JPS63279519A - superconductor device - Google Patents
superconductor deviceInfo
- Publication number
- JPS63279519A JPS63279519A JP62114313A JP11431387A JPS63279519A JP S63279519 A JPS63279519 A JP S63279519A JP 62114313 A JP62114313 A JP 62114313A JP 11431387 A JP11431387 A JP 11431387A JP S63279519 A JPS63279519 A JP S63279519A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- superconductor
- linear expansion
- expansion coefficient
- oxide superconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 42
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 239000010409 thin film Substances 0.000 claims abstract description 16
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- 229910052691 Erbium Inorganic materials 0.000 claims description 3
- 229910052765 Lutetium Inorganic materials 0.000 claims description 3
- 229910052775 Thulium Inorganic materials 0.000 claims description 3
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 3
- 229910052693 Europium Inorganic materials 0.000 claims description 2
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 2
- 229910009203 Y-Ba-Cu-O Inorganic materials 0.000 claims 1
- 229910052763 palladium Inorganic materials 0.000 claims 1
- 229910052709 silver Inorganic materials 0.000 claims 1
- 238000001816 cooling Methods 0.000 abstract description 8
- 238000010438 heat treatment Methods 0.000 abstract description 8
- 230000006866 deterioration Effects 0.000 abstract description 7
- 238000010894 electron beam technology Methods 0.000 abstract description 2
- 238000000034 method Methods 0.000 abstract description 2
- 230000008021 deposition Effects 0.000 abstract 1
- 238000007747 plating Methods 0.000 abstract 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000010304 firing Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910003327 LiNbO3 Inorganic materials 0.000 description 1
- 229910012463 LiTaO3 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Inorganic materials [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的コ
(産業上の利用分野)
本発明は、ペロブスカイト型の酸化物超電導体の薄膜を
用いた超半導体装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Industrial Application Field) The present invention relates to a supersemiconductor device using a thin film of a perovskite-type oxide superconductor.
(従来の技術)
近年、Ba−La−Cu−0系の層状ベロアスカイト型
の酸化物が高い臨界温度を有する可能性のあることが発
表されて以来、各所で酸化物超電導体の01究が行われ
ている(7.PhVS、B Condensed Ma
tter64、189−193(1986))。その中
でもY−Ba−Cu−0系ぐ代表される酸素欠陥を有す
る欠陥ペロブスカイト型(ABa2Cu307.型)
(Aは、Y、 Yb、 Ilo、 Dy、 [u。(Prior Art) In recent years, since it was announced that Ba-La-Cu-0-based layered velorskite oxides may have a high critical temperature, research into oxide superconductors has been conducted in various places. (7. PhVS, B Condensed Ma
ter64, 189-193 (1986)). Among them, defective perovskite type (ABa2Cu307. type) with oxygen defects represented by Y-Ba-Cu-0 system.
(A is Y, Yb, Ilo, Dy, [u.
Er、 TmおよびLuから選ばれた元素、δは1以下
の数を示す。以下同じ。)の酸化物超電導体は、臨界温
度Tcが90に以上と液体窒素以上の高い渇瓜を示すた
め非常に有望な材料として注目されている(Pl+ys
、Rev、Lett、vol、 58 No、9,9
08−910)。An element selected from Er, Tm and Lu; δ represents a number of 1 or less. same as below. The oxide superconductor (Pl+ys
,Rev,Lett,vol,58 No,9,9
08-910).
このような酸化物超電導体を、導線として使用する場合
には、金属管に封入したり、基板上にパターン状に(t
ffさけて使用することが考えられられるが、後右の
場合、上記超電導体は、線膨脹係数が18x10−’/
Kと、アルミナ等通常のレラミックスのそれに比べて2
〜3倍大きいため、冷熱サイクルを繰り返した場合亀裂
を生じたり密谷性に乏しいという問題があった。When using such an oxide superconductor as a conducting wire, it may be sealed in a metal tube or placed in a pattern on a substrate (t
Although it is possible to use it without ff, in the case of the rear right, the above superconductor has a linear expansion coefficient of 18x10-'/
K and 2 compared to that of normal Relamix such as alumina.
Since it is ~3 times larger, there were problems such as cracking and poor valley properties when repeated cooling and heating cycles.
(発明が解決しようとする問題点)
このように、酸化物超電導体を、基板上に薄膜状に付着
させて使用する場合には、この超電導体の線膨脹係数が
大きく、しかも臨界温度までの冷熱サイクルを繰り返し
た場合、亀裂を生じて特性が劣化したり、基板上から剥
離しでしまうおそれがあった。(Problems to be Solved by the Invention) As described above, when an oxide superconductor is used as a thin film on a substrate, the coefficient of linear expansion of this superconductor is large, and the temperature up to the critical temperature is If the heating and cooling cycles are repeated, there is a risk that cracks may occur, resulting in deterioration of the properties, or the film may peel off from the substrate.
本発明は、このような従来の難点を解消すべくなされた
もので、基板上にペロブスカイト型超電導体源膜を形成
してなる冷熱9イクルによる特性劣化のおそれのない超
半導体装置を提供することを目的とする。The present invention has been made in order to solve these conventional difficulties, and provides a supersemiconductor device that is free from the risk of characteristic deterioration due to 9 cycles of cooling and heating, which is formed by forming a perovskite superconductor source film on a substrate. With the goal.
[発明の構成]
(問題点を解決するための手段)
すなわち本発明の超半導体装置は、面方向のFi1f!
服係数が10X10−6/K〜25x 10−’ /K
の基板上に、厚さ1000Å〜104人のペロブスカイ
ト型の酸化物超電導体の薄膜を形成してなることを特徴
としでいる。[Structure of the Invention] (Means for Solving the Problems) That is, the super semiconductor device of the present invention has Fi1f! in the plane direction.
Clothing coefficient is 10x10-6/K ~ 25x 10-'/K
It is characterized by forming a thin film of a perovskite-type oxide superconductor with a thickness of 1000 Å to 10 4 on a substrate.
ここでいう希土類元素を含有しペロブスカイト型構造を
右する酸化物超電導体は超電導状態を実現できればよく
、ABa2Cu307−δ系(δは酸素欠陥を表し通常
1以下、Aは、Y、 Wb、 No、 Dy、 Eu。The oxide superconductor containing a rare earth element and having a perovskite structure is sufficient as long as it can realize a superconducting state, and is ABa2Cu307-δ system (δ represents an oxygen defect and is usually 1 or less, A is Y, Wb, No, Dy, Eu.
Er、 Tm、 Lu ; Baの一部はsr等で置換
可能)等のPa素欠陥を有する欠陥ペロブスカイト型、
5r−La−Cu−0系等の層状ベロビスカイト型等の
広義にペロブスカイト構造を有する酸化物とする。また
希土類元素も広義の定義とし、Sc、Yおよびランタン
系を含むものとする。代表的な系としてY−Ba−Cu
−0系のほかに、5c−Ba−Cu−0系、5r−La
−Cu−0系、ざらにSrをBa1Caで置換した系等
が挙げられる。Defect perovskite type having Pa elementary defects such as Er, Tm, Lu; a part of Ba can be replaced with sr, etc.),
The oxide is an oxide having a perovskite structure in a broad sense, such as a layered verovskite type such as a 5r-La-Cu-0 system. Rare earth elements are also broadly defined to include Sc, Y, and lanthanum elements. Y-Ba-Cu as a representative system
-0 series, 5c-Ba-Cu-0 series, 5r-La
-Cu-0 series, a system in which Sr is roughly replaced with Ba1Ca, and the like.
本発明酸化物超電導体は、例えば以下に示す製造方法に
より得ることができる。Y、 Ba、 Cu等のペロブ
スカイト型酸化物超電導体の構成元素を十分混合する。The oxide superconductor of the present invention can be obtained, for example, by the manufacturing method shown below. Constituent elements of the perovskite oxide superconductor, such as Y, Ba, and Cu, are thoroughly mixed.
この場合各々の原料はY2O3,Bad。In this case, each raw material is Y2O3, Bad.
CuO等の酸化物を用いることができる。また、これら
の酸化物のほかに、焼成後酸化物に転化する炭酸塩、硝
酸塩、シュウ酸塩、水酸化物等の化合物を用いてもよい
。ペロブスカイト型酸化物超電′導体を構成する元素は
、基本的に化学量論比の組成となるように混合するが、
多少製造条件等との関係等でずれていても構わない。例
えばY−Ba−Cu−0系ではV Imolに対しBa
2mof 、Cu釦OIが標準組成であるが、実用上
はY 0.6〜1.4mo1%、Ba1.5〜3.Om
o1%、Cu 2.0〜4.0mo1%程度のずれは問
題ない。Oxides such as CuO can be used. In addition to these oxides, compounds such as carbonates, nitrates, oxalates, and hydroxides that are converted into oxides after firing may be used. The elements constituting the perovskite oxide superconductor are basically mixed in a stoichiometric composition, but
There may be a slight deviation due to manufacturing conditions, etc. For example, in the Y-Ba-Cu-0 system, Ba
2mof, Cu button OI is the standard composition, but in practice, Y 0.6 to 1.4 mo1%, Ba 1.5 to 3. Om
A deviation of about 1% o and 2.0 to 4.0 mo1% of Cu is not a problem.
前述の原料を混合した後、仮焼・粉砕し所望の形状にし
た後、焼成する。仮焼は必ずしも必要ではない。焼成・
仮焼は十分な酸素が供給できるような酸素含有雰囲気で
800〜940℃程度で行うことが好ましい。After mixing the above-mentioned raw materials, they are calcined and pulverized into a desired shape, and then fired. Calcining is not necessarily necessary. Firing/
Preferably, the calcination is carried out at about 800 to 940°C in an oxygen-containing atmosphere where sufficient oxygen can be supplied.
本発明の超半導体装置は、ブロック状の酸化物超電導体
を用いて、この超電導体を、面方向の線膨脹係数が10
X10−’〜25X10−’の基板上に、スパッタリン
グ、蒸着、エレクトロンビームブレーティング等の方法
により、厚さが1000Å〜104人となるように薄膜
状に付着させることにより製造される。なお、必要に応
じて上記超電導体の構成成分をCVD法等により所定の
成分比で基板上に沈着させ、基板上で超電導体を形成さ
せるようにしてもよい。The supersemiconductor device of the present invention uses a block-shaped oxide superconductor, and the superconductor has a linear expansion coefficient of 10 in the plane direction.
It is manufactured by depositing a thin film with a thickness of 1000 Å to 10 4 on a substrate of X10-' to 25X10-' by a method such as sputtering, vapor deposition, or electron beam blasting. Note that, if necessary, the constituent components of the superconductor may be deposited on the substrate in a predetermined component ratio by CVD or the like to form the superconductor on the substrate.
上記の酸化物超電導体は、例えば次のようにして製造さ
れる。The above oxide superconductor is manufactured, for example, as follows.
まずBaC03、Y203、CuO等のペロブスカイト
型の酸化物超電導体の原料を、前述した一般式に対して
化学m論比の組成となるように混合し【粉砕した後乾燥
し、粉末のままで800〜940℃の温度で数時間〜3
日程度焼成し反応させて結晶化させる。上記の原料の混
合比は、多少製造条件等との関係で変えることもでき、
例えばY−Ba−Cu−0系では、Y ?molに対し
てBa 2mo1、CIJ 3+1101が標準組成で
あるが、実用上はYを基準としC他の成分が±30%程
度程度ずれても問題は生じない。これらを所定の形状に
成形し、薄膜形成のターゲットとして使用づる。First, raw materials for a perovskite-type oxide superconductor such as BaC03, Y203, and CuO are mixed to have a composition in a stoichiometric ratio with respect to the general formula described above. ~ several hours at a temperature of ~940℃~3
It is fired for about a day to react and crystallize. The mixing ratio of the above raw materials can be changed somewhat depending on the manufacturing conditions, etc.
For example, in the Y-Ba-Cu-0 system, Y? The standard composition is Ba 2mol and CIJ 3+1101 in terms of mol, but in practice, no problem will occur even if C and other components deviate by about ±30% with Y as the standard. These are molded into a predetermined shape and used as a target for thin film formation.
また、本発明に使用される基板の素材としては、次のよ
うなものがあげられる。Furthermore, the following materials can be cited as materials for the substrate used in the present invention.
(基板) (線膨脹係数)
LiNb03 15X 10−6/KLiT
a03 16X 10’ l/八(119X
10 6 u
Pd 12X 10’ n本発明にお
いて使用する基板の線膨脹係数を、面方向の線膨脹係数
が10x 10−6/K〜2bX10−6/Kの範囲に
限定したのは、このV!四囲外なると酸化物超電導体と
の線膨脹係数の差が大きくなりすぎ、薄膜の超電導特性
が低下し易くなるためである。(Substrate) (Linear expansion coefficient) LiNb03 15X 10-6/KLiT
a03 16X 10' l/8 (119X
10 6 u Pd 12X 10'n This V! This is because if it falls outside the four squares, the difference in linear expansion coefficient with the oxide superconductor becomes too large, and the superconducting properties of the thin film tend to deteriorate.
本発明において、超電導体薄膜の厚さを上記の範囲に限
定したのは、膜厚が1000人未満であると磁場浸透に
より所定の超電導特性が得られなくなり、また104人
を越えてもそれ以上の超電りり係持性の向上が得られな
くなる上に、脆くなり基板から剥離したり、クラックが
生じ易くなるためである。In the present invention, the thickness of the superconductor thin film is limited to the above range because if the film thickness is less than 1000 layers, it will not be possible to obtain the desired superconducting properties due to magnetic field penetration, and if the thickness exceeds 104 layers, it will not be possible to obtain the desired superconducting properties. This is because, in addition to not being able to obtain an improvement in the super-electrification retention properties, the material also becomes brittle and easily peels off from the substrate or cracks.
(作 用)
本発明の超半導体装置は、基板と、この基板上に形成さ
れるべ1コブスカイト型の酸化物超電導体の7?膜の線
膨脹係数がほぼ等しいので、冷熱サイクルによるストレ
スが小ざく、超電導特性の低下が少なく、また超電導体
と基板の密着性が向上ザる。(Function) The super-semiconductor device of the present invention includes a substrate and a 7-cavskite-type oxide superconductor formed on the substrate. Since the coefficients of linear expansion of the films are almost equal, the stress caused by heating and cooling cycles is small, the deterioration of superconducting properties is small, and the adhesion between the superconductor and the substrate is improved.
(実施例) 次に本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.
実施例1
BaCQ 3粉末211101%、Y2O3粉末0.5
11101%、CuO粉末3 m01%を充分混合して
900℃で48時間焼成した後粉砕した。この粉末原料
を大気中で800℃で24時間焼成して反応させた後、
ボールミルを用いて粉砕し、分級して、平均粒径2μm
のペロブスカイト型超電導体粉末を111だ。Example 1 BaCQ 3 powder 211101%, Y2O3 powder 0.5
11101% and 3 m01% of CuO powder were thoroughly mixed, fired at 900°C for 48 hours, and then pulverized. After firing this powder raw material in the atmosphere at 800°C for 24 hours to cause a reaction,
Grind using a ball mill and classify to obtain an average particle size of 2 μm.
The perovskite superconductor powder is 111.
次に、この超電導体を板状に圧縮成形し、1気圧の空気
中で900℃で24時間熱処理を行った。Next, this superconductor was compression molded into a plate shape, and heat treated at 900° C. for 24 hours in air at 1 atm.
このようにして青た超ffl導体ブロックをターゲット
として、板厚0、inのAQ根板上スパッタリングによ
り厚さ1500人の薄膜を形成し、この薄膜を酸素中で
850℃で12時間熱処理した。この薄膜の臨界温度は
90にであった。In this way, a thin film with a thickness of 1,500 mm was formed by sputtering on an AQ base plate with a thickness of 0.0 cm using the blue ultra-FFL conductor block as a target, and this thin film was heat-treated at 850° C. for 12 hours in oxygen. The critical temperature of this thin film was 90°C.
次にこの超電導体薄膜の形成されたへ〇板を、液体窒素
中への浸漬と常温への復帰の冷熱サイクルを10回加え
たが、超電導特性の低下は認めれらず、また超電導体薄
膜面にクラックの発生は認められなかった。なお、1B
板にLiNbO3、LiTaO3、Pdを用いた場合も
八〇の場合と同様の特性がilfられた。Next, the plate on which the superconductor thin film was formed was subjected to a cooling/heating cycle of immersing it in liquid nitrogen and returning it to room temperature 10 times, but no deterioration of the superconducting properties was observed. No cracks were observed. In addition, 1B
When LiNbO3, LiTaO3, and Pd were used for the plate, the same characteristics as in the case of 80 were obtained.
これに対して、A(1&に代えて石英ガラス板(線膨脹
係数0.4X10−6/K)を用いた以外は実施例と同
一条件で製造した超電導体は、実施例と同一条件による
冷熱サイクル1回でfj&柵なりラックが発生し電気抵
抗はOにならなかった。On the other hand, the superconductor manufactured under the same conditions as the example except that a quartz glass plate (linear expansion coefficient 0.4X10-6/K) was used in place of A(1&) was cooled and heated under the same conditions as the example. After one cycle, fj & fence or rack occurred and the electrical resistance did not become O.
[発明の効果]
以上の実施例からも明らかなように、本発明の超半導体
装置は、面方向の線膨脹係数が10X10’〜25X1
0−6の基板上に、厚さ1000Å〜104人のペロプ
スカイト型の酸化物超電導体の薄膜を形成したので、冷
熱サイクルによるひずみの発生が小さく、超電導特性の
低下や剥離、クラック等のの発生のおそれがなく、長期
にわたって良好な特性を維持することができる。[Effects of the Invention] As is clear from the above examples, the super semiconductor device of the present invention has a linear expansion coefficient of 10X10' to 25X1 in the plane direction.
Since a thin film of peropskite-type oxide superconductor with a thickness of 1000 Å to 104 is formed on a 0-6 substrate, the generation of distortion due to heating and cooling cycles is small, and there is no deterioration of superconducting properties, peeling, cracking, etc. There is no fear of this occurring, and good characteristics can be maintained over a long period of time.
Claims (5)
25×10^−^6/Kの基板上に、厚さ1000Å〜
10^4Åのペロブスカイト型の酸化物超電導体の薄膜
を形成してなることを特徴とする超半導体装置。(1) Linear expansion coefficient in the plane direction is 10×10^-^6/K ~
On a 25×10^-^6/K substrate, thickness 1000 Å ~
A supersemiconductor device characterized by forming a thin film of a perovskite-type oxide superconductor with a thickness of 10^4 Å.
ロブスカイト型の酸化物超電導体であることを特徴とす
る特許請求の範囲第1項記載の超電導体装置。(2) The superconductor device according to claim 1, wherein the oxide superconductor is a perovskite-type oxide superconductor containing a rare earth element.
7_−_δ系の酸化物超電導体(Aは、Y、Yb、Ho
、Dy、Eu、Er、Tm、およびLuから選ばれた元
素)であることを特徴とする特許請求の範囲第1項また
は第2項記載の超電導体装置。(3) The oxide superconductor is ABa_2Cu_3O_
7_-_δ-based oxide superconductor (A is Y, Yb, Ho
, Dy, Eu, Er, Tm, and Lu).
あることを特徴とする特許請求の範囲第1項ないし第3
項のいずれか1項記載の超電導体装置。(4) Claims 1 to 3, wherein the oxide superconductor is Y-Ba-Cu-O based.
The superconductor device according to any one of the above items.
AgおよびPdから選ばれたものからなる特許請求の範
囲第1項ないし第4項のいずれか1項記載の超電導体装
置。(5) The substrate is LiNbO_3, LiTaO_3,
A superconductor device according to any one of claims 1 to 4, comprising one selected from Ag and Pd.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62114313A JP2703227B2 (en) | 1987-05-11 | 1987-05-11 | Superconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62114313A JP2703227B2 (en) | 1987-05-11 | 1987-05-11 | Superconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63279519A true JPS63279519A (en) | 1988-11-16 |
JP2703227B2 JP2703227B2 (en) | 1998-01-26 |
Family
ID=14634731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62114313A Expired - Fee Related JP2703227B2 (en) | 1987-05-11 | 1987-05-11 | Superconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2703227B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990012408A1 (en) * | 1989-03-31 | 1990-10-18 | Sumitomo Electric Industries, Ltd. | Oxide superconductor wire, method of producing the same and article produced therefrom |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63239738A (en) * | 1987-03-27 | 1988-10-05 | Matsushita Electric Ind Co Ltd | Superconductor wire and manufacture thereof |
JPS63245820A (en) * | 1987-03-31 | 1988-10-12 | Sumitomo Electric Ind Ltd | superconductor |
-
1987
- 1987-05-11 JP JP62114313A patent/JP2703227B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63239738A (en) * | 1987-03-27 | 1988-10-05 | Matsushita Electric Ind Co Ltd | Superconductor wire and manufacture thereof |
JPS63245820A (en) * | 1987-03-31 | 1988-10-12 | Sumitomo Electric Ind Ltd | superconductor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990012408A1 (en) * | 1989-03-31 | 1990-10-18 | Sumitomo Electric Industries, Ltd. | Oxide superconductor wire, method of producing the same and article produced therefrom |
Also Published As
Publication number | Publication date |
---|---|
JP2703227B2 (en) | 1998-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2664066B2 (en) | Superconducting thin film and method for producing the same | |
CN1022654C (en) | Tunnel type Josephson device and manufacturing method thereof | |
JP2933225B2 (en) | Metal oxide material | |
US4900710A (en) | Process of depositing an alkali metal layer onto the surface of an oxide superconductor | |
JPS63279519A (en) | superconductor device | |
JPS63279528A (en) | Manufacture of superconductor device | |
JP2645730B2 (en) | Superconducting thin film | |
JPS63279521A (en) | Superconductor device | |
JP2577056B2 (en) | Preparation method of composite oxide superconducting thin film | |
JPH01100021A (en) | Superconducting thin film | |
JP2666978B2 (en) | Superconducting element | |
JP2544761B2 (en) | Preparation method of superconducting thin film | |
JPH02217306A (en) | Production of oxide superconductor | |
JP2501609B2 (en) | Method for producing complex oxide superconducting thin film | |
JP2544760B2 (en) | Preparation method of superconducting thin film | |
JPH01179722A (en) | Production of oxide superconductor | |
JPH0244782A (en) | Superconducting element and its manufacturing method | |
JPH01220872A (en) | Oxide base superconductive material | |
JPH01164727A (en) | Formation of superconducting thin film | |
JPH01160859A (en) | Oxide superconductor of complex type | |
JPS63248019A (en) | Manufacture of oxide superconductive thin film | |
JPH0761867B2 (en) | Method for producing complex oxide superconducting thin film | |
JPH01125876A (en) | Thin film superconductor | |
JPH01151169A (en) | Oxide superconducting member | |
JPS63279529A (en) | Manufacture of superconductor molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |