JPH0569059B2 - - Google Patents

Info

Publication number
JPH0569059B2
JPH0569059B2 JP62069447A JP6944787A JPH0569059B2 JP H0569059 B2 JPH0569059 B2 JP H0569059B2 JP 62069447 A JP62069447 A JP 62069447A JP 6944787 A JP6944787 A JP 6944787A JP H0569059 B2 JPH0569059 B2 JP H0569059B2
Authority
JP
Japan
Prior art keywords
elements
magnetic field
copper
producing
superconducting ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62069447A
Other languages
Japanese (ja)
Other versions
JPS63233069A (en
Inventor
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP62069447A priority Critical patent/JPS63233069A/en
Priority to AU13296/88A priority patent/AU600345B2/en
Priority to EP88302512A priority patent/EP0284354B1/en
Priority to DE3855357T priority patent/DE3855357T2/en
Priority to KR1019880003087A priority patent/KR910004991B1/en
Priority to US07/172,222 priority patent/US6291403B1/en
Priority to CN88101380A priority patent/CN1025088C/en
Publication of JPS63233069A publication Critical patent/JPS63233069A/en
Publication of JPH0569059B2 publication Critical patent/JPH0569059B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は酸化物セラミツク系超電導材料の作製
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application of the Invention The present invention relates to a method for producing an oxide ceramic superconducting material.

本発明はK2NiF4型の超電導を呈する材料の作
製方法に関する。
The present invention relates to a method for producing a material exhibiting K 2 NiF 4 type superconductivity.

「従来の技術」 従来、超電子材料は、水銀、鉛等の元素、
NbN、Nb3Ge、Nb3Ga等の合金またはNb3(Al0.8
Ge0.2)等の三元素化合物よりなる金属材料が用
いられている。しかしこれらのTc(超電導臨界温
度)オンセツトは25Kまでであつた。
"Conventional technology" Conventionally, superelectronic materials have been made using elements such as mercury and lead,
Alloys such as NbN, Nb 3 Ge, Nb 3 Ga or Nb 3 (Al 0.8
A metal material made of a ternary element compound such as Ge 0.2 ) is used. However, their Tc (superconducting critical temperature) onset was up to 25K.

他方、近年、セラミツク系の超電導材料が注目
されている。この材料は最初IBMのチユーリツ
ヒ研究所よりBa−La−Cu−O(バラクオ)系酸
化物高温超電導体として報告され、さらにLSCO
(第二銅酸−ランタン−ストロンチユーム)とし
て知られてきた。これらは(A1-Xbx)yCuOzに
おけるそれぞれの酸化物を混合し焼成するのみで
あるため、Tcオンセツトが30Kしか得られなか
つた。
On the other hand, ceramic-based superconducting materials have attracted attention in recent years. This material was first reported by IBM's Zurich Research Institute as a Ba-La-Cu-O (baraquo)-based oxide high-temperature superconductor, and further developed by LSCO.
It has been known as (cupric acid-lanthanum-strontium). Since these oxides in (A 1-X bx)yCuOz were simply mixed and fired, a Tc onset of only 30K could be obtained.

「従来の問題点」 しかし、これら酸化物セラミツクスの超電導の
可能性は1層ペルブスカイト型の構造を利用して
おり、その構造物の中には多数のボイドおよび結
晶粒界を含有するため、そのTcも30Kが限界で
あつた。
``Conventional problems'' However, the potential for superconductivity of these oxide ceramics relies on the single-layer pervskite structure, which contains many voids and grain boundaries. Tc was also limited to 30K.

このため、このTco(抵抗が零となる温度)を
さらに高くし、望むべくは液体窒素温度(77K)
またはそれ以上の温度で動作せしめることが強く
求められていた。
For this reason, this Tco (temperature at which resistance becomes zero) should be made higher, preferably at liquid nitrogen temperature (77K).
There was a strong demand for the device to operate at temperatures higher than that.

「問題を解決すべき手段」 本発明は、かかる高温で超電導を呈するべく、
K2NiF4型を構成すべき素材を探し求めた。その
結果、Tco(電気抵抗がぜすとなる超電導が始ま
る温度)も50〜107Kまで向上させ得ることが明
らかになつた。
"Means to Solve the Problem" The present invention aims to exhibit superconductivity at such high temperatures.
We searched for the material that would form the K 2 NiF 4 type. As a result, it became clear that Tco (the temperature at which superconductivity begins when electrical resistance disappears) could also be increased to 50 to 107K.

元素周期律表a族およびa族の元素および
銅を用いた酸化物セラミツクスである。
It is an oxide ceramic using elements of groups A and A of the periodic table of elements and copper.

本発明の超電導性セラミツクスは(A1-XBx)
yCuOzx=0.01〜0.3、y=1.0〜2.2、z=2.0〜4.5
で一般的に示し得るものである。Aはイツトリユ
ーム族より選ばれた元素およびその他のランタノ
イドより選ばれた元素のうちの1種類または複数
種類を用いている。イツトリユーム族とは、理化
学辞典(岩波書店 1963年4月1日発行)によれ
ばY(イツトリユーム)、Gd(ガドリユーム)、Yb
(イツテルビユーム)、Eu(ユーロピウム)、Tb
(テルビウム)、Dy(ジスプロシウム)、Ho(ホル
ミウム)、Er(エルビウム)、Tm(シリウム)、Lu
(ルテチウム)、Sc(スカンジウム)およびその他
のランタノイドを用いる。
The superconducting ceramic of the present invention is (A 1-X Bx)
yCuOzx=0.01~0.3, y=1.0~2.2, z=2.0~4.5
This can be generally shown as A uses one or more of elements selected from the yttrium group and elements selected from other lanthanoids. According to the Physical and Chemistry Dictionary (Iwanami Shoten, published on April 1, 1963), the Itztriyum tribe includes Y (Itztriyum), Gd (Gadryum), and Yb.
(Ittelbyum), Eu (Europium), Tb
(terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (silium), Lu
(lutetium), Sc (scandium) and other lanthanides.

またBはRa(ラジユーム)、Ba(バリユーム)、
Sr(ストロンチユーム)、Ca(カルシユーム)、Mg
(マグネシユーム)、Be(ベリリユーム)より選ば
れた元素のうち1種類または複数種類を用いてい
る。
Also, B is Ra (Radiyum), Ba (Baliyum),
Sr (strontium), Ca (calcium), Mg
One or more elements selected from (magnesium) and Be (beryllium) are used.

本発明は銅を層構造とせしめ、これを1分子内
で1層またはそれを対称構造の2層構造とし、こ
の層の最外核電子の電子の軌道により超電導を呈
せしめ得るモデルを前提としている。このため、
K2NiF4構造またはそれを変形した2層ペルプス
カイト構造を前提としている。
The present invention is based on a model in which copper has a layered structure, one layer or two symmetrical layers within one molecule, and superconductivity can be exhibited by the electron orbit of the outermost core electron of this layer. There is. For this reason,
It is based on the K 2 NiF 4 structure or a modified two-layer perpskite structure.

かかる構造においては、銅の6ケの原子をより
層構造とせしめ、この層をキヤリアが移動しやす
くするため、本発明構造における(A1-XBx)
yCuOzにおけるA、Bの選ばれる元素が重要で
ある。特にAの元素はイツトリユーム族の元素ま
たはランタノイドの元素、一般には元素用周期律
表aの族である。さらに本発明はBとして元素
周期律表a族であるRa(ラジユーム)、Ba(バ
リユーム)、Sr(ストロンチユーム)、Ca(カルシ
ユーム)、Mg(マグネシユーム)、Be(ベリリユー
ム)より選ばれた元素を用いている。
In such a structure, (A 1-X Bx) in the structure of the present invention makes the six copper atoms more layered and makes it easier for carriers to move through this layer.
The elements A and B selected in yCuOz are important. In particular, the element A is an element of the yttrium group or an element of the lanthanides, generally from group a of the periodic table of elements. Furthermore, the present invention uses an element selected from Ra (radium), Ba (barium), Sr (strontium), Ca (calcium), Mg (magnesium), and Be (beryllium), which are group a of the periodic table of elements, as B. ing.

本発明はかかる元素を用いたセラミツクスを仮
焼成して酸化するに際し、そのタブレツトに磁場
好ましくは500ガウス以上の磁場を加えることに
より、磁場により誘起される電流と超電導材料の
有する反磁場特性とを有機的に結びつけ、相乗作
用を有せしめる。
In the present invention, when pre-sintering and oxidizing ceramics using such elements, a magnetic field, preferably 500 Gauss or more, is applied to the tablet, thereby reducing the current induced by the magnetic field and the demagnetizing field characteristics of the superconducting material. They are organically linked and have a synergistic effect.

かくすることにより、一般式におけるA、Bに
対し、選択の余地を与えるとともに、多結晶を呈
する1つの結晶粒を大きくでき、ひいてはその結
晶粒界でのバリア(障壁)をより消失させ得る構
成とせしめた。その結果、Tcoの温度をさらに高
くさせ得る。そしてその理想は単結晶構造であ
る。
By doing so, it is possible to provide a configuration in which A and B in the general formula can be selected, one crystal grain exhibiting polycrystalline size can be enlarged, and the barrier at the grain boundary can further be eliminated. I ordered it. As a result, the temperature of Tco can be made even higher. The ideal is a single crystal structure.

本発明は出発材料の酸化物または炭酸化物の微
粉末を混合し、一度加圧、酸化焼成(これを仮焼
成という)をする。かくして出発材料の酸化物ま
たは炭酸化物より(A1-XBx)yCuOz型の分子構
造を有する超電導セラミツク材料を作り得る。
In the present invention, starting materials such as fine powders of oxides or carbonates are mixed, and once pressurized and oxidized and fired (this is called pre-calcination). In this way, a superconducting ceramic material having a molecular structure of the (A 1-X Bx)yCuOz type can be produced from the starting oxide or carbonate.

さらにこれを再び微粉末化し、再び加圧してタ
ブレツト化し、本焼成をする工程を有せしめてい
る。
Furthermore, it has a step of pulverizing it again, pressurizing it again to form a tablet, and then firing it.

「作用」 本発明のK2NiF4型のセラミツク超電導材料は
きわめて簡単に作ることができる。特にこれらは
その出発材料として3Nまたは4Nの純度の酸化物
または炭酸化物を用い、これをボールミルを用い
て微粉末に粉砕し、混合する。すると、化学量論
的に(A1-XBx)xCuOzのx、y、zのそれぞれ
の値を任意に変更、制御することができる。
"Function" The K 2 NiF 4 type ceramic superconducting material of the present invention can be produced very easily. In particular, these use 3N or 4N purity oxides or carbonates as their starting materials, which are ground into fine powder using a ball mill and mixed. Then, each value of x, y, and z of (A 1-X Bx)xCuOz can be arbitrarily changed and controlled stoichiometrically.

本発明においては、かかる超電導材料を作るの
に特に高価な設備を用いなくともよいという他の
特徴も有する。
Another feature of the present invention is that it does not require the use of particularly expensive equipment to produce such a superconducting material.

以下に実施例に従い、本発明を記す。 The present invention will be described below with reference to Examples.

実施例 1 本発明の実施例として、AとしてY、Bとして
Baを用いた。
Example 1 As an example of the present invention, A is Y and B is
Ba was used.

出発材料はY化合物として酸化イツトリユーム
(Y2O3)、Ba化合物としてBaCO3、銅化合物とし
てCuOを用いた。これらは高純度化学工業株式会
社より人手し、純度は99.95%またはそれ以上の
微粉末を用い、x=0.15、y=1.8となるべく選
んだ。このxの値は0.05、0.1、0.15、0.2と0.01〜
0.3の範囲で可変した。
As starting materials, yttrium oxide (Y 2 O 3 ) was used as a Y compound, BaCO 3 as a Ba compound, and CuO as a copper compound. These were hand-made by Kojundo Kagaku Kogyo Co., Ltd., using fine powder with a purity of 99.95% or higher, and x=0.15 and y=1.8. The values of this x are 0.05, 0.1, 0.15, 0.2 and 0.01 ~
It was variable within the range of 0.3.

これらを十分乳鉢で混合しカプセルに封入し、
3Kg/cm2の荷重を加えてタブレツト化(大きさ5
mmφ×15mm)した。さらに酸化性雰囲気、例えば
大気中で500〜1200℃、例えば700℃で8時間加熱
酸化した。この工程を仮焼成とした。
Mix these thoroughly in a mortar and encapsulate them in a capsule.
Add a load of 3 kg/cm 2 to make it into a tablet (size 5
mmφ×15mm). Further, the mixture was heated and oxidized at 500 to 1200°C, for example 700°C, for 8 hours in an oxidizing atmosphere, such as the air. This step was called pre-firing.

この時外部より磁場を加えた。この磁場はタブ
レツトの上下に密接し、一方をN、他方をSとす
るべく直流磁場とし、強さは500ガウスとした。
この磁場の強さは強ければ強いほど好ましいこと
はいうまでもない。
At this time, a magnetic field was applied from the outside. This magnetic field was close to the top and bottom of the tablet, one side was N and the other was S, making it a direct current magnetic field, and the strength was 500 Gauss.
It goes without saying that the stronger the strength of this magnetic field, the better.

次にこれを粉砕し、乳鉢で混合した。そしてそ
の粉末の平均粒粉径が200μm〜3μm、例えば10μ
m以下の大きさとなるようにした。
This was then ground and mixed in a mortar. The average particle diameter of the powder is 200μm to 3μm, for example 10μm.
The size was set to be less than m.

さらにこれをカプセルに封入し5Kg/cm2の圧力
でタブレツトに加圧して成型した。
Further, this was encapsulated in a capsule and molded into a tablet under pressure of 5 kg/cm 2 .

次に500〜1200℃、例えば900℃の酸化物雰囲
気、例えば大気中で酸化して、本焼成を10〜50時
間、例えば15時間行つた。
Next, oxidation was carried out at 500 to 1200°C, for example 900°C, in an oxide atmosphere, for example air, and main firing was performed for 10 to 50 hours, for example 15 hours.

このタブレツトはペルプスカイド構造が主とし
て観察されるが、K2NiF4型構造も同時に観察さ
れた。
In this tablet, a Pelpskide structure was mainly observed, but a K 2 NiF 4 type structure was also observed at the same time.

次にこの試料を酸素を少なくさせたO2−Ar中
で加熱(600〜1200℃、3〜30時間、例えば800
℃、20時間)して、還元させた。この時、このタ
ブレツトの上下より外部磁場を加えた。この磁場
は直流磁場とし、1Kガウスを5mmφのタブレツ
トに対し加えた。この磁場は少なくとも10分以上
加え続けると、Tcoの上昇の効果がみられた。
Next, this sample is heated in oxygen-depleted O 2 -Ar (600-1200℃, 3-30 hours, e.g. 800℃,
°C for 20 hours) for reduction. At this time, an external magnetic field was applied from above and below the tablet. This magnetic field was a direct current magnetic field, and 1 K Gauss was applied to a 5 mmφ tablet. When this magnetic field was continuously applied for at least 10 minutes, the effect of increasing Tco was observed.

この試料を用いて固有抵抗と温度との関係を調
べた。すると最高温度が得られたものとしての
Tcオンセツトとして103K、Tcoとして79Kを観
察することができた。
Using this sample, the relationship between resistivity and temperature was investigated. Then, assuming that the maximum temperature is obtained,
It was possible to observe a Tc onset of 103K and a Tco of 79K.

磁場を加えない場合はこの値はTcオンセツト
83K、Tco、66Kでしかなかつた。
If no magnetic field is applied, this value is the Tc onset.
It was only 83K, Tco, and 66K.

実施例 2 この実施例として、AとしてYおよびYbを
x:x′=1:1でその酸化物を混合した。Bとし
てBaを用いた。出発材料は酸化イツトリユーム
および酸化イツテルビユーム、BaとしてBaCO3
または銅化合物としてCuOを用いた。この場合の
磁場は商用周波数(50Hz)とした。その他は実施
例1と同様である。
Example 2 In this example, as A, Y and Yb were mixed with their oxides at x:x'=1:1. Ba was used as B. The starting materials are yttrium oxide and ytterbilium oxide, BaCO3 as Ba
Alternatively, CuO was used as the copper compound. The magnetic field in this case was a commercial frequency (50Hz). The rest is the same as in Example 1.

Tcオンセツトとして106K、Tcoとして83Kを
得ることができた。
I was able to obtain 106K as Tc onset and 83K as Tco.

磁場を加えない場合は、Tcオンセツト94K、
Tco78Kであり、それぞれ5〜12Kも向上でき
た。
If no magnetic field is applied, Tc onset 94K,
The Tco was 78K, and each was able to improve by 5 to 12K.

実施例 3 実施例1において、AとしてY、Ybにさらに
Nb2O5を20〜30%加えた。するとTcオンセツト
をさらに3〜5Kも向上させることができた。
Example 3 In Example 1, as A, Y and Yb are further added.
20-30 % Nb2O5 was added. As a result, we were able to further improve Tc onset by 3 to 5K.

本発明において、イツトリユーム族(Y、Eu、
Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sc、)
の元素およびその他のランタノイドを酸化物また
は炭酸化物とし、それらを出発材料として用いて
複合材料セラミツクスとしても有効である。特に
これらより選ばれた材料を(A1-XBx)yCuOzで
示される一般式のAの一部に加えることはTcを
さらに5〜10Kも向上させ得る効果があつた。
In the present invention, the Ittrium family (Y, Eu,
Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc,)
These elements and other lanthanoids are used as oxides or carbonates, and they are also effective as starting materials for composite ceramics. In particular, adding a material selected from these to a part of A in the general formula (A 1-X Bx)yCuOz had the effect of further increasing Tc by 5 to 10K.

本発明はその他の材料であるBとして、Sr、
Caを用い得る。その概要は実施例1と概略同様
である。
In the present invention, other materials B include Sr,
Ca can be used. The outline is roughly the same as that of the first embodiment.

「効果」 本発明により、これまでまつたく不可能とされ
ていた液体窒素温度以上の温度で動作する超電導
セラミツクスを作ることができるようになつた。
``Effects'' The present invention has made it possible to produce superconducting ceramics that operate at temperatures higher than the liquid nitrogen temperature, which was previously thought to be impossible.

本発明において仮焼成をした後に微粉末化する
工程により、初期状態でのそれぞれの出発材料の
化合物を到達材料、即ち(A1-XBx)yCuOzで示
される材料を含む化合物とするものである。
In the present invention, by the step of calcining and then pulverizing, the compound of each starting material in its initial state becomes the final material, that is, a compound containing the material represented by (A 1-X Bx)yCuOz. .

さらにこの到達材料の化合物における分子構造
内で銅の層構造をよりさせやすくするため、原子
周期律表におけるa、aの元素を複数個混合
させ得る。かくして最終完成化合物中に、ボイド
および結晶粒界の障壁の高さを低くすること等の
存在をより除去することができ、ひいてはTcオ
ンセツト、Tcoをより高温化できるものと推定さ
れる。
Furthermore, in order to make it easier to form a copper layer structure within the molecular structure of the compound of this target material, a plurality of elements a and a in the atomic periodic table may be mixed. In this way, it is presumed that the presence of voids and the lowering of the barrier height of grain boundaries can be further removed from the final completed compound, and as a result, the Tc onset and Tco can be made higher.

また本発明の分子式で示される超電導セラミツ
クスはその超電導の推定メカニズムとして、銅の
酸化物が層構造を有し、その層構造も一分子内で
一層または2層構成を有し、その層内をキヤリア
が超電導をしているものと推定される。
In addition, the superconducting ceramic represented by the molecular formula of the present invention has a layered structure of copper oxide as the presumed superconducting mechanism, and the layered structure also has one or two layers within one molecule. It is presumed that the carrier is superconducting.

本発明の実施例は、タブレツトにしたものであ
る。しかしタブレツトにするのではなく、仮焼成
または本焼成の後、再び粉末化し、その粉末を溶
媒にとかし、基板等にその溶液をコーテイングし
て、これを乾燥させさらに酸化性雰囲気で磁場を
加えつつ焼成し、さらにその後還元性雰囲気で焼
成をすることにより薄膜の超電導セラミツクスと
することも可能である。
An embodiment of the invention is a tablet. However, rather than making it into a tablet, after pre-firing or final baking, it is powdered again, the powder is dissolved in a solvent, the solution is coated on a substrate, etc., and this is dried and then a magnetic field is applied in an oxidizing atmosphere. It is also possible to make a thin film of superconducting ceramics by firing and then firing in a reducing atmosphere.

本発明の後、さらに繰り返し粉末化、タブレツ
ト化、磁場を印加した焼成を繰り返してもよい。
After the present invention, powdering, tabletting, and firing with the application of a magnetic field may be repeated.

本発明により超電導体を容易に低価格で作るこ
とができるようになつた。
The present invention has made it possible to easily produce superconductors at low cost.

本発明は他の分子式で示される(A1-XBx)
y′Cu Ozy′=2.6〜4.4、z′=4.0〜8.0例えばy′=3

z′=7またはy′=2、z′=6、(A1-XBx)
y′Cu6Oz′におけるy′=6、z′=14と同等であるこ
とはいうまでもない。
The invention is represented by other molecular formulas (A 1-X Bx)
y′Cu Ozy′=2.6 to 4.4, z′=4.0 to 8.0 e.g. y′=3
,
z'=7 or y'=2, z'=6, (A 1-X Bx)
Needless to say, this is equivalent to y′=6 and z′=14 in y′Cu 6 Oz′.

Claims (1)

【特許請求の範囲】 1 元素周期律表a族およびa族のそれぞれ
より選ばれた1種類または複数種類の元素と銅と
の化合物の超電導特性を有する材料を作るに際
し、これらの金属、酸化物または炭酸化物の出発
材料を一体物とした後、焼成する際に磁場を同時
に加えたことを特徴とする超電導セラミツクスの
作製方法。 2 特許請求の範囲第1項において、元素周期律
表a族およびa族のそれぞれより選ばれた元
素と銅との化合物は(A1-XBX)yCuOz、x=
0.01〜0.3、y=1.0〜2.2、z=2.0〜4.5の構成を
有し、AはY(イツトリユーム)、Gd(ガドリニユ
ーム)、Yb(イツテルビユーム)、Eu(ユーロピウ
ム)、Tb(テルビウム)、Dy(ジスプロシウム)、
Ho(ホルミウム)、Er(エルビウム)、Tm(ツリウ
ム)Lu(ルテチウム)、Sc(スカンジウム)および
その他のランタノイドより選ばれた1種類または
複数種類の元素よりなり、BはRa(ラジユーム)、
Ba(バリユーム)、Sr(ストロンチユーム)、Ca
(カルシユーム)、Mg(マグネシユーム)、Be(ベ
リリユーム)より選ばれた1種類または複数種類
の材料の元素よりなることを特徴とする超電導セ
ラミツクスの作製方法。 3 特許請求の範囲第1項において、焼成は500
〜1200℃の温度で行うことを特徴とする超電導セ
ラミツクスの作製方法。 4 特許請求の範囲第1項において、磁場は500
〜5Kガウスの強さに印加したことを特徴とする
超電導セラミツクスの作製方法。 5 特許請求の範囲第1項において、出発材料は
A、Bおよび銅の金属、酸化物または炭酸化物で
あることを特徴とする超電導セラミツクスの作製
方法。
[Claims] 1. When producing a material having superconducting properties of a compound of copper and one or more elements selected from groups a and a of the periodic table of elements, these metals and oxides Alternatively, a method for producing superconducting ceramics characterized in that a carbonate starting material is made into a single piece and then a magnetic field is simultaneously applied during firing. 2. In claim 1, the compound of copper and an element selected from groups a and a of the periodic table of elements is (A 1-X B X )yCuOz, x=
It has a composition of 0.01 to 0.3, y = 1.0 to 2.2, z = 2.0 to 4.5, and A is Y (yztriyum), Gd (gadolinium), Yb (yzterbium), Eu (europium), Tb (terbium), Dy ( dysprosium),
Consists of one or more elements selected from Ho (holmium), Er (erbium), Tm (thulium), Lu (lutetium), Sc (scandium) and other lanthanoids, B is Ra (radium),
Ba (valium), Sr (strontium), Ca
1. A method for producing superconducting ceramics characterized by comprising one or more materials selected from (calcium), Mg (magnesium), and Be (beryllium). 3 In claim 1, firing is 500
A method for producing superconducting ceramics characterized by carrying out at a temperature of ~1200°C. 4 In claim 1, the magnetic field is 500
A method for producing superconducting ceramics characterized by applying an electric current to a strength of ~5K Gauss. 5. The method for producing superconducting ceramics according to claim 1, characterized in that the starting materials are metals, oxides, or carbonates of A, B, and copper.
JP62069447A 1987-03-23 1987-03-23 Preparation of superconductive ceramic Granted JPS63233069A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP62069447A JPS63233069A (en) 1987-03-23 1987-03-23 Preparation of superconductive ceramic
AU13296/88A AU600345B2 (en) 1987-03-23 1988-03-18 Method of manufacturing superconducting ceramics under a magnetic field
EP88302512A EP0284354B1 (en) 1987-03-23 1988-03-22 Method of manufacturing superconducting ceramics
DE3855357T DE3855357T2 (en) 1987-03-23 1988-03-22 Process for the production of superconducting ceramics
KR1019880003087A KR910004991B1 (en) 1987-03-23 1988-03-23 Superconducting Ceramic Material Manufacturing Method
US07/172,222 US6291403B1 (en) 1987-03-23 1988-03-23 Method of manufacturing superconducting ceramics under a magnetic field
CN88101380A CN1025088C (en) 1987-03-23 1988-03-23 Method of manufacturing superconducting ceramics under magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62069447A JPS63233069A (en) 1987-03-23 1987-03-23 Preparation of superconductive ceramic

Publications (2)

Publication Number Publication Date
JPS63233069A JPS63233069A (en) 1988-09-28
JPH0569059B2 true JPH0569059B2 (en) 1993-09-30

Family

ID=13402899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62069447A Granted JPS63233069A (en) 1987-03-23 1987-03-23 Preparation of superconductive ceramic

Country Status (1)

Country Link
JP (1) JPS63233069A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2585621B2 (en) * 1987-08-26 1997-02-26 株式会社半導体エネルギー研究所 How to make superconducting material
JPH04305015A (en) * 1991-04-01 1992-10-28 Semiconductor Energy Lab Co Ltd Superconducting material producting thereof
JP6315581B2 (en) * 2014-08-22 2018-04-25 国立大学法人 熊本大学 Cathode for solid oxide fuel cell, method for producing the same, and solid oxide fuel cell including the cathode

Also Published As

Publication number Publication date
JPS63233069A (en) 1988-09-28

Similar Documents

Publication Publication Date Title
JPH0649626B2 (en) Oxide superconducting material
JP2606698B2 (en) Manufacturing method of superconducting ceramics
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
JP2630361B2 (en) Superconducting material
JPH0569059B2 (en)
JP2606697B2 (en) Manufacturing method of superconducting ceramics
JPS63233067A (en) Preparation of superconductive ceramic
JPS63233068A (en) Preparation of superconductive ceramic
JPH01192758A (en) Superconducting ceramic
JPS63236752A (en) Superconductive ceramic
JPS63233064A (en) Superconductive ceramic
JP2585621B2 (en) How to make superconducting material
JPS63239112A (en) Preparation of superconductive material
JPS63233063A (en) Superconductive ceramic
JP2749194B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
JPH0572329B2 (en)
JPS63230563A (en) Superconducting ceramics
JPH0570287B2 (en)
JPS63315566A (en) Perovskite type oxide superconducting material having high jc and tc
JP2588398B2 (en) Superconducting ceramics
JPH04305015A (en) Superconducting material producting thereof
JP2590370B2 (en) Superconducting material and manufacturing method thereof
JPH0517204A (en) Superconducting ceramics
JPH01270518A (en) Superconductor thick film and production thereof
JPS63230564A (en) Superconducting ceramics