JPS63230562A - Production of superconducting ceramics - Google Patents

Production of superconducting ceramics

Info

Publication number
JPS63230562A
JPS63230562A JP62063389A JP6338987A JPS63230562A JP S63230562 A JPS63230562 A JP S63230562A JP 62063389 A JP62063389 A JP 62063389A JP 6338987 A JP6338987 A JP 6338987A JP S63230562 A JPS63230562 A JP S63230562A
Authority
JP
Japan
Prior art keywords
oxide
present
ceramics
superconducting
titled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62063389A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP62063389A priority Critical patent/JPS63230562A/en
Priority to AU13171/88A priority patent/AU598115B2/en
Priority to DE8888302429T priority patent/DE3878270T2/en
Priority to EP88302429A priority patent/EP0283317B1/en
Publication of JPS63230562A publication Critical patent/JPS63230562A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To easily obtain the titled ceramics at a low cost, by mixing oxides of specific three kinds of elements, integrating the mixture with pressure, baking and pulverizing the product and subjected the obtained powder to mixing, compression molding and main baking treatment. CONSTITUTION:Fine powder mixture composed of oxide of Ga, Zr, Nb or Ge (e.g. Nb2O5), oxide of Ba or Sr (e.g. BaCO3) and oxide of Cu (e.g. CuO) each having a purity of >=99.95% is used as a starting raw material and the material is integrated with pressure and baked at 500-1,000 deg.C. The baked product is pulverized again, compression-molded into tablets and subjected to main baking treatment e.g. in air at 500-1,000 deg.C for 10-50hr to obtain the titled ceramics of formula (A is Ga, Zr, Nb or Ge; B is Ba or Sr; x=0.01-0.3; y=1.5-2.2; z=2.0-4.0).

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は酸化物セラミック系超電導材料の作製方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing an oxide ceramic superconducting material.

本発明はに、NiF、型の超電導を呈する材料の作製方
法に関する。
The present invention relates to a method for producing a material exhibiting NiF-type superconductivity.

「従来の技術」 従来、超電導材料は、水銀、鉛等の元素、NbN。"Conventional technology" Conventionally, superconducting materials include elements such as mercury and lead, and NbN.

Nb3Ge+ Nb=Ga等の合金またはNb3 (A
l 6.5Geo、 z)等の三元素化合物よりなる金
属材料が用いられている。しかしこれらのTc(超電導
臨界温度)オンセットは25 ” Kまでであった。
Alloy such as Nb3Ge+ Nb=Ga or Nb3 (A
A metal material made of a ternary element compound such as 16.5Geo, z) is used. However, the Tc (superconducting critical temperature) onset of these was up to 25''K.

他方、近年、セラミック系の超電導材料が注目されてい
る。この材料は最初IBMのチューリ・7ヒ研究所より
Ba−La−Cu−0(バラクオ)系酸化物高温超電導
体として報告され、さらにLSCO(第二銅酸−ランタ
ンーストロンチューム)として知られてきた。
On the other hand, ceramic-based superconducting materials have attracted attention in recent years. This material was first reported by IBM's Zurich Research Institute as a Ba-La-Cu-0 (baraquo)-based oxide high-temperature superconductor, and was further known as LSCO (cupric acid-lanthanum strontium). Ta.

「従来の問題点」 しかし、これら酸化物セラミックスの超電導の可能性は
ベルブスカイト型の構造を利用しているもので、そのT
cも30°Kがその限界であった。
``Conventional problems'' However, the possibility of superconductivity in these oxide ceramics is based on the vervskite structure, and its T
The limit for c was also 30°K.

このため、このTcおよびTcoをさらに高くし、望む
べくは液体窒素温度(77°K)またはそれ以上で動作
せしめることが強く求められていた。
Therefore, it has been strongly desired to further increase Tc and Tco, and preferably to operate at liquid nitrogen temperature (77°K) or higher.

「問題を解決すべき手段」 本発明は、かかる高温で超電導を呈するべく、KJiF
a型を構成すべき素材を探し求めた。その結果、Tcも
50〜107 °Kにまで向上させ得ることが明らかに
なった。
"Means to Solve the Problem" The present invention aims at achieving superconductivity at such high temperatures.
We searched for the material that would form the A-type. As a result, it became clear that Tc could also be improved to 50 to 107°K.

本発明の超電導性セラミックスは(A’l−X Bx)
ycuozx =0.01〜0.3. )’ =1.3
〜2.2. z =2.0〜4.0で−C的に示し得る
ものである。AはGa(ガリューム)、Zr(ジルコニ
ューム)、Nb(ニオブ)またはGe(ゲルマニューム
)、BはBa(ジルコニューム)またはGe(ゲルマニ
ューム)より選ばれている。
The superconducting ceramic of the present invention is (A'l-X Bx)
ycuozx =0.01~0.3. )' = 1.3
~2.2. It can be expressed as -C at z = 2.0 to 4.0. A is selected from Ga (gallium), Zr (zirconium), Nb (niobium) or Ge (germanium), and B is selected from Ba (zirconium) or Ge (germanium).

本発明はさらにAを一成分ではなく、前記した材料に加
えてイットリューム族(EulGd、Tb、Oy、80
゜Er、 Tm、 Yb、 Lu、 Sc+ Y)を添
加する二成分構成を有せしめても有効である。
The present invention further provides that A is not used as a single component, but in addition to the above-mentioned materials, yttrium group (EulGd, Tb, Oy, 80
It is also effective to have a two-component structure in which ゜Er, Tm, Yb, Lu, Sc+ Y) are added.

本発明は出発材料の酸化物または炭酸化物を混合し、一
度加圧して仮焼成する。さらにこれを微粉末化し、再び
加圧しタブレット化し、本焼成をする工程を有せしめて
いる。
In the present invention, starting materials of oxides or carbonates are mixed, pressurized once, and calcined. Furthermore, it has a step of pulverizing it, pressurizing it again to make it into a tablet, and then firing it.

「作用」 本発明のKJiP4型のセラミック超電導素材はきわめ
て簡単に作ることができる。特にこれらはその出発材料
として3Nまたは4Nの純度の酸化物を用い、これをボ
ールミルを用い微粉末に粉砕し、混合すれば化学量論的
に(A、、IBx)ycuOzのx、y、zのそれぞれ
の値を任意に変更、制御することができる。
"Operation" The KJiP4 type ceramic superconducting material of the present invention can be produced extremely easily. In particular, these use an oxide with a purity of 3N or 4N as the starting material, which is ground into a fine powder using a ball mill and mixed to stoichiometrically form the x, y, z of (A,,IBx)ycuOz. Each value can be arbitrarily changed and controlled.

本発明において、かかる超電導材料を作るのに特に高価
な設備を用いなくともよいという他の特徴も有する。
Another feature of the present invention is that it does not require the use of particularly expensive equipment to produce such superconducting materials.

以下に実施例に従い、本発明を記す。The present invention will be described below according to Examples.

「実施例1」 本発明の実施例としてAとしてNb、 BとしてBaを
用いた。
"Example 1" As an example of the present invention, Nb was used as A and Ba was used as B.

出発材料はNb化合物として酸化ニオブ(Nbzos)
The starting material is niobium oxide (Nbzos) as a Nb compound.
.

Ba化合物としてBaC0,、銅化合物としてCuOを
用いた。これらは高純度化学工業株式会社より入手し純
度は99.95χまたはそれ以上の微粉末を用いた。
BaCO was used as the Ba compound, and CuO was used as the copper compound. These were obtained from Kojundo Kagaku Kogyo Co., Ltd. and used as fine powders with a purity of 99.95χ or higher.

さらにx =0.15、y=2となるべく選んだ。Further, x = 0.15 and y = 2 were selected as possible.

これらを十分乳鉢で混合しカプセルに封入し、3 Kg
icm”の荷重を加えてタブレフト化(大きさ10nu
nφx 3mm) L/た。さらに酸化性雰囲気、例え
ば大気中で500〜1000℃、例えば700℃で8時
間加熱酸化をした。この工程を仮焼成とした。
Mix these thoroughly in a mortar and seal in capsules, weighing 3 kg.
icm” load to create a table left (size 10nu
nφx 3mm) L/ta. Further, heating oxidation was carried out at 500 to 1000°C, for example 700°C, for 8 hours in an oxidizing atmosphere, for example, air. This step was called pre-firing.

次にこれを粉砕し、乳鉢で混合した。そしてその粉末の
平均粉半径が10μm以下の大きさとなるようにした。
This was then ground and mixed in a mortar. The powder was made to have an average powder radius of 10 μm or less.

さらにこれをカプセルに封入し5にg/cm”の圧力で
タブレットに加圧して成型した。
Furthermore, this was encapsulated in a capsule and pressed to form a tablet at a pressure of 5 g/cm''.

次にこれを500〜1000℃、例えば900℃の酸化
物雰囲気、例えば大気中で酸化し、本焼成を10〜50
時間、例えば15時間行った。
Next, this is oxidized at 500 to 1000°C, for example, 900°C, in an oxide atmosphere, such as air, and the main firing is carried out for 10 to 50°C.
For example, 15 hours.

このタブレットはベルブスカイト構造が主として観察さ
れるが、K、NiF、型構造も同時に観察された。
In this tablet, a vervskite structure was mainly observed, but K, NiF, and type structures were also observed at the same time.

次にこの試料を酸素を少なくさせた0□−Ar中で加熱
(600〜1100℃、3〜30時間、例えば800℃
、20時間)して、還元させた。すると[2NiFn型
の構造がより顕著に観察されるようになった。
Next, this sample was heated in 0□-Ar with a reduced amount of oxygen (600-1100°C, 3-30 hours, e.g. 800°C).
, 20 hours) for reduction. As a result, a [2NiFn type structure became more prominently observed.

この試料を用いて固有抵抗と温度との関係を調べた。す
るとTcオンセットとして85@に、Tcoとして52
 ” Kを観察することができた。
Using this sample, the relationship between resistivity and temperature was investigated. Then Tc onset becomes 85@, Tco becomes 52
” I was able to observe K.

「実施例2」 この実施例としてAとしてZrs BとしてBaを用い
た。出発材料はZrOを、BaとしてBaC01、また
銅化合物としてCuOを用いた。その他は実施例1と同
様である。
"Example 2" In this example, Zrs was used as A and Ba was used as B. ZrO was used as the starting material, BaC01 was used as Ba, and CuO was used as the copper compound. The rest is the same as in Example 1.

Tcオンセントとして53”K%TCOとして39 ’
 Kを得ることができた。
53' as Tc on cent 39' as K% TCO
I was able to get K.

「実施例3」 実施例1において、AとしてNbに加えてY2O3をN
bgOsに20〜30%加えた。するとTcオンセット
をさらに3〜5°にも向上させることができた。
"Example 3" In Example 1, in addition to Nb as A, Y2O3 was added to N
Added 20-30% to bgOs. As a result, the Tc onset could be further improved to 3 to 5 degrees.

本発明において、イットリューム族(Eu、Ga、Tb
In the present invention, the yttrium group (Eu, Ga, Tb
.

Dy+ Hd、 Er、 Tm+ Yb、 Lu、 S
c、 V)の元素を酸化物として出発材料として用い、
複合材料セラミックスとしても有効である。特にこれら
より選ばれた材料を(A、−XBx)ycuOzで示さ
れる一般式のAの一部に加えることはTcを5〜10°
にも向上させる効果があった。
Dy+ Hd, Er, Tm+ Yb, Lu, S
Using the element c, V) as an oxide as a starting material,
It is also effective as a composite ceramic material. In particular, adding a material selected from these to a part of A in the general formula (A, -XBx)ycuOz increases Tc by 5 to 10°.
It also had an improving effect.

「実施例4」 本実施例として、実施例3の変型であるが、イントリュ
ーム族の元素、例えばYを酸化物で添加した。しかしこ
れらはR2(SO,)  ・K2SO4(Rはイットリ
ューム元素)型の複塩として過剰の硫酸力リューム溶液
にとかし、これを実施例1で用いた仮焼成後の粉末に添
加して添加効果を向上させる方法もその添加量を精密に
制御できる。その結果、実施例1に比べてさらに最大8
″にもTcを向上できた。
"Example 4" This example is a modification of Example 3, but an intrum group element, such as Y, was added as an oxide. However, these are dissolved in an excess sulfuric acid solution as double salts of the R2(SO,) ・K2SO4 (R is yttrium element) type, and this is added to the pre-calcined powder used in Example 1 to improve the additive effect. The amount of addition can also be precisely controlled. As a result, compared to Example 1, the maximum
'' was also able to improve Tc.

「実施例5」 本発明はその他の材料としてAとしてGa、Ge、 B
としてSrを用い得る。その概要は実施例1と概略同様
である。
"Example 5" The present invention uses Ga, Ge, and B as other materials A.
Sr can be used as the material. The outline is roughly the same as that of the first embodiment.

「効果」 本発明はこれまでまったく不可能とされているセラミッ
ク超電導体を作ることができるようになった。
"Effects" The present invention has made it possible to create ceramic superconductors, which was previously considered impossible.

本発明において仮焼成をした後に微粉末化する工程によ
り、初期状態でのそれぞれの出発材料の化合物を到達材
料、即ち(A、−、Bx)ycuOzで示される材料を
含む化合物とするものである。
In the present invention, the compound of each starting material in the initial state is converted into a final material, that is, a compound containing a material represented by (A, -, Bx)ycuOz, by the step of pre-calcining and then pulverizing. .

さらにこの到達材料の化合物を再び微粉末化することに
より、−皮形成された到達材料を含む化合物中に混入し
た。出発材料の化合物をより完全に除去する効果を有し
、加えて最後完成化合物中にボイド等の空穴の有る完成
化合物中に、ボイド等の空穴の存在をより除去すること
ができるものと推定される。
Furthermore, by pulverizing the compound of this target material again, it was mixed into the compound containing the coated target material. It has the effect of removing the compound of the starting material more completely, and in addition, it can further remove the presence of vacancies such as voids in the final completed compound that has vacancies such as voids. Presumed.

また本発明の分子式で示される超電導セラミックスはそ
の超電導の推定メカニズムとして、銅の酸化物が構造に
おいて層構造を有し、その層構造も一分子内で一層また
は211構成を有し、その層内をキャリアが超電導をし
ているものと推定さされる。
In addition, the superconducting ceramic represented by the molecular formula of the present invention has a layered structure of copper oxide as a presumed mechanism of superconductivity, and the layered structure also has a single layer or 211 structure within one molecule, and It is assumed that the carrier is superconducting.

本発明の実施例は、タブレットにしたものである。しか
しタブレットにするのではなく、仮焼成または本焼成の
後の粉末を溶媒にとかし、基板等にその溶液をコーティ
ングをし、これを酸化性雰囲気で焼成し、さらにその後
還元性雰囲気で本焼成をすることによって、薄膜の超電
導セラミックスとすることも可能である。
An embodiment of the present invention is made into a tablet. However, instead of making tablets, the powder after preliminary firing or main firing is dissolved in a solvent, the solution is coated on a substrate, etc., and this is fired in an oxidizing atmosphere, and then the main firing is performed in a reducing atmosphere. By doing so, it is also possible to form a thin film of superconducting ceramics.

本発明により超電導体を容易に低価格で作ることができ
るようになった。
The present invention has made it possible to easily produce superconductors at low cost.

本発明は(A+−+c Bx)y’cuzOz y’ 
=2.6〜4.4+z’=4.0〜8.0と同等である
ことはいうまでもない。
The present invention is (A+-+c Bx)y'cuzOz y'
It goes without saying that it is equivalent to =2.6-4.4+z'=4.0-8.0.

Claims (1)

【特許請求の範囲】[Claims] (A_1_−_xB_x)_yCuO_zx=0.01
〜0.3、y=1.5〜2.2、z=2.0〜4.0、
但しAはGa(ガリューム)、Zr(ジルコニューム)
、Nb(ニオブ)またはGe(ゲルマニューム)、Bは
Ba(バリューム)またはBr(ストロンチューム)よ
り選ばれたセラミックス超電導材料を作るに際し、これ
らの酸化物を混合し、加圧して一体物とした後、500
〜1000℃の雰囲気で焼成し、その後これらを再び粉
末化し、さらに再び混合し加圧して一体物とした後、5
00〜1000℃の温度雰囲気で本焼成を行うことを特
徴とする超電導セラミックスの作製方法。
(A_1_-_xB_x)_yCuO_zx=0.01
~0.3, y=1.5-2.2, z=2.0-4.0,
However, A is Ga (gallium), Zr (zirconium)
, Nb (niobium) or Ge (germanium), and B is selected from Ba (valume) or Br (strontium). When making a ceramic superconducting material, these oxides are mixed and pressurized to form an integrated product. , 500
After firing in an atmosphere of ~1000°C, these were powdered again, mixed again, and pressed to form an integrated product.
A method for producing superconducting ceramics, characterized in that main firing is performed in a temperature atmosphere of 00 to 1000°C.
JP62063389A 1987-03-18 1987-03-18 Production of superconducting ceramics Pending JPS63230562A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62063389A JPS63230562A (en) 1987-03-18 1987-03-18 Production of superconducting ceramics
AU13171/88A AU598115B2 (en) 1987-03-18 1988-03-16 Superconducting oxide ceramics
DE8888302429T DE3878270T2 (en) 1987-03-18 1988-03-18 SUPER-CONDUCTING OXIDE CERAMICS.
EP88302429A EP0283317B1 (en) 1987-03-18 1988-03-18 Superconducting oxide ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62063389A JPS63230562A (en) 1987-03-18 1987-03-18 Production of superconducting ceramics

Publications (1)

Publication Number Publication Date
JPS63230562A true JPS63230562A (en) 1988-09-27

Family

ID=13227895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62063389A Pending JPS63230562A (en) 1987-03-18 1987-03-18 Production of superconducting ceramics

Country Status (1)

Country Link
JP (1) JPS63230562A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643015A (en) * 1987-03-28 1989-01-06 Sumitomo Electric Ind Ltd Superconducting material and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643015A (en) * 1987-03-28 1989-01-06 Sumitomo Electric Ind Ltd Superconducting material and production thereof

Similar Documents

Publication Publication Date Title
JPS63225531A (en) Oxide superconductive material
JPS63230562A (en) Production of superconducting ceramics
JP2617307B2 (en) Manufacturing method of superconducting ceramics
JPS63230564A (en) Superconducting ceramics
JPH01192758A (en) Superconducting ceramic
JPS63230561A (en) Superconducting ceramics
JPS63233069A (en) Preparation of superconductive ceramic
JPS63230563A (en) Superconducting ceramics
JPS63236752A (en) Superconductive ceramic
JPS63233067A (en) Preparation of superconductive ceramic
JPS63236751A (en) Superconductive ceramic
JPS63233068A (en) Preparation of superconductive ceramic
JPS63233064A (en) Superconductive ceramic
JPS63239152A (en) Preparation of superconductive material
JP2593475B2 (en) Oxide superconductor
JPH01242459A (en) Superconducting ceramics
JP2588398B2 (en) Superconducting ceramics
JPS63233063A (en) Superconductive ceramic
JPH01126258A (en) Production of oxide high-temperature superconductive material
JPS63236750A (en) Superconducting ceramics
JP2597578B2 (en) Superconductor manufacturing method
JPS63239112A (en) Preparation of superconductive material
JPS63270309A (en) Oxide superconductor
JPS63303846A (en) Production of superconducting material
JPH04124016A (en) Oxide superconductor and its production