JPS63225531A - Oxide superconductive material - Google Patents

Oxide superconductive material

Info

Publication number
JPS63225531A
JPS63225531A JP62058441A JP5844187A JPS63225531A JP S63225531 A JPS63225531 A JP S63225531A JP 62058441 A JP62058441 A JP 62058441A JP 5844187 A JP5844187 A JP 5844187A JP S63225531 A JPS63225531 A JP S63225531A
Authority
JP
Japan
Prior art keywords
oxide
phase
single phase
critical
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62058441A
Other languages
Japanese (ja)
Inventor
Shigeyuki Tsurumi
重行 鶴見
Juichi Noda
野田 壽一
Makoto Hikita
疋田 真
Koichi Senba
浩一 仙場
Susumu Kurihara
進 栗原
Tsunekazu Iwata
岩田 恒和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62058441A priority Critical patent/JPS63225531A/en
Publication of JPS63225531A publication Critical patent/JPS63225531A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve critical temp. and critical magnetic field characteristic and to make transition temp. range of superconductivity narrower, by forming a single phase of Y, La, etc. -B, Sr, etc.-Cu-oxide phase. CONSTITUTION:The oxide superconductive material of this invention is a perovskite type oxide of tetragonal system having oxygen defect comprising a single phase having the structure expressed by the formula. If the formula, 0<y>2.5: A is at least one kin among Y, La, Yb, Lu, Sc, Al, and B; B is at least one kind among Ba, Sr, and Ca. For example, if A is Y and B is Ba, 1mol. Y2O3 is mixed with 4mol. BaCO3 and 6mol. CuO, and the mixture is heated in O2 at ca.950 deg.C for ca.24hr, then pulverized again by crushing. About 5-7wt.% 10% aq. PVA soln. is added to obtd. powder to form to a green billet, which is then heat-treated again in O2 at ca.100 deg.C for ca.5h4. The oxide of Y-Ba-Cu prepd. by this method has a single phase of a structure as illustrated by the drawing.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高い臨界温度及び高い臨界磁場を有する酸化物
超伝導材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to oxide superconducting materials with high critical temperatures and high critical magnetic fields.

(従来の技術) 19K6年参月にIBMチェーリッヒ研究所のBedn
orzとMLIllerがLa−Ba−Cuの酸化物で
臨界温度Tcの高い材料が得られる予言がなされた( 
T、 G、 Bednorz and K、 A、 M
LIIIer+ Z、 Phys、 B6偽/15′り
(/りK6))。この結果から東大の日中。
(Prior technology) Bedn of IBM Cherich Research Institute in March 19K6
It was predicted that a material with a high critical temperature Tc could be obtained by using La-Ba-Cu oxides with orz and MLIller (
T, G, Bednorz and K, A, M
LIIIer+ Z, Phys, B6 false/15'ri (/riK6)). From this result, the University of Tokyo during the day.

苗木グループかに@ Ni K4型の結晶構造を持つL
a−8r−Cuの酸化物で≠OK前後の高いTcを示す
材料を作製した。しかしながら、この材料系は≠OK前
後が最高で、これ以上の高い臨界温度は得られない欠点
を有していた( K、 K15hio、K。
Seedling group crab @ Ni L with K4 type crystal structure
A material showing a high Tc of around ≠OK was produced using an oxide of a-8r-Cu. However, this material system had the drawback that the highest critical temperature was around ≠OK, and a higher critical temperature could not be obtained (K, K15hio, K.

Kitazawa+ S、Kanbe+ I、 Yas
uda+ N、Sugii+ HlTakagi + 
 S、Uchida + K、 Fueki and 
S、 Tanaka :Ohem、  Leit、(/
りK7)172り)。これに対し、ヒユーストン大学の
Wuと Ohu  らによりYl、2 BaoJCul
Oの組成で23KからrOK  の間で超伝導へ転移す
る報告がなされた( P、H,Horet aL+  
Phys、  Rev、  Lett、j♂、 タO♂
(/りK7))。
Kitazawa+ S, Kanbe+ I, Yas.
uda+ N, Sugii+ HlTakagi+
S, Uchida + K, Fueki and
S, Tanaka: Ohem, Leit, (/
riK7) 172ri). On the other hand, Wu and Ohu et al.
It has been reported that there is a transition to superconductivity between 23K and rOK at the composition of O (P, H, HoretaL+
Phys, Rev, Lett, j♂, TaO♂
(/riK7)).

また科学技術庁の金属材料技術研究所の戸叶らもY(1
,413aQ、60uI03の組成で723Kから23
にの間で超伝導へ転移する報告がなされた。しかしなが
ら、これらの組成は超伝導を示す相の他に超伝導を示さ
ない相が混合しており、超伝導への転移点は高いものの
臨界電流、臨界磁場が小さいという欠点を有していた。
In addition, Togana et al. of the Institute of Metals and Materials Technology of the Science and Technology Agency
, 413aQ, 723K to 23 with a composition of 60uI03
A transition to superconductivity was reported between . However, these compositions contain a mixture of phases that exhibit superconductivity and phases that do not exhibit superconductivity, and although the transition point to superconductivity is high, they have the disadvantage that the critical current and critical magnetic field are small.

また超伝導に転移する温度範囲も10K以上を必要とす
る欠点を有していた。
Moreover, it has the disadvantage that the temperature range for transition to superconductivity requires a temperature range of 10 K or higher.

(発明が解決しようとする問題点) 本発明はこれまで混合相であった高温超伝導体の低い臨
界電流、臨界磁場特性及び広い超伝導転移温度領域を有
する点を解決した単−相の高温超伝導体を提供しようと
するものである。
(Problems to be Solved by the Invention) The present invention is a single-phase high-temperature superconductor that solves the problems of high-temperature superconductors, which have hitherto been mixed-phase, having a low critical current, critical magnetic field characteristics, and a wide superconducting transition temperature range. The aim is to provide a superconductor.

(問題点を解決するための手段および作用)本発明はペ
ロブスカイト型酸化物で発明者が初めて見出したAtB
40u O14+Y  構造の単−相を有する酸化物超
伝導体を提供する。従来の混合相からなる酸化物超伝導
と比べて単−相の酸化物超伝導体であることが異なる。
(Means and effects for solving the problems) The present invention is a perovskite-type oxide, and the AtB
An oxide superconductor having a single phase with a 40u O14+Y structure is provided. The difference is that it is a single-phase oxide superconductor compared to the conventional mixed-phase oxide superconductor.

(実施例) A41j4(jLI6L)14+yL O()’ <f
) 荷造においてAをイツトリウム、Bをバリウムとし
た場合の酸化物超伝導体についての実施例を説明する。
(Example) A41j4(jLI6L)14+yL O()'<f
) An example of an oxide superconductor in which A is yttrium and B is barium in packaging will be described.

Yz Ba40u60、++Y  はY、O5を1モル
BaOO8を≠モル、OuOを6モルを混合し、酸素中
で 2t o ’c2≠時間熱処理した後、粉砕して再
び粉末にした後ポリビニルアルコール10%水溶液を前
記粉末に3〜7重量%添加してビレット状に圧粉成形し
再び酸素中で1000℃、!時間熱処理して作製する。
Yz Ba40u60, ++Y is Y, 1 mol of O5, ≠ mol of BaOO8, and 6 mol of OuO are mixed, heat treated in oxygen for 2t o'c2≠ hours, crushed to powder again, and then mixed with a 10% polyvinyl alcohol aqueous solution. was added to the powder in an amount of 3 to 7% by weight, compacted into a billet, and then heated again at 1000°C in oxygen. Produced by heat treatment for a period of time.

このように作製したY−Ba−Ou  の酸化物は第1
図に示すようなA2 B40ua OI4+)’  構
造の単−相をとる。単−相からなることは、第!図に示
したX線回折図より確認された。この結果、第2図に示
した温度に対する電気抵抗の変化において、り3Kから
り2にの約/にという小さな温度範囲で超伝導転移が生
じる。また、超伝導特性に対する磁場の影響を従来知ら
れているY。、4 Ba6.60ul o。
The Y-Ba-Ou oxide prepared in this way is the first
A single phase with an A2 B40ua OI4+)' structure as shown in the figure is taken. The fact that it consists of a single phase is number one! This was confirmed from the X-ray diffraction diagram shown in the figure. As a result, in the change in electrical resistance with respect to temperature shown in FIG. 2, a superconducting transition occurs in a small temperature range of about 3K to about 2K. In addition, the influence of magnetic fields on superconducting properties of Y is conventionally known. , 4 Ba6.60ul o.

−スフ と比較して第3図に示す。第3図は/ア←の磁場の下で
の電気抵抗の変化を示す。Y6.4 B a6,60u
 IO2は超伝導相と非導電性の相が混合しておシ超伝
導相が弱い結合体となっているため、/−Pラスの磁場
によって超伝導が簡単に破壊されてしまうのに対し、Y
! Ba4(3u6014−1−yはほとんど影響を受
けない。
- Shown in Figure 3 in comparison with Sufu. Figure 3 shows the change in electrical resistance under the magnetic field of /A←. Y6.4 B a6,60u
In IO2, a superconducting phase and a non-conducting phase are mixed, and the superconducting phase forms a weak bond, so the superconductivity is easily destroyed by the magnetic field of /-P. Y
! Ba4(3u6014-1-y is hardly affected.

以上の結果から明らかなように従来の技術に比べて超伝
導転移の温度範囲を小さくしたこと及び磁場に対する影
響を受けに<<シたことの改善があった・ 〔実施例2〕 As B40u60+*+Yにおいて人をランタン、B
をパと同様である。温度に対する電気抵抗の変化をに、
NiF、構造のLa1Jll 13a(jlll 0u
104と比較して第≠図に示す。本発明の構造による酸
化物超伝導材料はLaBa−0uの酸化物としては世界
最高の臨界磁場を有し、  K、NiF、構造のものよ
りも/J”Kも高い。
As is clear from the above results, compared to the conventional technology, the temperature range of superconducting transition was made smaller and the influence of the magnetic field was significantly improved. [Example 2] As B40u60+* +Y makes a person a lantern, B
is similar to Pa. The change in electrical resistance with respect to temperature,
NiF, structure La1Jll 13a (jllll 0u
A comparison with 104 is shown in FIG. The oxide superconducting material with the structure of the present invention has the world's highest critical magnetic field as a LaBa-0u oxide, and /J''K is higher than that of the K, NiF, structure.

また、上部臨界磁場Hc2はtテμまでの測定では1本
特許の構造のものはに、NiF、構造のものよシも少な
くとも約2倍優れていることが明らかとなった。
Furthermore, it has been revealed that the upper critical magnetic field Hc2 is at least twice as good as that of the structure of this patent and that of the NiF structure when measured up to tteμ.

〔実施例3〕 示す。表/に見られるようにAt B40u60t4+
Y  構造の単−相をとればいずれも高い臨界温度と小
さな温度範囲で超伝導転移を行う。
[Example 3] Shown. At B40u60t4+ as seen in table/
All single-phase Y structures undergo a superconducting transition at a high critical temperature and within a small temperature range.

表  / (発明の効果) 以上説明したようにAx B4 cua O14+)’
  (0<y <2)構造の単−相で酸化物超伝導材料
を構成したことにより、高い臨界温度と小さな超伝導転
移温度領域及び高い臨界磁場特性が得られる利点がある
Table / (Effect of the invention) As explained above, Ax B4 cua O14+)'
By configuring the oxide superconducting material with a single phase having a (0<y<2) structure, there are advantages in that a high critical temperature, a small superconducting transition temperature region, and high critical magnetic field characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の酸化物超伝導材料の構造図。 第2図は本発明の酸化物超伝導材料の構造を有するY2
 Ba4006014+Yの温度に対する電気抵抗の変
化。 第3図は本発明の単−相を持つYt Ba40u60+
4+yと混合相を持つY。、413aO06Cul 0
3の/テスラの磁場の下での伝導特性。 第≠図は本発明の酸化物超伝導材料の構造を有するLa
tBa41 Cu6014+Y  と K2NiF4゛
構造のLal、85 ElaQ、ts Out 04温
度に対スル電気抵抗C7)変化。 第5図は本発明のY2 Ba40ua O+*+Y  
のX線回折図である。 第1図
FIG. 1 is a structural diagram of the oxide superconducting material of the present invention. Figure 2 shows Y2 having the structure of the oxide superconducting material of the present invention.
Change in electrical resistance of Ba4006014+Y with respect to temperature. Figure 3 shows Yt Ba40u60+ having a single phase according to the present invention.
4+y and Y with a mixed phase. , 413aO06Cul 0
Conduction properties under a magnetic field of 3/Tesla. Figure ≠ shows La having the structure of the oxide superconducting material of the present invention.
tBa41 Cu6014+Y and K2NiF4゛ structure Lal, 85 ElaQ, ts Out 04 Electrical resistance vs. temperature C7) Change. Figure 5 shows Y2 Ba40ua O++Y of the present invention.
It is an X-ray diffraction diagram of. Figure 1

Claims (1)

【特許請求の範囲】[Claims]  酸素欠陥を有する正方晶系に属するペロブスカイト型
酸化物A_2B_4Cu_5O_1_4_+_y(0<
y<2.5)構造を有し、Aはイットリウム(Y)、ラ
ンタン(La)、イッテルビウム(Yb)、ルテチウム
(Lu)、スカンジウム(Sc)、アルミニウム(Al
)、ボロン(B)からなる群から選ばれた1又は2以上
の元素からなり、Bはバリウム(Ba)、ストロンチウ
ム(Sr)、カルシウム(Ca)からなる群から選ばれ
た1又は2以上の元素からなることを特徴とする酸化物
超伝導材料。
Perovskite oxide belonging to the tetragonal system with oxygen defects A_2B_4Cu_5O_1_4_+_y (0<
y<2.5) structure, and A is yttrium (Y), lanthanum (La), ytterbium (Yb), lutetium (Lu), scandium (Sc), aluminum (Al
), boron (B), and B is one or more elements selected from the group consisting of barium (Ba), strontium (Sr), and calcium (Ca). An oxide superconducting material characterized by being composed of elements.
JP62058441A 1987-03-13 1987-03-13 Oxide superconductive material Pending JPS63225531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62058441A JPS63225531A (en) 1987-03-13 1987-03-13 Oxide superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62058441A JPS63225531A (en) 1987-03-13 1987-03-13 Oxide superconductive material

Publications (1)

Publication Number Publication Date
JPS63225531A true JPS63225531A (en) 1988-09-20

Family

ID=13084483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62058441A Pending JPS63225531A (en) 1987-03-13 1987-03-13 Oxide superconductive material

Country Status (1)

Country Link
JP (1) JPS63225531A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230526A (en) * 1987-03-18 1988-09-27 Kazuo Fueki Compound superconductor and production thereof
JPS643014A (en) * 1987-03-28 1989-01-06 Sumitomo Electric Ind Ltd Superconducting material and production thereof
JPS643059A (en) * 1987-03-22 1989-01-06 Sumitomo Electric Ind Ltd Production of superconducting material
JPS643063A (en) * 1987-03-28 1989-01-06 Sumitomo Electric Ind Ltd Production of superconductive material
JPS643054A (en) * 1987-03-22 1989-01-06 Sumitomo Electric Ind Ltd Production of superconducting material
JPS643009A (en) * 1987-03-19 1989-01-06 Sumitomo Electric Ind Ltd Superconducting material and production thereof
JPS6452616A (en) * 1987-03-13 1989-02-28 Sanyo Electric Co Superconducting substance and production thereof
JPH0517203A (en) * 1991-04-01 1993-01-26 Semiconductor Energy Lab Co Ltd Superconducting ceramics
JPH0517202A (en) * 1991-04-01 1993-01-26 Semiconductor Energy Lab Co Ltd Superconducting ceramics
US7112556B1 (en) 1987-03-25 2006-09-26 Semiconductor Energy Laboratory Co., Ltd. Superconducting ceramics

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452616A (en) * 1987-03-13 1989-02-28 Sanyo Electric Co Superconducting substance and production thereof
JPS63230526A (en) * 1987-03-18 1988-09-27 Kazuo Fueki Compound superconductor and production thereof
JPS643009A (en) * 1987-03-19 1989-01-06 Sumitomo Electric Ind Ltd Superconducting material and production thereof
JPS643059A (en) * 1987-03-22 1989-01-06 Sumitomo Electric Ind Ltd Production of superconducting material
JPS643054A (en) * 1987-03-22 1989-01-06 Sumitomo Electric Ind Ltd Production of superconducting material
US7112556B1 (en) 1987-03-25 2006-09-26 Semiconductor Energy Laboratory Co., Ltd. Superconducting ceramics
JPS643014A (en) * 1987-03-28 1989-01-06 Sumitomo Electric Ind Ltd Superconducting material and production thereof
JPS643063A (en) * 1987-03-28 1989-01-06 Sumitomo Electric Ind Ltd Production of superconductive material
JPH0517203A (en) * 1991-04-01 1993-01-26 Semiconductor Energy Lab Co Ltd Superconducting ceramics
JPH0517202A (en) * 1991-04-01 1993-01-26 Semiconductor Energy Lab Co Ltd Superconducting ceramics

Similar Documents

Publication Publication Date Title
JPH0643268B2 (en) Oxide high temperature superconductor
JPS63225531A (en) Oxide superconductive material
CA1335327C (en) Oxide superconductor and manufacturing method thereof
CN109626987A (en) A kind of preparation method of Bismuth-system superconductor
JP2593475B2 (en) Oxide superconductor
JP2597578B2 (en) Superconductor manufacturing method
JP2598055B2 (en) Oxide superconducting thin film for electronic devices
JP2002037626A (en) Method for manufacturing bismuth type high temperature superconductor
JPS63315566A (en) Perovskite type oxide superconducting material having high jc and tc
JP2597579B2 (en) Superconductor manufacturing method
JPS63270309A (en) Oxide superconductor
JPH0569059B2 (en)
KR930002579B1 (en) Manufacturing method of thick film super conductor
JP2585621B2 (en) How to make superconducting material
JPS63277547A (en) Production of high-temperature superconductive porcelain
JPS63230562A (en) Production of superconducting ceramics
Wallace et al. Synthesis and magnetic properties of the Bi-Sr-Ca-Cu oxide 80-and 110-K superconductors
JPS63236751A (en) Superconductive ceramic
JPS63230564A (en) Superconducting ceramics
JPH0230618A (en) Oxide high-temperature superconductor
JPH01176220A (en) Oxide superconductor
JPH0226832A (en) Production of superconducting material
JPH03228820A (en) Oxide superconductor
JPS63239112A (en) Preparation of superconductive material
JPH01160855A (en) Production of superconductor