JP2703227B2 - Superconductor device - Google Patents

Superconductor device

Info

Publication number
JP2703227B2
JP2703227B2 JP62114313A JP11431387A JP2703227B2 JP 2703227 B2 JP2703227 B2 JP 2703227B2 JP 62114313 A JP62114313 A JP 62114313A JP 11431387 A JP11431387 A JP 11431387A JP 2703227 B2 JP2703227 B2 JP 2703227B2
Authority
JP
Japan
Prior art keywords
superconductor
perovskite
oxide superconductor
substrate
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62114313A
Other languages
Japanese (ja)
Other versions
JPS63279519A (en
Inventor
久士 芳野
伸 福島
ひろみ 丹生
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62114313A priority Critical patent/JP2703227B2/en
Publication of JPS63279519A publication Critical patent/JPS63279519A/en
Application granted granted Critical
Publication of JP2703227B2 publication Critical patent/JP2703227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、ペロブスカイト型の酸化物超電導体の薄膜
を用いた超電導体装置に関する。 (従来の技術) 近年、Ba−La−Cu−O系の層状ペロブスカイト型の酸
化物が高い臨界温度を有する可能性のあることが発表さ
れて以来、各所で酸化物超電導体の研究が行われている
(Z.Phys.B Condensed Matter 64,189−193(198
6))。その中でもY−Ba−Cu−O系で代表される酸素
欠陥を有する欠陥ペロブスカイト型(ABa2Cu3O
7−δ型)(Aは、Y,Yb,Ho,Dy,Eu,Er,TmおよびLuから
選ばれた元素、δは1以下の数を示す。以下同じ。)の
酸化物超電導体は、臨界温度Tcが90K以上と液体窒素以
上の高い温度を示すために非常に有望な材料として注目
されている(Phys.Rev.Lett.vol.58 No.9,908−910)。 このような酸化物超電導体を、導線として使用する場
合には、金属管に封入したり、基板上にパターン状に付
着させて使用することが考えられられるが、後者の場
合、上記超電導体は、線膨脹係数が18×10-6/Kと、アル
ミナ等通常のセラミックスのそれに比べて2〜3倍大き
いため、冷熱サイクルを繰り返した場合亀裂を生じたり
密着性に乏しいという問題があった。 (発明が解決しようとする問題点) このように、酸化物超電導体を、基板上に薄膜状に付
着させて使用する場合には、この超電導体の線膨脹係数
が大きく、しかも臨界温度までの冷熱サイクルを繰り返
した場合、亀裂を生じて特性が劣化したり、基板上から
剥離してしまうおそれがあった。 本発明は、このような従来の難点を解消すべくなされ
たもので、基板上にペロブスカイト型超電導体薄膜を形
成してなる冷熱サイクルによる特性劣化のおそれのない
超電導体装置を提供することを目的とする。 [発明の構成] (問題点を解決するための手段) すなわち本発明の超電導体装置は、面方向の線膨脹係
数が10×10-6/K〜25×10-6/KのLiNbO3、LiTaO3、Ag及び
Pdから選ばれたものからなる基板上に、厚さ1000Å〜10
4Åのペロブスカイト型の酸化物超電導体の薄膜を形成
してなることを特徴としている。 ここでいう希土類元素を含有しペロブスカイト型構造
を有する酸化物超電導体は超電導状態を実現できればよ
く、ABa2Cu3O7−δ(δは酸素欠陥を表し通常1以下、
Aは、Y,Yb,Ho,Dy,Eu,Er,Tm,Lu;Baの一部はSr等で置換
可能)等の酸素欠陥を有する欠陥ペロブスカイト型、Sr
−La−Cu−O系等の層状ペロビスカイト型等の広義にペ
ロブスカイト構造を有する酸化物とする。また希土類元
素も広義の定義とし、Sc,Yおよびランタン系を含むもの
とする。代表的な系としてY−Ba−Cu−O系のほかに、
Sc−Ba−Cu−O系、Sr−La−Cu−O系、さらにSrをBa、
Caで置換した系等が挙げられる。 本発明酸化物超電導体は、例えば以下に示す製造方法
により得ることができる。Y,Ba,Cu等のペロブスカイト
型酸化物超電導体の構成元素を十分混合する。この場合
各々の原料はY2O3,BaO,CuO等の酸化物を用いることがで
きる。また、これらの酸化物のほかに、焼成後酸化物に
転化する炭酸塩、硝酸塩、シュウ酸塩、水酸化物等の化
合物を用いてもよい。ペロブスカイト型酸化物超電導体
を構成する元素は、基本的に化学量論比の組成となるよ
うに混合するが、多少製造条件等との関係等でずれてい
ても構わない。例えばY−Ba−Cu−O系ではY 1molに対
しBa 2mol、Cu 3molが標準組成であるが、実用上はY 0.
6〜1.4mol%、Ba 1.5〜3.0mol%、Cu 2.0〜4.0mol%程
度のずれは問題ない。 前述の原料を混合した後、仮焼・粉砕し所望の形状に
した後、焼成する。仮焼は必ずしも必要ではない。焼成
・仮焼は十分な酸素が供給できるような酸素含有雰囲気
で800〜940℃程度で行うことが好ましい。 本発明の超電導体装置は、ブロック状の酸化物超電導
体を用いて、この超電導体を、面方向の線膨脹係数が10
×10-6〜25×10-6の基板上に、スパッタリング、蒸着、
エレクトロンビームプレーティング等の方法により、厚
さが1000Å〜104Åとなるように薄膜状に付着させるこ
とにより製造される。なお、必要に応じて上記超電導体
の構成成分をCVD法等により所定の成分比で基板上に沈
着させ、基板上で超電導体を形成させるようにしてもよ
い。 上記の酸化物超電導体は、例えば次のようにして製造
される。 まずBaCO3、Y2O3、CuO等のペロブスカイト型の酸化物
超電導体の原料を、前述した一般式に対して化学量論比
の組成となるように混合して粉砕した後乾燥し、粉末の
ままで800〜940℃の温度で数時間〜3日程度焼成し反応
させて結晶化させる。上記の原料の混合比は、多少製造
条件等との関係で変えることもでき、例えばY−Ba−Cu
−O系では、Y 1molに対してBa 2mol、Cu 3molが標準組
成であるが、実用上はYを基準として他の成分が±30%
程度程度ずれても問題は生じない。これらを所定の形状
に成形し、薄膜形状のターゲットとして使用する。 また、本発明に使用される基板の素材としては、次の
ようなものがあげられる。 (基板) (線膨脹係数) LiNbO3 15×10-6/K LiTaO3 16×10-6/K Ag 19×10-6/K Pd 12×10-6/K 本発明において使用する基板の線膨脹係数を、面方向
の線膨脹係数が10×10-6/K〜25×10-6/Kの範囲に限定し
たのは、この範囲外になると酸化物超電導体との線膨脹
係数の差が大きくなりすぎ、薄膜の超電導特性が低下し
易くなるためである。 本発明において、超電導体薄膜の厚さを上記の範囲に
限定したのは、膜厚が1000Å未満であると磁場浸透によ
り所定の超電導特性が得られなくなり、また104Åを越
えてもそれ以上の超電導体特性の向上が得られなくなる
上に、脆くなり基板から剥離したり、クラックが生じ易
くなるためである。 (作 用) 本発明の超電導体装置は、基板と、この基板上に形成
されるペロブスカイト型の酸化物超電導体の薄膜の線膨
脹係数がほぼ等しいので、冷熱サイクルによるストレス
が小さく、超電導特性の低下が少なく、また超電導体と
基板の密着性が向上する。 (実施例) 次に本発明の実施例について説明する。 実施例1 BaCO3粉末2mol%、Y2O3粉末0.5mol%、CuO粉末3mol%
を充分混合して900℃で48時間焼成した後粉砕した。こ
の粉末原料を大気中で800℃で24時間焼成して反応させ
た後、ボールミルを用いて粉砕し、分級して、平均粒径
2μmのペロブスカイト型超電導体粉末を得た。 次に、この超電導体を板状に圧縮成形し、1気圧の空
気中で900℃で24時間熱処理を行った。 このようにして得た超電導体ブロックをターゲットと
して、板厚0.1mmのAg板上にスパッタリングにより厚さ1
500Åの薄膜を形成し、この薄膜を酸素中で850℃で12時
間熱処理した。この薄膜の臨界温度は90Kであった。 次にこの超電導体薄膜の形成されたAg板を、液体窒素
中への浸漬と常温への復帰の冷熱サイクルを10回加えた
が、超電導特性の低下は認められず、また超電導体薄膜
面にクラックの発生は認められなかった。なお、基板に
LiNbO3、LiTaO3、Pdを用いた場合もAgの場合と同様の特
性が得られた。 これに対して、Ag板に代えて石英ガラス板(線膨脹係
数0.4×10-6/K)を用いた以外は実施例と同一条件で製
造した超電導体は、実施例と同一条件による冷熱サイク
ル1回で微細なクラックが発生し電気抵抗は0にならな
かった。 [発明の効果] 以上の実施例からも明らかなように、本発明の超電導
体装置は、面方向の線膨脹係数が10×10-6〜25×10-6
基板上に、厚さ1000Å〜104Åのペロブスカイト型の酸
化物超電導体の薄膜を形成したので、冷熱サイクルによ
るひずみの発生が小さく、超電導特性の低下や剥離、ク
ラック等の発生のおそれがなく、長期にわたって良好な
特性を維持することができる。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a superconductor device using a thin film of a perovskite-type oxide superconductor. (Prior Art) In recent years, since it was announced that Ba-La-Cu-O-based layered perovskite-type oxides may have a high critical temperature, research on oxide superconductors has been carried out in various places. (Z.Phys.B Condensed Matter 64,189-193 (198
6)). Among them, a defect perovskite type (ABa 2 Cu 3 O) having an oxygen defect typified by a Y—Ba—Cu—O system
7-δ type) (A is an element selected from Y, Yb, Ho, Dy, Eu, Er, Tm, and Lu, and δ is a number of 1 or less; the same applies hereinafter). It has been drawing attention as a very promising material because its critical temperature Tc is as high as 90 K or higher and higher than liquid nitrogen (Phys. Rev. Lett. Vol. 58 No. 9, 908-910). When such an oxide superconductor is used as a conducting wire, it is conceivable to enclose it in a metal tube or to attach it in a pattern on a substrate, but in the latter case, the superconductor is used. Since the linear expansion coefficient is 18 × 10 −6 / K, which is 2 to 3 times larger than that of ordinary ceramics such as alumina, there is a problem that cracks are generated and adhesion is poor when the thermal cycle is repeated. (Problems to be Solved by the Invention) As described above, when the oxide superconductor is used in the form of a thin film adhered on a substrate, the linear expansion coefficient of the superconductor is large, and furthermore, the temperature is reduced to a critical temperature. When the thermal cycle is repeated, there is a possibility that cracks may be generated to deteriorate the characteristics or to be separated from the substrate. The present invention has been made in order to solve such conventional difficulties, and it is an object of the present invention to provide a superconductor device formed by forming a perovskite-type superconductor thin film on a substrate and having no risk of deterioration in characteristics due to a thermal cycle. And Superconductor device of the configuration of the invention] (Means for Solving the Problems) Thus, the present invention, the linear expansion coefficient in the plane direction is 10 × 10 -6 / K~25 × 10 -6 / K LiNbO 3 of LiTaO 3 , Ag and
Thickness of 1000Å-10 on a substrate made of Pd
It is characterized by forming a thin film of perovskite oxide superconductor of 4 mm. The oxide superconductor containing a rare earth element and having a perovskite structure may be a superconducting state, and ABa 2 Cu 3 O 7-δ (δ is an oxygen defect and usually 1 or less,
A is a defective perovskite type having an oxygen defect such as Y, Yb, Ho, Dy, Eu, Er, Tm, Lu; a part of Ba can be replaced with Sr, etc., Sr
-An oxide having a perovskite structure in a broad sense such as a layered perovskite type such as a La-Cu-O type. Rare earth elements are also broadly defined and include Sc, Y and lanthanum. As a typical system, in addition to the Y-Ba-Cu-O system,
Sc-Ba-Cu-O system, Sr-La-Cu-O system, Sr is Ba,
And a system substituted with Ca. The oxide superconductor of the present invention can be obtained, for example, by the following manufacturing method. The constituent elements of the perovskite-type oxide superconductor such as Y, Ba, and Cu are sufficiently mixed. In this case, oxides such as Y 2 O 3 , BaO, and CuO can be used for each raw material. In addition to these oxides, compounds such as carbonates, nitrates, oxalates, and hydroxides that are converted into oxides after firing may be used. The elements constituting the perovskite-type oxide superconductor are basically mixed so as to have a stoichiometric composition, but may be slightly shifted depending on the production conditions and the like. For example, in the Y-Ba-Cu-O system, the standard composition is 2 mol of Ba and 3 mol of Cu with respect to 1 mol of Y.
A deviation of about 6 to 1.4 mol%, about 1.5 to 3.0 mol% of Ba, and about 2.0 to 4.0 mol% of Cu is not a problem. After mixing the above-mentioned raw materials, they are calcined and pulverized into a desired shape and then fired. Calcination is not always necessary. Firing and calcining are preferably performed at about 800 to 940 ° C. in an oxygen-containing atmosphere capable of supplying sufficient oxygen. The superconductor device of the present invention uses a block-shaped oxide superconductor, and has a linear expansion coefficient of 10
On a substrate of × 10 -6 to 25 × 10 -6 , sputtering, evaporation,
It is manufactured by attaching it in the form of a thin film so as to have a thickness of 1000Å10 4に よ り by a method such as electron beam plating. If necessary, the components of the superconductor may be deposited on the substrate at a predetermined component ratio by a CVD method or the like, and the superconductor may be formed on the substrate. The above oxide superconductor is manufactured, for example, as follows. First, raw materials of perovskite-type oxide superconductors such as BaCO 3 , Y 2 O 3 , and CuO are mixed and pulverized so as to have a stoichiometric composition with respect to the general formula described above, and then dried and powdered. As it is, it is fired at a temperature of 800 to 940 ° C. for several hours to about 3 days, reacted and crystallized. The mixing ratio of the above-mentioned raw materials can be changed somewhat depending on the production conditions and the like. For example, Y-Ba-Cu
In the -O system, the standard composition is 2 mol of Ba and 3 mol of Cu with respect to 1 mol of Y, but in practice, other components are ± 30% based on Y.
No problem occurs even if it is shifted by about the same degree. These are formed into a predetermined shape and used as a thin film target. In addition, examples of the material for the substrate used in the present invention include the following. (Substrate) (Linear expansion coefficient) LiNbO 3 15 × 10 −6 / K LiTaO 3 16 × 10 −6 / K Ag 19 × 10 −6 / K Pd 12 × 10 −6 / K Substrate wire used in the present invention the expansion coefficient, the linear expansion coefficient in the plane direction is limited to the range of 10 × 10 -6 / K~25 × 10 -6 / K , the difference in linear expansion coefficient between the oxide superconductor falls outside this range Is too large, and the superconductivity of the thin film is apt to deteriorate. In the present invention, the thickness of the superconducting thin film is limited to the above range, if the film thickness is less than 1000 mm, the predetermined superconducting properties cannot be obtained due to magnetic field penetration, and even if it exceeds 10 4 mm, it is no more. This is because the superconductor characteristics cannot be improved and the substrate becomes brittle, and it is easy to peel off or crack. (Operation) In the superconductor device of the present invention, since the coefficient of linear expansion of the substrate and the thin film of the perovskite-type oxide superconductor formed on the substrate are substantially equal, the stress due to the thermal cycling is small, and The decrease is small and the adhesion between the superconductor and the substrate is improved. (Example) Next, an example of the present invention will be described. Example 1 BaCO 3 powder 2 mol%, Y 2 O 3 powder 0.5 mol%, CuO powder 3 mol%
Was sufficiently mixed, baked at 900 ° C. for 48 hours, and then pulverized. The powdered raw material was fired at 800 ° C. in the air for 24 hours to react, and then pulverized using a ball mill and classified to obtain a perovskite-type superconductor powder having an average particle diameter of 2 μm. Next, the superconductor was compression-molded into a plate and heat-treated at 900 ° C. for 24 hours in air at 1 atm. Using the superconductor block obtained in this manner as a target, a thickness of 1 mm was formed on an Ag plate having a thickness of 0.1 mm by sputtering.
A thin film of 500 mm was formed, and this thin film was heat-treated at 850 ° C. for 12 hours in oxygen. The critical temperature of this thin film was 90K. Next, the Ag plate on which the superconducting thin film was formed was subjected to 10 cooling / heating cycles of immersion in liquid nitrogen and returning to room temperature, but no decrease in superconducting properties was observed. No crack was observed. In addition, on the substrate
When LiNbO 3 , LiTaO 3 , and Pd were used, the same characteristics as those of Ag were obtained. On the other hand, a superconductor manufactured under the same conditions as in the example except that a quartz glass plate (linear expansion coefficient: 0.4 × 10 −6 / K) was used instead of the Ag plate was subjected to a thermal cycle under the same conditions as the example. At one time, fine cracks occurred and the electric resistance did not become zero. [Effects of the Invention] As is clear from the above embodiments, the superconductor device of the present invention has a thickness of 1000 mm on a substrate having a linear expansion coefficient in the plane direction of 10 × 10 −6 to 25 × 10 −6. Since a thin film of perovskite-type oxide superconductor of ~ 10 4 mm was formed, the generation of distortion due to thermal cycling was small, and there was no danger of deterioration in superconducting characteristics, the occurrence of peeling, cracks, etc. Can be maintained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丹生 ひろみ 川崎市幸区小向東芝町1 株式会社東芝 総合研究所内 (72)発明者 猪俣 浩一郎 川崎市幸区小向東芝町1 株式会社東芝 総合研究所内 (56)参考文献 特開 昭63−239738(JP,A) 特開 昭63−245820(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Hiromi Niyu               1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi Toshiba Corporation               Within the Research Institute (72) Inventor Koichiro Inomata               1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi Toshiba Corporation               Within the Research Institute                (56) References JP-A-63-239738 (JP, A)                 JP-A-63-245820 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.面方向の線膨脹係数が10×10-6/K〜25×10-6/KのLi
NbO3、LiTaO3、Ag及びPdから選ばれたものからなる基板
上に、厚さ1000Å〜104Åのペロブスカイト型の酸化物
超電導体の薄膜を形成してなることを特徴とする超電導
体装置。 2.前記酸化物超電導体は、希土類元素を含有するペロ
ブスカイト型の酸化物超電導体であることを特徴とする
特許請求の範囲第1項記載の超電導体装置。 3.前記酸化物超電導体は、AB2Cu3O7−δ系の酸化物
超電導体(Aは、Y,Yb,Ho,Dy,Eu,Er,Tm及びLuから選ば
れた元素)であることを特徴とする特許請求の範囲第1
項または第2項記載の超電導体装置。 4.前記酸化物超電導体は、Y−Ba−Cu−O系であるこ
とを特徴とする特徴とする特許請求の範囲第1項または
第2項記載の超電導体装置。
(57) [Claims] Li the linear expansion coefficient in the plane direction is 10 × 10 -6 / K~25 × 10 -6 / K
NbO 3, LiTaO 3, Ag and on a substrate made of one selected from Pd, superconductor device, characterized by comprising forming a thin film having a thickness of 1000Å~10 4 Å perovskite oxide superconductor . 2. 2. The superconductor device according to claim 1, wherein the oxide superconductor is a perovskite-type oxide superconductor containing a rare earth element. 3. The oxide superconductor is an AB 2 Cu 3 O 7-δ- based oxide superconductor (A is an element selected from Y, Yb, Ho, Dy, Eu, Er, Tm and Lu). Claims 1
3. The superconductor device according to item 2 or 2. 4. 3. The superconductor device according to claim 1, wherein the oxide superconductor is a Y-Ba-Cu-O-based material.
JP62114313A 1987-05-11 1987-05-11 Superconductor device Expired - Fee Related JP2703227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62114313A JP2703227B2 (en) 1987-05-11 1987-05-11 Superconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62114313A JP2703227B2 (en) 1987-05-11 1987-05-11 Superconductor device

Publications (2)

Publication Number Publication Date
JPS63279519A JPS63279519A (en) 1988-11-16
JP2703227B2 true JP2703227B2 (en) 1998-01-26

Family

ID=14634731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62114313A Expired - Fee Related JP2703227B2 (en) 1987-05-11 1987-05-11 Superconductor device

Country Status (1)

Country Link
JP (1) JP2703227B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3113256B2 (en) * 1989-03-31 2000-11-27 住友電気工業株式会社 Oxide superconducting wire, method for producing the same, and product using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2563315B2 (en) * 1987-03-27 1996-12-11 松下電器産業株式会社 Superconductor wire and method of manufacturing the same
JPS63245820A (en) * 1987-03-31 1988-10-12 Sumitomo Electric Ind Ltd Superconductor

Also Published As

Publication number Publication date
JPS63279519A (en) 1988-11-16

Similar Documents

Publication Publication Date Title
JP2664066B2 (en) Superconducting thin film and method for producing the same
EP0301952B1 (en) Compound oxide superconducting material and method for preparing the same
EP0339801B1 (en) Superconductive ceramics laminates and method for production thereof
EP0299870B1 (en) Method for preparing a superconducting thin film
JP2933225B2 (en) Metal oxide material
EP0301958B1 (en) Superconducting material and a method for preparing the same
JP2703227B2 (en) Superconductor device
US5100863A (en) Superconducting ceramics manufacturing method
JP2630361B2 (en) Superconducting material
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
CA1338754C (en) Metal oxide material
JP2975608B2 (en) Insulating composition
JP2532914B2 (en) Superconducting ceramic laminate and its manufacturing method
JPS63279521A (en) Superconductor device
EP0641750B1 (en) Metallic oxide and process for manufacturing the same
JP2585561B2 (en) Oxide superconducting material
JP2645730B2 (en) Superconducting thin film
US5260265A (en) Production of oxide superconducting films by multilayer deposition
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JP2653448B2 (en) Oxide superconducting element
EP0366510A1 (en) Process for preparing superconductor of compound oxide of Bi-Sr-Ca-Cu system
JP2597579B2 (en) Superconductor manufacturing method
JP2597578B2 (en) Superconductor manufacturing method
JP2598055B2 (en) Oxide superconducting thin film for electronic devices
JPH0569059B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees