JPS63303846A - Production of superconducting material - Google Patents

Production of superconducting material

Info

Publication number
JPS63303846A
JPS63303846A JP62138576A JP13857687A JPS63303846A JP S63303846 A JPS63303846 A JP S63303846A JP 62138576 A JP62138576 A JP 62138576A JP 13857687 A JP13857687 A JP 13857687A JP S63303846 A JPS63303846 A JP S63303846A
Authority
JP
Japan
Prior art keywords
oxide
powder
superconducting material
halogen element
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62138576A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP62138576A priority Critical patent/JPS63303846A/en
Publication of JPS63303846A publication Critical patent/JPS63303846A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain an extremely dense ceramic superconducting material in a short time and at low cost by pulverizing a calcined material contg. a group IIIa element, a group IIa element, and Cu, adding elementary halogen to said powder, and molding to a specified shape and heating the molded product. CONSTITUTION:A starting material consisting of a compd. of a group IIIa element (e.g. Yb2O5), a compd. of a group IIa element (e.g. BaCO3), and a Cu compd. (e.g. CuO) is calcined in oxidizing atmosphere such as atmospheric air. Fine powder having <=10mum mean particle radius is obtd. by pulverizing obtd. oxide. Then, said elementary halogen is added to said fine powder by exposing said fine powder to a liquid or gas contg. the elementary halogen such as F, and the treated powder is compression molded. During the compres sion molding, the material is oxidized at 500-1,000 deg.C, for example, 750 deg.C, in oxidizing atmosphere such as atmospheric air to obtain thus an oxide supercon ductor contg. elementary halogen.

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は酸化物セラミック系超電導(超伝温ともいうが
ここでは超電導という)材料の作製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application of the Invention The present invention relates to a method for producing an oxide ceramic superconducting (also referred to as superconducting, but herein referred to as superconducting) material.

「従来の技術」 従来、超電導材料は、水銀、鉛等の元素、NbN。"Conventional technology" Conventionally, superconducting materials include elements such as mercury and lead, and NbN.

Nb3Ge+ Nb3Ga等の合金またはNb5(Al
e、 aGeo、 z)等の金属化合物が用いられてい
る。しかしこれらのTc(超電導臨界温度)オンセント
は25Kまでであった。
Alloys such as Nb3Ge+ Nb3Ga or Nb5(Al
Metal compounds such as e, aGeo, z) are used. However, the Tc (superconducting critical temperature) of these was up to 25K.

他方、近年、セラミック系の超電導材料が注目されてい
る。この材料は最初IBMのチューリッヒ研究所よりB
a−La−Cu−0(バラクオ)系酸化物高温超電導体
として報告され、さらにLSCO(第二銅酸−ランタン
ーストロンチューム)として知られてきた。
On the other hand, ceramic-based superconducting materials have attracted attention in recent years. This material was first obtained from IBM's Zurich laboratory.
It has been reported as an a-La-Cu-0 (baraquo)-based oxide high temperature superconductor, and has been further known as LSCO (cupric acid-lanthanum strontium).

「従来の問題点」 しかし、これら酸化物セラミックスの超電導の可能性は
ベルブスカイト型の構造を利用しているもので、そのT
cも30Kがその限界であった。
``Conventional problems'' However, the possibility of superconductivity in these oxide ceramics is based on the vervskite structure, and its T
The limit for c was also 30K.

このため、このTcおよびTcoをさらに高くし、望む
べ(は液体窒素温度(77K )またはそれ以上で動作
せしめることが強く求められていた。
For this reason, there has been a strong demand to further increase Tc and Tco and to operate at the desired liquid nitrogen temperature (77K) or higher.

「問題を解決すべき手段」 本発明は、かかる高温で超電導を呈するべく、新型を構
成すべき素材を探し求めた。その結果、Tc(超電導の
始まる温度)も100〜260KまたTc。
"Means to Solve the Problem" The present invention sought a new type of material that would exhibit superconductivity at such high temperatures. As a result, Tc (the temperature at which superconductivity begins) is also 100-260K.

(電気抵抗の零となる温度)は90〜260Kにまで向
上させ得ることが明らかになった。
It has become clear that the temperature at which the electrical resistance becomes zero can be increased to 90 to 260K.

本発明の超電導性酸化物材料は(AI−X Bx)yc
uzOwX=O〜L y =2.0〜4.0好ましくは
2.5〜3.5゜z =LO〜4.0好ましくは1.5
〜3.5.W=4.0〜10.0好ましくは6〜8で一
般的に示し得るものである。Aは元素周期表いわゆるm
a族における1種または複数種の元素であり、BはBa
(バリューム)またはSr(ストロンチューム)等の元
素周期表におけるIIa族の1種または複数種の元素よ
り選ばれている。
The superconducting oxide material of the present invention is (AI-X Bx)yc
uzOwX=O~Ly=2.0~4.0 preferably 2.5~3.5゜z=LO~4.0 preferably 1.5
~3.5. W=4.0 to 10.0, preferably 6 to 8, which can generally be expressed. A is the periodic table of elements, so-called m
One or more elements in group a, B is Ba
The element is selected from one or more elements of group IIa in the periodic table of elements, such as (valium) or strontium (Sr).

本発明ではさらにAを前記したma族の材料のうち、特
にイントリューム族(Eu、Gd、Tb、Dy、Ho、
Er。
In the present invention, A is a material of the above-mentioned ma group, especially intrum group (Eu, Gd, Tb, Dy, Ho,
Er.

Tm、Yb1Lu、5CIY)を用いる。Tm, Yb1Lu, 5CIY) are used.

本発明は出発材料のハロゲン化物、酸化物または炭酸化
物を混合し、加熱しつつ加圧するいわゆるホットプレス
方式を特徴としている。さらに本発明は、一度加圧して
仮焼成する。さらにこれを微粉末化する。この微粉末を
ハロゲン元素、例えば弗素または塩素を有する液体また
は気体にさらし、このハロゲン元素を粉末中に添加する
。この後、再び加圧しタブレット化し、本焼成を行う。
The present invention is characterized by a so-called hot press method in which starting materials such as halides, oxides, or carbonates are mixed and heated and pressed. Furthermore, in the present invention, pressure is applied once and temporary firing is performed. This is further pulverized. This fine powder is exposed to a liquid or gas containing a halogen element, such as fluorine or chlorine, and the halogen element is added into the powder. After that, it is pressurized again to form a tablet, and the final firing is performed.

この時、これと同時に加圧する工程を有せしめている。At this time, there is a step of pressurizing at the same time.

本発明の一般式において、好ましくはとして示した)l
+)’+L−の値は一般に成分調整がしやすい配分であ
る。
In the general formula of the present invention, preferably expressed as )l
The value of +)'+L- is generally a distribution that makes it easy to adjust the components.

本発明は本発明人によりなされた特許願「超電導セラミ
ックスの作製方法」 (昭和62年3月25日特願昭6
2−072486)をさらに改良し、そのTcoをハロ
ゲン元素を酸素ベイカンシに添加することにより、大き
く向上せしめたものである。
The present invention is a patent application filed by the inventor entitled "Method for producing superconducting ceramics" (Patent application filed on March 25, 1986).
2-072486) was further improved, and its Tco was greatly improved by adding a halogen element to the oxygen vacancy.

「作用」 本発明の新型の酸イ°ヒ物超電導材料はきわめて簡単に
作ることができる。特にこれらはその出発材料として3
Nまたは4Nの純度の酸化物を用い、これをボールミル
を用い微粉末に粉砕し、混合すれば化学量論的に(At
−X Bx)ycuzowのX+y+ZIWのそれぞれ
の値を任意に変更、制御することができる。
"Operation" The new type of acid/arsenic superconducting material of the present invention can be made very easily. In particular, these 3
By using an oxide with a purity of N or 4N, grinding it into a fine powder using a ball mill, and mixing it, it becomes stoichiometrically (At
-XBx)ycuzow's X+y+ZIW values can be arbitrarily changed and controlled.

本発明において、かかる超電導材料を作るのに特に高価
な設備を用いなくともよいという他の特徴も有する。
Another feature of the present invention is that it does not require the use of particularly expensive equipment to produce such superconducting materials.

以下に実施例に従い、本発明を記す。The present invention will be described below with reference to Examples.

「実施例1」 本発明の実施例としてAとしてYb、 BとしてBaを
用いた。
"Example 1" As an example of the present invention, Yb was used as A and Ba was used as B.

出発材料はyb化合物として酸化イッテルジューム(Y
b205) 、 Ba化合物としてBaC03+銅化合
物としてCuOを用いた。これらは高純度化学工業株式
会社より入手し純度は99.95χまたはそれ以上の微
粉末を用いた。さらにx =0.67(A:B=1:2
)、y=3. z =3、w=6〜8となるべく選んだ
The starting material is ytterdium oxide (Y
b205), BaC03 was used as the Ba compound and CuO was used as the copper compound. These were obtained from Kojundo Kagaku Kogyo Co., Ltd. and used as fine powders with a purity of 99.95χ or higher. Furthermore, x = 0.67 (A:B = 1:2
), y=3. I chose z = 3 and w = 6 to 8 as much as possible.

これらを十分乳鉢で混合しカプセルに封入し、30Kg
/cm”の荷重を加えてタブレット化(大きさ10a+
−φ×3111I11)シた。さらに酸化性雰囲気、例
えば大気中で500〜1000℃、例えば700℃で8
時間加熱酸化をした。この工程を仮焼成とした。
Mix these thoroughly in a mortar and seal in capsules, weighing 30kg.
/cm” load to make it into a tablet (size 10a+
-φ×3111I11). Further, in an oxidizing atmosphere, e.g. air at 500-1000°C, e.g. 800°C at 700°C.
Heat oxidation was performed for a period of time. This step was called pre-firing.

次にこれを粉砕し、乳鉢で混合した。そしてその粉末の
平均粉半径が10μm以下好ましくは0.5μm以下の
大きさとなるようにした。
This was then ground and mixed in a mortar. The average powder radius of the powder was adjusted to be 10 μm or less, preferably 0.5 μm or less.

この微粉末に対し、ハロゲン元素である弗素等を添加す
るため、フロン液中に弗化アンモニュームを溶かした溶
液中に浸した。この時、2気圧程度に加圧し、さらに2
00℃程度に加熱すると、弗素を材料中特に酸素ベイカ
ンシ中に含浸させやすい。するとこのフロン中の弗素と
弗化アンモニューム中の弗素とを微粉末の表面および内
部に含浸させることができた。
To add a halogen element such as fluorine to this fine powder, it was immersed in a solution of ammonium fluoride dissolved in a fluorocarbon solution. At this time, pressurize to about 2 atmospheres, and then pressurize to about 2 atmospheres.
When heated to about 00°C, fluorine is easily impregnated into the material, particularly into the oxygen vacancy. Then, the fluorine in the CFC and the fluorine in the ammonium fluoride were able to be impregnated into the surface and inside of the fine powder.

さらにこれをカプセルに封入し10〜3000Kg/c
m2例えば50Kg/cm”の圧力でタブレフ)に加圧
しつつ500〜1000℃、例えば750℃の酸化物雰
囲気、例えば大気中で酸化し、本焼成を1〜10時間、
例えば2時間行い、その後徐冷するいわゆるホットプレ
ス方式とした。
Furthermore, this is enclosed in a capsule and the amount is 10~3000Kg/c.
Oxidize in an oxide atmosphere, for example, air, at 500 to 1000°C, for example, 750°C, while applying a pressure of, for example, 50 Kg/cm (Talev), and carry out main firing for 1 to 10 hours.
For example, a so-called hot press method was used in which the process was carried out for 2 hours and then slowly cooled.

このタブレットはベルブスカイト構造が主として観察さ
れるが、その他の新型構造も同時に観察された。
This tablet mainly has a vervskite structure, but other new structures were also observed at the same time.

次にこの試料を酸素を少なくさせた0z−Ar中で加熱
(600〜1100℃、3〜30時間、例えば750℃
、20時間)して、還元させた。この時は加圧をせず、
むしろ大気圧または減圧下がTcoを高める上で好まし
い。すると新型の構造がより顕著に観察されるようにな
うた。
Next, this sample was heated in 0z-Ar with reduced oxygen (600-1100°C, 3-30 hours, e.g. 750°C).
, 20 hours) for reduction. At this time, do not apply pressure.
Rather, it is preferable to use atmospheric pressure or reduced pressure in order to increase Tco. Then, the new structure became more clearly observed.

この試料を用いて固有抵抗と温度との関係を調べた。す
るとTcオンセントとして230に、 Tcoとして2
25Kを観察することができた。
Using this sample, the relationship between resistivity and temperature was investigated. Then Tc on cent becomes 230, Tco becomes 2
25K could be observed.

本発明のハロゲン元素である弗素の添加を行うことなく
、加圧工程とその後の加熱工程とする場合、そのTcオ
ンセットは981であり、Tcoは91にであった。そ
のため弗素がTcoを大きくするのに大きな効果がある
ものと思われる。
When the pressurizing step and the subsequent heating step were performed without adding fluorine, which is the halogen element of the present invention, the Tc onset was 981 and the Tco was 91. Therefore, fluorine is considered to have a great effect on increasing Tco.

「実施例2」 この実施例としてAとしてYおよびybを1:1として
用いた。また、BとしてBaを用いた。出発材料はYF
3.YbF3を、BaとしてBaCO3、また銅化合物
としてCuOを用いた。その他は実施例1と同様である
"Example 2" In this example, Y and yb were used as A in a ratio of 1:1. Moreover, Ba was used as B. Starting material is YF
3. YbF3 was used, BaCO3 was used as Ba, and CuO was used as the copper compound. The rest is the same as in Example 1.

Tcオンセントとして235に、 Tcoとして231
Kを得ることができた。
235 as Tc on cent, 231 as Tco
I was able to get K.

「実施例3」 実施例1において、AとしてYF、を用いた。また一度
微粉末化した後、この微粉末を弗化水素気体中にさらし
た。この雰囲気は300℃、50Kg/cがの圧力とし
、3時間保持した。さらにこれを実施例1に示す如く、
再びタブレフト化した。
"Example 3" In Example 1, YF was used as A. Further, after being once pulverized, this fine powder was exposed to hydrogen fluoride gas. This atmosphere was maintained at 300° C. and a pressure of 50 kg/c for 3 hours. Furthermore, as shown in Example 1,
I turned it into a tablet left again.

するとTcオンセットをさらに3〜5″xも向上させる
ことができた。
As a result, the Tc onset could be further improved by 3 to 5″x.

本発明において、イントリューム族(E u + G 
a + T b 。
In the present invention, intrum family (E u + G
a + Tb.

oY、 Hd、 Er+ Tm、 yb、 Lu、 S
c、 V)の元素を弗化物として出発材料として用い、
複合酸化物材料とすると、特にTcoを上昇させるのに
有効である。特にこれらより選ばれた材料を(AI−X
 Bx)ycuzowで示される一般式0のベイカンシ
を充填するため、この位置に一1価のハロゲン元素、例
えば弗素、塩素、臭素、ヨウ素を添加することは臨界電
流を大きく向上させるためにも有効であった。
oY, Hd, Er+ Tm, yb, Lu, S
Using the element c, V) as a fluoride as a starting material,
A composite oxide material is particularly effective in increasing Tco. In particular, materials selected from these (AI-X
Bx) Adding a monovalent halogen element such as fluorine, chlorine, bromine, or iodine to this position in order to fill the vacancy of the general formula 0 represented by ycuzow is also effective in greatly increasing the critical current. there were.

「実施例4」 本実施例として、実施例3の変型であるが、イットリュ
ーム族の元素、例えばYを酸化物で添加した。しかしこ
れらはR,(Sol)  ・にzsOa (Rはイット
リューム元素)型の複塩として過剰の硫酸カリューム溶
液にとかし、これを実施例1で用いた仮焼成後の粉末に
添加して本発明に示すハロゲン元素をベイカンシの位置
に添加させた。さらにこの後、本焼成を実施例1と同様
に行った。するとこの仮焼成後の溶液の添加方法はその
添加量を精密に制御できる。その結果、実施例1に比べ
てさらに最大8にもTcを向上できた。
"Example 4" This example is a modification of Example 3, but an element of the yttrium group, such as Y, was added as an oxide. However, these were dissolved in an excess sulfuric acid potassium solution as double salts of the R, (Sol) and zsOa (R is yttrium element) type, and this was added to the pre-calcined powder used in Example 1 to produce the present invention. The halogen element shown in was added to the vacancy position. Furthermore, after this, main firing was performed in the same manner as in Example 1. Then, in this method of adding the solution after pre-calcination, the amount added can be precisely controlled. As a result, Tc could be further improved by up to 8 compared to Example 1.

「効果」 本発明により、これまでまったく不可能とされていたセ
ラミック超電導体をきわめて緻密に短時間に作ることが
できるようになった。
"Effects" The present invention has made it possible to produce ceramic superconductors extremely precisely and in a short time, which was previously considered impossible.

またハロゲン元素を酸素ベイカンシの位置に添加するこ
とにより、Tcoを太き(向上させるに加えて、臨界電
流密度をも向上させることが可能になった。
Furthermore, by adding a halogen element to the position of the oxygen vacancy, it has become possible to increase (improve) Tco and also improve the critical current density.

また本発明の分子式で示される酸化物超電導材料はその
超電導の推定メカニズムとして、銅の酸化物が構造にお
いて層構造を有し、その層構造も一分子内で1層または
2層構成を有し、その層内をキャリアが超電導をしてい
るものと推定される。
In addition, the oxide superconducting material represented by the molecular formula of the present invention has a layered structure in which the copper oxide has a layered structure, and the layered structure also has a one-layer or two-layer structure within one molecule, as the presumed mechanism of superconductivity. It is presumed that carriers are superconducting within this layer.

本発明の実施例は、タブレットにしたものである。しか
しタブレフトにするのではなく、仮焼成または本焼成の
後の粉末を弗素を含有する溶媒にとかし、基板等にその
溶液をコーティングをし、これをハロゲン元素を含有す
る酸化性雰囲気で焼成し、さらにその後還元性雰囲気で
本焼成をすることによって、薄膜の酸化物超電導材料と
することも可能である。
An embodiment of the present invention is made into a tablet. However, instead of making a table left, the powder after preliminary firing or main firing is dissolved in a solvent containing fluorine, the solution is coated on a substrate, etc., and this is fired in an oxidizing atmosphere containing a halogen element. Furthermore, by performing main firing in a reducing atmosphere after that, it is possible to obtain a thin film of oxide superconducting material.

本発明により超電導体を容易に低価格で作ることができ
るようになった。
The present invention has made it possible to easily produce superconductors at low cost.

Claims (1)

【特許請求の範囲】 1、元素周期表IIIa族、IIa族、銅を含む材料を加熱
焼成して酸化物超電導材料に変成した後粉末化せしめ、
該粉末をハロゲン元素を有する液体または気体にさらし
て前記ハロゲン元素を前記粉末中に添加した後、前記酸
化物材料を所定の形状にせしめ、またはせしめつつ加熱
処理を施すことによりハロゲン元素を有する酸化物超電
導材料を形成することを特徴とする超電導材料の作製方
法。 2、特許請求の範囲第1項において、ハロゲン元素を有
する液体は弗化水素、弗化アンモニュームまたはフロン
を含有することを特徴とする超電導材料の作製方法。 3、特許請求の範囲第1項において、ハロゲン元素を有
する気体は弗化窒素、弗素、弗化水素を含有することを
特徴とする超電導材料の作製方法。
[Claims] 1. A material containing elements Group IIIa, Group IIa, and copper of the periodic table is heated and fired to transform it into an oxide superconducting material and then powdered;
After exposing the powder to a liquid or gas containing a halogen element and adding the halogen element into the powder, the oxide material is shaped into a predetermined shape, or heat-treated while being shaped, thereby forming an oxide containing a halogen element. 1. A method for producing a superconducting material, the method comprising forming a superconducting material. 2. A method for producing a superconducting material according to claim 1, wherein the liquid containing a halogen element contains hydrogen fluoride, ammonium fluoride, or fluorocarbon. 3. A method for producing a superconducting material according to claim 1, wherein the gas containing a halogen element contains nitrogen fluoride, fluorine, and hydrogen fluoride.
JP62138576A 1987-06-01 1987-06-01 Production of superconducting material Pending JPS63303846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62138576A JPS63303846A (en) 1987-06-01 1987-06-01 Production of superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62138576A JPS63303846A (en) 1987-06-01 1987-06-01 Production of superconducting material

Publications (1)

Publication Number Publication Date
JPS63303846A true JPS63303846A (en) 1988-12-12

Family

ID=15225357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62138576A Pending JPS63303846A (en) 1987-06-01 1987-06-01 Production of superconducting material

Country Status (1)

Country Link
JP (1) JPS63303846A (en)

Similar Documents

Publication Publication Date Title
JPH0649626B2 (en) Oxide superconducting material
JP2630361B2 (en) Superconducting material
JPS63303846A (en) Production of superconducting material
JPS63236753A (en) Production of superconductive ceramic
JPS63233070A (en) Preparation of superconductive ceramic
JPS63239152A (en) Preparation of superconductive material
JPS63233069A (en) Preparation of superconductive ceramic
JPS63302967A (en) Sorting of oxide superconducting material
JPH01192758A (en) Superconducting ceramic
JPS63236752A (en) Superconductive ceramic
JP2593475B2 (en) Oxide superconductor
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JPS63233068A (en) Preparation of superconductive ceramic
JPS63233067A (en) Preparation of superconductive ceramic
JPS63230564A (en) Superconducting ceramics
JPS63230563A (en) Superconducting ceramics
JPS63303847A (en) Production of oxide superconducting material
JPS63239112A (en) Preparation of superconductive material
JPH01242459A (en) Superconducting ceramics
JPS63303848A (en) Preparation of oxide superconducting material
JP2596021B2 (en) Manufacturing method of superconducting material
JPH0196059A (en) Production of oxide superconducting material
JPS63236750A (en) Superconducting ceramics
JPS63230562A (en) Production of superconducting ceramics
JPS63233063A (en) Superconductive ceramic