1987-06-01 1987-06-01 Selection method of oxide superconducting materials

Publications (2)

Publication Number Publication Date
JPS63302967A true JPS63302967A (en) 1988-12-09
JPH0616864B2 JPH0616864B2 (en) 1994-03-09

Family

ID=15225378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62138577A Expired - Lifetime JPH0616864B2 (en) 1987-06-01 1987-06-01 Selection method of oxide superconducting materials

Country Status (1)

Country Link
JP (1) JPH0616864B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6463062A (en) * 1987-09-03 1989-03-09 Mitsubishi Electric Corp Production of oxide superconductor
JPH01119352A (en) * 1987-10-30 1989-05-11 Seiko Epson Corp Method for separating superconductor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291653A (en) * 1987-05-23 1988-11-29 Fujikura Ltd Manufacture of superconducting material of oxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291653A (en) * 1987-05-23 1988-11-29 Fujikura Ltd Manufacture of superconducting material of oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6463062A (en) * 1987-09-03 1989-03-09 Mitsubishi Electric Corp Production of oxide superconductor
JPH01119352A (en) * 1987-10-30 1989-05-11 Seiko Epson Corp Method for separating superconductor

Also Published As

Publication number Publication date
JPH0616864B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
JPS63302967A (en) Sorting of oxide superconducting material
JP2630361B2 (en) Superconducting material
JP2603688B2 (en) Superconducting material reforming method
JP2588200B2 (en) Manufacturing method of oxide superconductor
JPS63233069A (en) Preparation of superconductive ceramic
JPS63236753A (en) Production of superconductive ceramic
JPS63303846A (en) Production of superconducting material
JPS63233068A (en) Preparation of superconductive ceramic
WO1995020063A1 (en) Preparation of superconductor precursor powders
JPS63303848A (en) Preparation of oxide superconducting material
KR930002579B1 (en) Manufacturing method of thick film super conductor
JPS63239152A (en) Preparation of superconductive material
JPH01179722A (en) Production of oxide superconductor
JPS63236752A (en) Superconductive ceramic
JPS63303814A (en) Oxide superconductor
JPH01242459A (en) Superconducting ceramics
JPS63239112A (en) Preparation of superconductive material
JPH09263447A (en) Superconductive precursor composite powder and manufacture of superconductor therefrom
JPH0453817B2 (en)
JPH02120226A (en) Superconducting material of oxide
JPS63233067A (en) Preparation of superconductive ceramic
JPH01122921A (en) Method for treating oxide superconductor
JPS63242924A (en) Preparation of superconducting material
JPH07296653A (en) Manufacture of oxide superconductive composite substance
Guo Tang Youqi Lin Bingxiong Zhou Dingyun Zhu Wenjie Chen Fengxiang Zheng Xiangmiao Zhang Yufen Li Neng Laboratory for Applied Physical Chemirstry Institute of Physical Chemistry