JPH0570287B2 - - Google Patents

Info

Publication number
JPH0570287B2
JPH0570287B2 JP62075204A JP7520487A JPH0570287B2 JP H0570287 B2 JPH0570287 B2 JP H0570287B2 JP 62075204 A JP62075204 A JP 62075204A JP 7520487 A JP7520487 A JP 7520487A JP H0570287 B2 JPH0570287 B2 JP H0570287B2
Authority
JP
Japan
Prior art keywords
superconducting material
current
temperature
firing
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62075204A
Other languages
Japanese (ja)
Other versions
JPS63240005A (en
Inventor
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP62075204A priority Critical patent/JPS63240005A/en
Priority to DE3889371T priority patent/DE3889371T2/en
Priority to EP88301363A priority patent/EP0284189B1/en
Priority to AU13295/88A priority patent/AU600344B2/en
Priority to CN88101381A priority patent/CN1025089C/en
Priority to KR1019880003086A priority patent/KR920002353B1/en
Publication of JPS63240005A publication Critical patent/JPS63240005A/en
Priority to US07/590,493 priority patent/US5932524A/en
Publication of JPH0570287B2 publication Critical patent/JPH0570287B2/ja
Priority to US08/471,092 priority patent/US6506709B1/en
Granted legal-status Critical Current

Links

Classifications

    • Y02E40/64
    • Y02E40/641

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は酸化物セラミツク系超電導材料をコイ
ル状に形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of forming an oxide ceramic superconducting material into a coil shape.

「従来の技術」 従来、超電子材料は、水銀、鉛等の元素、
NbN,Nb3Ge,Nb3Ga等の合金またはNb3
(Al0.8.Ge0.2)等の三元素化合物よりなる金属材
料が用いられている。しかしこれらのTc(超電導
臨界温度)オンセツトは25Kまでであつた。
"Conventional technology" Conventionally, superelectronic materials have been made using elements such as mercury and lead,
Alloys such as NbN, Nb 3 Ge, Nb 3 Ga or Nb 3
A metal material made of a ternary element compound such as (Al 0.8 .Ge 0.2 ) is used. However, their Tc (superconducting critical temperature) onset was up to 25K.

他方、近年、セラミツク系の超電導材料が注目
されている。この材料は最初IBMのチユーリツ
ヒ研究所よりBa−La−Cu−O(バラクオ)系酸
化物高温超電導体として報告され、さらにLSCO
(第二銅酸−ランタン−ストロンチユーム)とし
て知られてきた。これらは(A1-x Bx)yCuOz
におけるそれぞれの酸化物を混合し焼成するのみ
であるため、Tcオンセツトが30Kしか得られな
つた。
On the other hand, ceramic-based superconducting materials have attracted attention in recent years. This material was first reported by IBM's Zurich Research Institute as a Ba-La-Cu-O (baraquo)-based oxide high-temperature superconductor, and further developed by LSCO.
It has been known as (cupric acid-lanthanum-strontium). These are (A 1-x Bx)yCuOz
Since the oxides in the oxides were simply mixed and fired, a Tc onset of only 30K could be obtained.

「従来の問題点」 しかし、これら酸化物セラミツクスの超電導の
構成物はその中に多数のボイドおよび結晶粒界を
含有するため、線状等の長物とすることがむずか
しく、またこれを曲げてコイルを構成させること
はまつたく不可能であつた。また、そのTcも
30Kが限界であつた。
``Conventional problems'' However, these superconducting oxide ceramics contain many voids and grain boundaries, so it is difficult to make them into long objects such as wires, and it is difficult to bend them into coils. It was completely impossible to compose it. Also, the Tc
30K was the limit.

このため、このTco(抵抗が零となる温度)を
さらに高くし、望むべくは液体窒素温度(77K)
またはそれ以上の温度で動作せしめるとともに、
電力貯蔵用のエンドレスコイルまたは超電導マグ
ネツト用コイルを線状、帯状、管状の超電導材料
より作ることが強く求められていた。
For this reason, this Tco (temperature at which resistance becomes zero) should be made higher, preferably at liquid nitrogen temperature (77K).
or higher temperatures, and
There has been a strong demand for endless coils for power storage or coils for superconducting magnets to be made from linear, strip, or tubular superconducting materials.

「問題を解決すべき手段」 本発明は、かかるより室温に近い温度で超電導
を呈するべく、その製造方法を探し求めた。その
結果、線状、帯状または管状等の長物(巾または
太さが小さくかつ長さを有するもの)の形状を有
し、かつそのTcoが液体窒素温度以上を有するも
のを作らんとするものである。かかる長物は加熱
焼成を行う前はセラミツクに完全にはなつていな
いため比較的曲げが可能であるが、焼成後は曲げ
加工がきわめてむずかしい。このため、加熱する
前に支持体にコイル状に巻きつけ、その後に加熱
して酸化、還元を繰り返し、超電導材料に変成す
ることを特徴とする。その時、一方より他方に電
圧を加え、一定の電流を流すことによるTcoの改
良を目的としている。
"Means to Solve the Problem" The present invention sought a method for producing superconductivity at a temperature closer to room temperature. As a result, we are trying to create something that has a long shape (having a small width or thickness and a long length) such as a linear, band-like, or tubular shape, and whose Tco is higher than the liquid nitrogen temperature. be. Such long objects are relatively bendable because they are not completely converted into ceramic before being heated and fired, but it is extremely difficult to bend them after firing. For this reason, it is characterized in that it is wound into a coil around a support before heating, and then heated and oxidized and reduced repeatedly to transform it into a superconducting material. At that time, the aim is to improve Tco by applying voltage from one side to the other and allowing a constant current to flow.

即ち、高温で保持されている時に電流の流れや
すい方向は、即ち極低温でも流れやすくなり、ひ
いてはTco、Tcをより高い温度に向上させ得る。
そしてこの多結晶粒をして実質的に単結晶に近く
でき、しかもその電流の流れやすい方向も実用上
に電流を流す方向とせしめたものである。その結
果、Tco(超電導により抵抗が零となる温度)も
70〜117Kまで向上させ得ることが明らかになつ
た。
That is, the direction in which current flows easily when held at a high temperature also becomes easy to flow at an extremely low temperature, and as a result, Tco and Tc can be improved to a higher temperature.
The polycrystalline grains can be made to be substantially similar to single crystals, and the direction in which current can easily flow is also the direction in which current flows in practice. As a result, Tco (the temperature at which resistance becomes zero due to superconductivity) also
It has become clear that it can be improved to 70 to 117K.

本発明で用いた超電導性セラミツクスの代表例
は(A1-x Bx)yCuzOw x=0〜1,y=2.0
〜4.0好ましくは2.5〜3.5,z=1,0〜4.0好ま
しくは1.5〜3.5,w=4.0〜10.0で一般的に示し得
るものである。Aはイツトリユーム族より選ばれ
た元素およびその他のランタノイドより選ばれた
元素のうちの1種類または複数種類を用いてい
る。イツトリユーム族とは、理化学辞典(岩波書
店 1963年4月1日発行)によればY(イツトリ
ユーム),Gd(ガドリユーム),Yb(イツテルビユ
ーム),Eu(ユーロピウム)、Tb(テルビウム),
Dy(ジスプロシウム),Ho(ホルミウム),Er(エ
ルビウム),Tm(ツリウム),Lu(ルテチウム),
Sc(スカンジウム)およびその他のランタノイド
を用いる。
A typical example of superconducting ceramics used in the present invention is (A 1-x Bx)yCuzOw x=0-1, y=2.0
-4.0 preferably 2.5-3.5, z=1,0-4.0 preferably 1.5-3.5, w=4.0-10.0. A uses one or more of elements selected from the yttrium group and elements selected from other lanthanoids. According to the Physical and Chemical Dictionary (Iwanami Shoten, published on April 1, 1963), the Itztriyum family includes Y (Itztriyum), Gd (Gadryum), Yb (Itzterbyum), Eu (europium), Tb (terbium),
Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Lu (lutetium),
Using Sc (scandium) and other lanthanides.

またBはRa(ラジユーム),Ba(バリユーム),
Sr(ストロンチユーム),Ca(カルシユーム),Mg
(マグネシユーム),Be(ヘリリユーム)より選ば
れた元素のうち1種類また複数種類を用いてい
る。
Also, B is Ra (radium), Ba (bariyum),
Sr (strontium), Ca (calcium), Mg
One or more of the elements selected from (magnesium) and Be (helilium) are used.

本発明は1分子内の銅を層構造とせしめ、その
銅の6ケの原子をより層構造とせしめ、この層を
キヤリアが移動しやすくするため、本発明構造に
おける(A1-x Bx)yCuzOwにおけるA,Bの
選ばれる元素が重要である。特にAの元素はイツ
トリユーム族の元素またはランタノイドの元素、
一般には元素周期表aの族である。本発明はB
として元素周期表a族である元素を用いてい
る。
In the present invention, the copper in one molecule has a layered structure, and the 6 atoms of copper have a layered structure, and in order to make it easier for carriers to move through this layer, (A 1-x Bx) in the structure of the present invention The elements A and B selected in yCuzOw are important. In particular, the element A is an element of the yztriyum group or a lanthanide element,
Generally, it is a group a of the periodic table of elements. The present invention is B
An element belonging to Group A of the Periodic Table of Elements is used as the element.

本発明はかかる元素を用いた超電導材料の焼成
に際し、電流(直流電流、パルス電流または交
流)を流し、分子構造レベルでの不整部のみ選択
的に昇温させ、電流が流れやすくする。
In the present invention, when firing a superconducting material using such an element, a current (direct current, pulsed current, or alternating current) is applied to selectively raise the temperature of only irregularities at the molecular structure level, thereby facilitating the flow of current.

かくすることにより、一般式におけるA,Bに
対し、選択の余地を与えるとともに、多結晶を呈
する1つの結晶粒を大きくでき、ひいてはその結
晶粒界を隣同士面で密接せしめ、ひいてはバリア
(障壁)より消失させ得る構成とせしめた。その
結果、Tcオンセツトの温度をさらに高くさせ得
る。そしてその理想は単結晶構造である。
In this way, A and B in the general formula are given room to choose, and one polycrystalline grain can be made larger, which in turn brings the grain boundaries closer to each other, which in turn creates a barrier. ) The configuration has been designed to make it easier to eliminate. As a result, the temperature of the Tc onset can be made even higher. The ideal is a single crystal structure.

本発明は出発材料の酸化物または炭酸化物の微
粉末を混合し、一度加圧、酸化焼成(これを仮焼
成という)をする。かくして出発材料の酸化物ま
たは炭酸化物より(A1-x Bx)yCuzOw型の分
子構造を有する超電導セラミツク材料を作り得
る。
In the present invention, starting materials such as fine powders of oxides or carbonates are mixed, and once pressurized and oxidized and fired (this is called pre-calcination). In this way, a superconducting ceramic material having a molecular structure of the (A 1-x Bx)yCuzOw type can be produced from the starting oxide or carbonate.

さらにこれを再び微粉末化し、再び加熱するに
際し、線状、帯状または管状に成型し、支持体に
コイル状に巻きつける。または液体と混合し、こ
の混合溶液を円筒の支持体に印刷する。この後こ
の成型物またはこの印刷物を加熱、焼成する工程
を有せしめている。
Further, this is pulverized again, and upon heating again, it is formed into a wire, band, or tube shape, and wound around a support in a coil shape. Alternatively, it is mixed with a liquid and the mixed solution is printed on a cylindrical support. Thereafter, the molded product or the printed matter is heated and fired.

「作用」 本発明の新型のセラミツク超電導材料はきわめ
て簡単に作ることができる。そしてかかる割れや
すいセラミツクスをして支持体に成形をし、その
後にこれを焼成してコイルとすることができた。
``Operation'' The new type of ceramic superconducting material of the present invention can be made very easily. The fragile ceramics were then molded into a support, which was then fired to form a coil.

以下に実施例に従い、本発明を記す。 The present invention will be described below according to Examples.

「実施例 1」 本発明の実施例は印刷法により円筒形支持体に
印刷をして、それを加熱、焼成する方法である。
ここではAとしてY,BとしてBaを用いた。
"Example 1" An example of the present invention is a method in which a cylindrical support is printed by a printing method, and then heated and fired.
Here, Y was used as A and Ba was used as B.

出発材料はY化合物として酸化イツトリユーム
(Y2O3),Ba化合物としてBaCO3、銅化合物とし
てCuOを用いた。これらは高純度化学工業株式会
社より入手し、純度は99.95%またはそれ以上の
微粉末を用い、x=0.67,y=3,z=3,w=
6〜8(YBa2)Cu3O6〜8となるべく選んだ。この
wの値は後工程の焼成工程で調整した。
As starting materials, yttrium oxide (Y 2 O 3 ) was used as a Y compound, BaCO 3 as a Ba compound, and CuO as a copper compound. These were obtained from Kojundo Kagaku Kogyo Co., Ltd., using fine powder with a purity of 99.95% or higher, x = 0.67, y = 3, z = 3, w =
6-8 ( YBa2 ) Cu3O6-8 was selected as possible. This value of w was adjusted in the subsequent firing step.

これらを十分乳鉢で混合しカプセルに封入し、
30Kg/cm2の荷重を加えて固形化(タブレツト化)
(大きさ5mmφ×15mm)の円柱形状にした。さら
に酸化性雰囲気、例えば大気中で500〜1200℃、
例えば700℃で8時間加熱酸化をした。この工程
を仮焼成とした。
Mix these thoroughly in a mortar and encapsulate them in a capsule.
Solidify by applying a load of 30Kg/ cm2 (forming into tablets)
It was made into a cylindrical shape (size 5 mmφ x 15 mm). Furthermore, in an oxidizing atmosphere, e.g. 500-1200℃ in the air,
For example, heating oxidation was performed at 700°C for 8 hours. This step was called pre-firing.

次にこれを粉砕し、乳鉢で混合した。そしてそ
の粉末の平均粉粒径が20μm〜0.03μm、例えば
10μm以下の大きさとなるようにした。
This was then ground and mixed in a mortar. And the average powder particle size of the powder is 20 μm to 0.03 μm, e.g.
The size was set to 10 μm or less.

さらにこれを印刷用の溶液に混合させた。その
後スクリーン印刷法、オフセツト印刷法、凹版印
刷法等を用いて、第2図に示す如く円筒状の支持
体10の上面に印刷した。
This was further mixed into a printing solution. Thereafter, printing was performed on the upper surface of a cylindrical support 10 as shown in FIG. 2 using a screen printing method, an offset printing method, an intaglio printing method, or the like.

次に500〜1200℃、例えば900℃の酸化物雰囲
気、例えば大気中に酸化して、本焼成を10〜50時
間、例えば15時間行つた。
Next, oxidation was carried out at 500 to 1200°C, for example 900°C, in an oxide atmosphere, for example air, and main firing was performed for 10 to 50 hours, for example 15 hours.

この時、このコイル状のセラミツクス1の一方
12より他方13に0.5A/cm2〜150A/cm2、例え
ば8A/cm2の電流密度で電流をパルス状に加えた。
即ち、30秒加え、5分休み、さらに30秒加え、5
分休みを繰り返し、約5時間行つた。
At this time, a current was applied in pulses from one side 12 to the other side 13 of the coiled ceramic 1 at a current density of 0.5 A/cm 2 to 150 A/cm 2 , for example 8 A/cm 2 .
i.e. add 30 seconds, rest 5 minutes, add another 30 seconds, 5
I went for about 5 hours, taking several minutes off.

次にこの試料を酸素を少なくさせたO2−Ar中
で加熱(600〜1200℃、3〜30時間、例えば800
℃、20時間)して、還元させた。
Next, this sample is heated in oxygen-depleted O 2 -Ar (600-1200℃, 3-30 hours, e.g. 800℃,
°C for 20 hours) for reduction.

この試料を用いて固有抵抗と温度との関係を調
べた。すると最高温度が得られたものとしての
Tcオンセツトとして95K、Tcoとして79Kを観察
することができた。
Using this sample, the relationship between resistivity and temperature was investigated. Then, assuming that the maximum temperature is obtained,
It was possible to observe a Tc onset of 95K and a Tco of 79K.

「実施例 2」 本発明の実施例としてAとしてYb,Bとして
Baを用いた。出発材料としてはBaCO3,CuO,
Yb2O3を用いた。これらをx=0.67,y=3,z
=3,w=6〜8となるべく選んだ。wの値は後
の焼成に際しての酸化または還元工程で調整し
た。
"Example 2" As an example of the present invention, A is Yb, B is
Ba was used. Starting materials include BaCO 3 , CuO,
Yb2O3 was used. These are x=0.67, y=3, z
= 3, w = 6 to 8 as much as possible. The value of w was adjusted in the subsequent oxidation or reduction step during firing.

これらを混合した。さらに高速急冷装置を用い
て帯状の線を構成せしめた。この高速急冷装置に
関しては、例えば「セラミツクス」15(1980)No.
11「超急冷法におけるガラス化と結晶化」907〜
913頁に従つて試みた。この実施例は片ローラ法
を用いた。第1図はその図面を示している。
These were mixed. Furthermore, a band-shaped wire was constructed using a high-speed quenching device. Regarding this high-speed quenching device, for example, "Ceramics" 15 (1980) No.
11 “Vitrification and crystallization in ultra-quenching method” 907~
Tried according to page 913. This example used a single roller method. FIG. 1 shows the drawing.

図面において、急冷された帯状超電導用材料1
を作製するため、まず原材料を2に入れ、外部よ
りヒータ4で2000K近い温度で加熱する。十分融
解させた後、空気ピストンにより空気圧5を加え
る。するとこの溶融材料2はノズル3より下方向
に噴射し、高速で回転している冷却用ロール7に
より高速冷却され、帯状に1として形成される。
In the drawing, rapidly cooled strip-shaped superconducting material 1
In order to make this, raw materials are first put into 2 and heated from the outside with heater 4 to a temperature of nearly 2000K. After sufficient melting, air pressure 5 is applied by an air piston. The molten material 2 is then injected downward from the nozzle 3, cooled at high speed by the cooling roll 7 rotating at high speed, and formed into a strip 1.

さらにこれを第2図に示す如く、支持体10の
表面に1層または複数層を重ねてコイル状に巻
く。
Further, as shown in FIG. 2, one or more layers are stacked on the surface of the support 10 and wound into a coil shape.

これら全体を500〜1200℃例えば900℃の酸化雰
囲気、例えば大気中で加熱、酸化する。さらに化
合物中の酸素等を制御するため、還元をする。こ
の焼成を3〜50時間、例えば10時間行つた。この
時このコイルの一方の端12より他方の端13に
電流を加えた。この電流は0.5A/cm2〜150A/cm2
とした。この抵抗値は10-3〜10-5S-1cmであるた
め、そのコイルの長さが10mあつても1Ω抵抗に
すぎないため、この大電流を流すことが可能であ
る。
The whole is heated and oxidized at 500 to 1200°C, for example, 900°C, in an oxidizing atmosphere, for example, in the air. Furthermore, reduction is performed to control oxygen, etc. in the compound. This firing was carried out for 3 to 50 hours, for example 10 hours. At this time, a current was applied from one end 12 of this coil to the other end 13. This current is 0.5A/cm 2 ~150A/cm 2
And so. This resistance value is 10 -3 to 10 -5 S -1 cm, so even if the length of the coil is 10 m, the resistance is only 1 Ω, so it is possible to flow this large current.

この結果、このコイルに構成された後にTco=
98K,Tc=115Kを得た。
As a result, after being configured in this coil, Tco=
Obtained 98K, Tc=115K.

「実施例 3」 この実施例は第1図における冷却用ロール7と
して第2図に示した支持体10を同一化した。そ
して実施例2に示す如く、ノズル3より噴射され
けた溶剤材料をこのロール7に巻き取った。する
とこのロール7は第2図に示すコイル1のボビン
(支持体)10を併用することが可能であり、ま
た電圧を溶液2とロール7との管を印加すること
により材料に流れる電流も原子が最も動きやすい
溶融状態の時に加えることが可能となつた。
"Example 3" In this example, the support 10 shown in FIG. 2 was used as the cooling roll 7 in FIG. 1. Then, as shown in Example 2, the solvent material sprayed from the nozzle 3 was wound up on this roll 7. Then, this roll 7 can be used together with the bobbin (supporting body) 10 of the coil 1 shown in FIG. It has become possible to add it when it is in a molten state, where it is most mobile.

さらにこのコイルを焼成した後、これを実施例
2に示す如く、全体が加熱して所定の分子式
(A1-x Bx)yCuzOwの値を得た。かくすると、
Tcオンセツトをさらに3〜5Kも向上させること
ができた。
Further, after firing this coil, as shown in Example 2, the whole was heated to obtain a value of a predetermined molecular formula (A 1-x Bx)yCuzOw. Thus,
We were able to further improve Tc onset by 3-5K.

本発明において、円管状の支持物の内壁にセラ
ミツクスをコート(塗布)し、それらを焼成する
際に電流を加えることにより、このセラミツクス
を超電導体とすることも可能である。またこの支
持物を予め所望の形状例えばコイル状に成形し、
これの両端に電圧を印加することはその後工程で
の曲げによりセラミツクスにクラツチが発生する
ことを防ぐ上で有効である。
In the present invention, it is also possible to make this ceramic into a superconductor by coating the inner wall of a cylindrical support with ceramics and applying an electric current when firing them. Moreover, this support is formed in advance into a desired shape, for example, a coil shape,
Applying a voltage to both ends of this is effective in preventing clutches from occurring in the ceramic due to bending in subsequent steps.

「効果」 本発明により、これまでまつたく不可能とされ
ていたコイル状にきわめて曲げにより割れやすい
セラミツクスを巻、コイル状に形成させることが
可能となつた。さらに液体窒素温度以上の温度で
もTcoが得られる超電導セラミツクスを作ること
ができるようになつた。
"Effects" According to the present invention, it has become possible to wind ceramics, which are extremely susceptible to bending, into a coil shape, which was previously considered impossible. Furthermore, it has become possible to create superconducting ceramics that can obtain Tco even at temperatures above liquid nitrogen temperature.

さらにこの到達材料の化合物における分子構造
内で銅の層構造をよりさせやすくするため、原子
周期表におけるa,aの元素を複数個混合さ
せ得る。かくして最終完成化合物中に、ボイド等
の空穴の存在をより完全に近く除去することがで
き、ひいてはTcオンセツト,Tcoをより心音に
近づけることができるものと推定される。
Furthermore, in order to make it easier to form a copper layer structure within the molecular structure of the compound of this target material, a plurality of elements a and a in the periodic table of atoms may be mixed. It is presumed that in this way, the presence of voids such as voids in the final completed compound can be more completely eliminated, and as a result, the Tc onset and Tco can be brought closer to heart sounds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を作製するために用いた製造装
置である。第2図は本発明によつて作られたコイ
ルの1例を示す。
FIG. 1 shows a manufacturing apparatus used for manufacturing the present invention. FIG. 2 shows an example of a coil made in accordance with the present invention.

Claims (1)

【特許請求の範囲】 1 酸化物超電導材料を溶融状態にする工程と、 前記溶融状態にある酸化物超電導材料を冷却さ
れた基体上に噴射し、帯状の酸化物超電導材料を
形成する工程と、 前記帯状に形成された酸化物超電導材料を酸化
性雰囲気中で焼成し、超電導特性を有せしめる工
程と、 を有することを特徴とする超電導材料の作製方
法。 2 特許請求の範囲第1項において、酸化性雰囲
気中で焼成する際に、超電導材料に電流を流すこ
とを特徴とする超電導材料の作製方法。 3 特許請求の範囲第1項において、帯状に形成
された酸化物超電導材料をコイル状に形成し、し
かる後に酸化性雰囲気中で焼成することを特徴と
する超電導材料の作製方法。
[Scope of Claims] 1. A step of bringing the oxide superconducting material into a molten state, and a step of injecting the oxide superconducting material in the molten state onto a cooled substrate to form a band-shaped oxide superconducting material, A method for producing a superconducting material, comprising the steps of: firing the oxide superconducting material formed in the band shape in an oxidizing atmosphere to impart superconducting properties. 2. A method for producing a superconducting material according to claim 1, characterized in that a current is passed through the superconducting material during firing in an oxidizing atmosphere. 3. A method for producing a superconducting material according to claim 1, characterized in that the oxide superconducting material formed in a belt shape is formed into a coil shape, and then fired in an oxidizing atmosphere.
JP62075204A 1987-03-23 1987-03-27 Manufacture of superconducting material Granted JPS63240005A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP62075204A JPS63240005A (en) 1987-03-27 1987-03-27 Manufacture of superconducting material
DE3889371T DE3889371T2 (en) 1987-03-23 1988-02-18 Process for the production of superconducting ceramics.
EP88301363A EP0284189B1 (en) 1987-03-23 1988-02-18 Method of manufacturing superconducting ceramics
AU13295/88A AU600344B2 (en) 1987-03-23 1988-03-18 Method of manufacturing superconducting ceramics
CN88101381A CN1025089C (en) 1987-03-23 1988-03-23 Method of manufacturing superconducting ceramics
KR1019880003086A KR920002353B1 (en) 1987-03-23 1988-03-23 The method of manufacturing superconducting ceramics
US07/590,493 US5932524A (en) 1987-03-23 1990-09-27 Method of manufacturing superconducting ceramics
US08/471,092 US6506709B1 (en) 1987-03-23 1995-06-06 Devices utilizing oriented superconducting ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62075204A JPS63240005A (en) 1987-03-27 1987-03-27 Manufacture of superconducting material

Publications (2)

Publication Number Publication Date
JPS63240005A JPS63240005A (en) 1988-10-05
JPH0570287B2 true JPH0570287B2 (en) 1993-10-04

Family

ID=13569429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62075204A Granted JPS63240005A (en) 1987-03-23 1987-03-27 Manufacture of superconducting material

Country Status (1)

Country Link
JP (1) JPS63240005A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63249306A (en) * 1987-04-04 1988-10-17 Sumitomo Electric Ind Ltd Superconducting magnet
JP2630404B2 (en) * 1987-05-13 1997-07-16 日本セメント株式会社 Superconductor manufacturing method
JPH0782939B2 (en) * 1989-01-20 1995-09-06 新日本製鐵株式会社 Magnet using oxide superconductor and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123306A (en) * 1984-07-12 1986-01-31 Hitachi Ltd Cooling device of superconductive coil
JPS61276305A (en) * 1985-05-31 1986-12-06 Mitsubishi Electric Corp Super conductive coil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123306A (en) * 1984-07-12 1986-01-31 Hitachi Ltd Cooling device of superconductive coil
JPS61276305A (en) * 1985-05-31 1986-12-06 Mitsubishi Electric Corp Super conductive coil

Also Published As

Publication number Publication date
JPS63240005A (en) 1988-10-05

Similar Documents

Publication Publication Date Title
JPH0570287B2 (en)
EP0284189B1 (en) Method of manufacturing superconducting ceramics
JP2558695B2 (en) Method for manufacturing oxide superconducting wire
JPS63285812A (en) Manufacture of oxide superconductive wire material
JPS63239111A (en) Preparation of superconductive material
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JPH0569059B2 (en)
JPS63241820A (en) Manufacture of superconducting material
JP2597578B2 (en) Superconductor manufacturing method
JP2557498B2 (en) Manufacturing method of linear superconducting material
JP2564562B2 (en) How to make superconducting material
JP2585621B2 (en) How to make superconducting material
JP2509642B2 (en) Superconducting power lead manufacturing method
JPS63236752A (en) Superconductive ceramic
JP2653448B2 (en) Oxide superconducting element
JPS63239112A (en) Preparation of superconductive material
JPH0797454B2 (en) Manufacturing method of superconducting material
JP2703227B2 (en) Superconductor device
JP2563391B2 (en) Superconducting power lead
JP2597579B2 (en) Superconductor manufacturing method
JPH0572329B2 (en)
JPS63233068A (en) Preparation of superconductive ceramic
JPH05319824A (en) Production of oxide superconductor laminated body
JPS63233064A (en) Superconductive ceramic
JPS63233063A (en) Superconductive ceramic

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees