JPS63236751A - Superconductive ceramic - Google Patents

Superconductive ceramic

Info

Publication number
JPS63236751A
JPS63236751A JP62072485A JP7248587A JPS63236751A JP S63236751 A JPS63236751 A JP S63236751A JP 62072485 A JP62072485 A JP 62072485A JP 7248587 A JP7248587 A JP 7248587A JP S63236751 A JPS63236751 A JP S63236751A
Authority
JP
Japan
Prior art keywords
compound
oxide
carbonate
present
superconductive ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62072485A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP62072485A priority Critical patent/JPS63236751A/en
Priority to AU13171/88A priority patent/AU598115B2/en
Priority to EP88302429A priority patent/EP0283317B1/en
Priority to DE8888302429T priority patent/DE3878270T2/en
Publication of JPS63236751A publication Critical patent/JPS63236751A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain an inexpensive superconductive ceramic having a few voids, by blending a compound of Ga, Zr, Nb or Ge with a compound of Ba, Sr or Ca and a compound of Cu, pressurizing, calcining, pulverizing, repressurizing and calcining. CONSTITUTION:Given amounts of each fine powder of an oxide or carbonate (e.g. Nb2O5) of element A selected from Ga, Zr, Nb or Ge, an oxide or carbonate (e.g. BaCO3) of element B selected from Ba, Sr or Ca and copper oxide or carbonate (e.g. CuO) are collected as starting raw materials. Then the powder is mixed, tableted, calcined in the atmosphere at 500-1,000 deg.C, ground into <=10mu average particle diameter, tableted under 50kg/cm<2> pressure, heated, press molded, oxidized at 500-1,000 deg.C in the atmosphere and calcined to give superconductive ceramic shown by the formula (x=0-1; y=2.0-4.0; z=1.0-4.0; w=4.0-10.0).

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は酸化物セラミック系超電導材料に関する。[Detailed description of the invention] "Field of application of the invention" The present invention relates to oxide ceramic superconducting materials.

「従来の技術」 従来、超電導材料は、水銀、鉛等の元素、NbN。"Conventional technology" Conventionally, superconducting materials include elements such as mercury and lead, and NbN.

Nb3Ge、 Nb3Ga等の合金またはNba(八1
 @、 5Geo、 z)等の三元素化合物よりなる金
属材料が用いられている。しかしこれらのTc(超電導
臨界温度)オンセントは25Kまでであった。
Alloys such as Nb3Ge, Nb3Ga or Nba(81
A metal material made of a ternary element compound such as @, 5Geo, z) is used. However, the Tc (superconducting critical temperature) of these was up to 25K.

他方、近年、セ・ラミック系の超電導材料が注目されて
いる。この材料は最初IBMのチューリッヒ研究所より
Ba−La−Cu−0(バラクオ)系酸化物高温超電導
体として報告され、さらにLSCO(第二銅酸−ランタ
ンーストロンチューム)として知られてきた。
On the other hand, ceramic-based superconducting materials have attracted attention in recent years. This material was first reported by IBM's Zurich Research Institute as a Ba-La-Cu-0 (baraquo) based oxide high temperature superconductor, and further came to be known as LSCO (cupric acid-lanthanum-strontium).

「従来の問題点」 しかし、これら酸化物セラミックスの超電導の可能性は
ベルブスカイト型の構造を利用しているもので、そのT
cも30Kがその限界であった。
``Conventional problems'' However, the possibility of superconductivity in these oxide ceramics is based on the vervskite structure, and its T
The limit for c was also 30K.

このため、このTcおよびTcoをさらに高くし、望む
べくは液体窒素温度(77K )またはそれ以上で動作
せしめることが強く求められていた。
For this reason, there has been a strong desire to further increase Tc and Tco, and preferably to operate at liquid nitrogen temperature (77K) or higher.

「問題を解決すべき手段」 本発明は、かかる高温で超電導を呈するべく、新しい素
材を探し求めた。その結果、Tcも50〜107Kにま
で向上させ得ることが明らかになった。
"Means to Solve the Problem" The present invention seeks a new material that exhibits superconductivity at such high temperatures. As a result, it became clear that Tc could also be improved to 50 to 107K.

本発明の超電導性セラミックスは(AI−X Bx)y
cuzowX=O〜1. y−2,0〜4.0好ましく
は2.5〜3.5゜z =1.0〜4.0好ましくは1
.5〜3.5.W=4.0〜10.0好ましくは7〜8
で一般的に示し得るものである。AはGa(ガリューム
)、Zr(ジルコニューム)。
The superconducting ceramic of the present invention is (AI-X Bx)y
cuzowX=O~1. y-2,0-4.0 preferably 2.5-3.5°z = 1.0-4.0 preferably 1
.. 5-3.5. W=4.0-10.0 preferably 7-8
This can be generally shown as A is Ga (gallium) and Zr (zirconium).

Nbにニオブ)またはGe(ゲルマニューム)8BはB
a(バリューム)、Sr(ストロンチューム)またはC
a(カルシューム)より選ばれている。
Nb to niobium) or Ge (germanium) 8B is B
a (valium), Sr (strontium) or C
It is selected from a (calcium).

本発明はさらにAを一成分ではなく、前記した材料に加
えてイットリューム族(Eu、 Gd、 Tb、 Dy
、 Ho。
The present invention further provides that A is not used as a single component, but as a component of the yttrium group (Eu, Gd, Tb, Dy) in addition to the above-mentioned materials.
, Ho.

Erl Tm、 yb、 Lu、 Sc、 Y)を添加
する二成分構成を有せしめても有効である。
It is also effective to have a two-component structure in which Erl Tm, yb, Lu, Sc, Y) is added.

本発明は出発材料の酸化物または炭酸化物を混合し、一
度加圧して仮焼成する。さらにこれを微粉末化し、再び
加圧しタブレット化し、本焼成をする工程を有せしめて
いる。
In the present invention, starting materials of oxides or carbonates are mixed, pressurized once, and calcined. Furthermore, it has a step of pulverizing it, pressurizing it again to make it into a tablet, and then firing it.

「作用」 本発明のセラミック超電導素材はきわめて簡単に作るこ
とができる。特にこれらはその出発材料として3Nまた
は4Nの純度の酸化物を用い、これをボールミルを用い
微粉末に粉砕し、混合すれば化学量論的に(Ar−x 
Bx)ycuzowのx+ 3’ + Z HHのそれ
ぞれの値を任意に変更、制御することができる。
"Operation" The ceramic superconducting material of the present invention can be produced extremely easily. In particular, these use an oxide with a purity of 3N or 4N as its starting material, which is ground into a fine powder using a ball mill and mixed to achieve a stoichiometric (Ar-x
Each value of x+3'+ZHH of Bx)ycuzow can be arbitrarily changed and controlled.

本発明において゛、かかる超電導材料を作るのに特に高
価な設備を用いなくともよいという他の特徴も有する。
Another feature of the present invention is that it is not necessary to use particularly expensive equipment to produce such a superconducting material.

以下に実施例に従い、本発明を記す。The present invention will be described below according to Examples.

「実施例1」 本発明の実施例としてAとしてNb、 BとしてBaを
用いた。
"Example 1" As an example of the present invention, Nb was used as A and Ba was used as B.

出発材料はNb化合物として酸化ニオブ(Nb、O,)
The starting material is niobium oxide (Nb, O,) as a Nb compound.
.

Ba化合物としてBaC0,、銅化合物としてCuOを
用いた。これらは高純度化学工業株式会社より入手し純
度は99.95χまたはそれ以上の微粉末を用いた。
BaCO was used as the Ba compound, and CuO was used as the copper compound. These were obtained from Kojundo Kagaku Kogyo Co., Ltd. and used as fine powders with a purity of 99.95χ or higher.

さらにx =0.66(A:B=1:2)、 ’! =
1. z =3. w = 6〜8となるべく選んだ。
Furthermore, x = 0.66 (A:B=1:2), '! =
1. z=3. W = 6 to 8 was chosen as much as possible.

・ これらを十分乳鉢で混合しカプセルに封入し、3 Kg
/cm”の荷重を加えてタブレフト化(大きさ10II
IIIIφx3++uw)した、さらに酸化性雰囲気、
例えば大気中で500〜1000℃、例えば700℃で
8時間加熱酸化をした。この工程を仮焼成とした。
・ Mix these thoroughly in a mortar and seal in capsules, weighing 3 kg.
/cm” load to create a table left (size 10II
IIIφx3++uw), further oxidizing atmosphere,
For example, heating oxidation was performed in the air at 500 to 1000°C, for example 700°C, for 8 hours. This step was called pre-firing.

次にこれを粉砕し、乳鉢で混合した。そしてその粉末の
平均粉半径が10μm以下の大きさとなるようにした。
This was then ground and mixed in a mortar. The powder was made to have an average powder radius of 10 μm or less.

さらにこれをカプセルに封入し50Kg/cm”の圧力
でタブレットに加圧して成型した。
Further, this was encapsulated in a capsule and pressed to form a tablet at a pressure of 50 kg/cm''.

またはこれと同時に、このタブレットを500〜100
0℃、例えば900℃の酸化物雰囲気、例えば大気中で
酸化し、本焼成を10〜50時間、例えば15時間行っ
た。
Or at the same time, use this tablet for 500-100
Oxidation was carried out at 0°C, for example 900°C, in an oxide atmosphere, for example in the air, and main firing was carried out for 10 to 50 hours, for example 15 hours.

次にここの試料を酸素を少な(させた0、−Ar中で加
熱(600〜1100℃、3〜30時間、例えば800
℃、20時間)して、還元させた。
Next, the sample was heated (600 to 1100°C, 3 to 30 hours, e.g. 800
°C for 20 hours) for reduction.

この試料を用いて固有抵抗と温度との関係を調べた。す
るとTcオンセット(超電導の始まる温度)として10
3 K 、Tco(電気抵抗が実質的に零となる温度)
として?2 ” Kを観察することができた。
Using this sample, the relationship between resistivity and temperature was investigated. Then, Tc onset (temperature at which superconductivity begins) is 10
3 K, Tco (temperature at which electrical resistance becomes substantially zero)
As? 2”K could be observed.

「実施例2」 この実施例としてAとしてZr、、BとしてBaを用い
た。出発材料はZrOを、BaとしてBaCO5、また
銅化合物としてCuOを用いた。その他は実施例1と同
様である。
"Example 2" In this example, Zr was used as A, and Ba was used as B. ZrO was used as the starting material, BaCO5 was used as Ba, and CuO was used as the copper compound. The rest is the same as in Example 1.

Tcオンセットとして80K % Tcoとして63K
を得ることができた。
80K as Tc onset 63K as Tco
was able to obtain.

「実施例3」 実施例1において、AとしてNbに加えてy、o、を)
Jb、0.に20〜30%加えた。するとTcオンセッ
トをさらに5〜9にも向上させることができた。
"Example 3" In Example 1, in addition to Nb, y, o, as A)
Jb, 0. 20-30% was added. As a result, the Tc onset could be further improved to 5-9.

本発明において、イットリューム族(Eu、Ga、Tb
+)y、 Hd+ Er、 T+s、 Ybt Lu、
 Sc、 V)の元素を酸化物として出発材料として用
い、複合材料セラミックスとしても有効である。特にこ
れらより選ばれた材料をCAr−x Bx)ycuzo
wで示される一般式のAの一部に和えることはTcを5
〜IOKも向上させる効果があった。
In the present invention, the yttrium group (Eu, Ga, Tb
+)y, Hd+ Er, T+s, Ybt Lu,
Using the elements Sc, V) as oxides as starting materials, it is also effective as a composite ceramic material. Especially materials selected from these are CAr-x Bx)ycuzo
Adding it to a part of A in the general formula w indicates that Tc is 5
- It also had the effect of improving IOK.

「実施例4」 本実施例として、実施例3の変型であるが、イットリュ
ーム族の元素、例えばybを酸化物で添加した。しかし
これらはR1(S04)・KzSOa (Rはイットリ
ニーム元素)型の複塩として過剰の硫酸カリニーム溶液
にとかし、これを実施例1で用いた仮焼成後の粉末に添
加して添加効果を向上させる方法もその添加量を精密に
制御できる。その結果、実施例1に比べてさらに最大8
にもTcを向上できた。
"Example 4" This example is a modification of Example 3, but an element of the yttrium group, for example, yb, was added in the form of an oxide. However, these are dissolved as double salts of the R1 (S04) KzSOa (R is yttrine element) type in an excess potassium sulfate solution, and this is added to the pre-calcined powder used in Example 1 to improve the addition effect. The method also allows precise control of the amount added. As a result, compared to Example 1, the maximum
It was also possible to improve Tc.

「実施例5」 本発明はその他の材料としてAとしてGa、Ge、 B
としてSrを用い得る。その概要は実施例1と概略同様
である。
"Example 5" The present invention uses Ga, Ge, and B as other materials A.
Sr can be used as the material. The outline is roughly the same as that of the first embodiment.

「効果」 本発明はこれまでまったく不可能とされているセラミッ
ク超電導体を作ることができるようになった。
"Effects" The present invention has made it possible to create ceramic superconductors, which was previously considered impossible.

本発明において仮焼成をした後に微粉末化する工程によ
り、初期状態でのそれぞれの出発材料の化合物を到達材
料、即ち(A、XBx)ycuzo−で示される材料を
含む化合物とするものである。
In the present invention, the step of calcining and then pulverization converts the compound of each starting material in its initial state into the final material, that is, a compound containing the material represented by (A, XBx)ycuzo-.

さらにこの到達材料の化合物を再び微粉末化することに
より、−皮形成された到達材料を含む化合物中に混入し
た。出発材料の化合物をより完全に除去する効果を有し
、加えて最後完成化合物中にボイド等の空穴の有る完成
化合物中に、ボイド等の空穴の存在をより除去すること
ができるものと推定される。
Furthermore, by pulverizing the compound of this target material again, it was mixed into the compound containing the coated target material. It has the effect of removing the compound of the starting material more completely, and in addition, it can further remove the presence of vacancies such as voids in the final completed compound that has vacancies such as voids. Presumed.

また本発明の分子式で示される超電導セラミックスはそ
の超電導の推定メカニズムとして、銅の酸化物が構造に
おいて層構造を有し、その層構造も一分子内で一層また
は2層構成を有し、その層内をキャリアが超電導をして
いるものと推定さざ゛れる。。
In addition, the superconducting ceramic represented by the molecular formula of the present invention has a layered structure of copper oxide as a presumed mechanism of superconductivity, and the layered structure also has a one-layer or two-layer structure within one molecule. It is presumed that the carriers inside are superconducting. .

本発明の実施例は、タブレットにしたものである。しか
しタブレットにするのではなく、仮焼成または本焼成の
後の粉末を溶媒にとかし、基板等にその溶液をコーティ
ングをし、これを酸化性雰囲気で焼成し、さらにその後
還元性雰囲気で本焼成をすることによって、薄膜の超電
導セラミックスとすることも可能である。
An embodiment of the present invention is made into a tablet. However, instead of making tablets, the powder after preliminary firing or main firing is dissolved in a solvent, the solution is coated on a substrate, etc., and this is fired in an oxidizing atmosphere, and then the main firing is performed in a reducing atmosphere. By doing so, it is also possible to form a thin film of superconducting ceramics.

本発明により超電導体を容易に低価格で作ることができ
るようになった。
The present invention has made it possible to easily produce superconductors at low cost.

Claims (2)

【特許請求の範囲】[Claims] 1.(A_1_−_xB_x)_yCu_zO_w_x
=0〜1,y=2.0〜4.0,z=1.0〜4.0,
w=4.0〜10.0を有し、AがGa(ガリューム)
,Zr(ジルコニューム),Nb(ニオブ)またはGe
(ゲルマニューム)より選ばれ、BはBa(バリューム
),Sr(ストロンチューム),Ca(カルシューム)
より選ばれた超電導性を有するセラミックス材料である
ことを特徴とする超電導セラミックス。
1. (A_1_-_xB_x)_yCu_zO_w_x
=0~1, y=2.0~4.0, z=1.0~4.0,
w=4.0 to 10.0, A is Ga (gallium)
, Zr (zirconium), Nb (niobium) or Ge
(Germanium), B is Ba (Valium), Sr (Strontium), Ca (Calcium)
A superconducting ceramic characterized by being a ceramic material having superconductivity selected from the following.
2.特許請求の範囲第1項において、AはGa(ガリュ
ーム),Zr(ジルコニューム),Nb(ニオブ)また
はGe(ゲルマニューム)より選ばれた材料とイットリ
ューム族の元素との複数の元素より選ばれた材料との複
合体であることを特徴とする超電導セラミックス。
2. In claim 1, A is selected from a plurality of elements including a material selected from Ga (gallium), Zr (zirconium), Nb (niobium), or Ge (germanium) and an element of the yttrium group. Superconducting ceramics are characterized by being composites with other materials.
JP62072485A 1987-03-18 1987-03-25 Superconductive ceramic Pending JPS63236751A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62072485A JPS63236751A (en) 1987-03-25 1987-03-25 Superconductive ceramic
AU13171/88A AU598115B2 (en) 1987-03-18 1988-03-16 Superconducting oxide ceramics
EP88302429A EP0283317B1 (en) 1987-03-18 1988-03-18 Superconducting oxide ceramics
DE8888302429T DE3878270T2 (en) 1987-03-18 1988-03-18 SUPER-CONDUCTING OXIDE CERAMICS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62072485A JPS63236751A (en) 1987-03-25 1987-03-25 Superconductive ceramic

Publications (1)

Publication Number Publication Date
JPS63236751A true JPS63236751A (en) 1988-10-03

Family

ID=13490672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62072485A Pending JPS63236751A (en) 1987-03-18 1987-03-25 Superconductive ceramic

Country Status (1)

Country Link
JP (1) JPS63236751A (en)

Similar Documents

Publication Publication Date Title
JP2630361B2 (en) Superconducting material
JPS63225531A (en) Oxide superconductive material
JP2606698B2 (en) Manufacturing method of superconducting ceramics
JP2606697B2 (en) Manufacturing method of superconducting ceramics
JP2617307B2 (en) Manufacturing method of superconducting ceramics
JPS63236751A (en) Superconductive ceramic
JPH01192758A (en) Superconducting ceramic
JP2588400B2 (en) Superconducting ceramics
JPS63233069A (en) Preparation of superconductive ceramic
JPS63230562A (en) Production of superconducting ceramics
JPS63230561A (en) Superconducting ceramics
JPS63230564A (en) Superconducting ceramics
JPS63230563A (en) Superconducting ceramics
JP2588398B2 (en) Superconducting ceramics
JPH01242459A (en) Superconducting ceramics
JP2593475B2 (en) Oxide superconductor
JPS63233068A (en) Preparation of superconductive ceramic
JPS63239152A (en) Preparation of superconductive material
JPS63236750A (en) Superconducting ceramics
JPS63233067A (en) Preparation of superconductive ceramic
JPS63233064A (en) Superconductive ceramic
JPS63239112A (en) Preparation of superconductive material
JP2597578B2 (en) Superconductor manufacturing method
JPH01126258A (en) Production of oxide high-temperature superconductive material
JPS63233063A (en) Superconductive ceramic