JPS63239738A - Superconductor wire and manufacture thereof - Google Patents

Superconductor wire and manufacture thereof

Info

Publication number
JPS63239738A
JPS63239738A JP62074718A JP7471887A JPS63239738A JP S63239738 A JPS63239738 A JP S63239738A JP 62074718 A JP62074718 A JP 62074718A JP 7471887 A JP7471887 A JP 7471887A JP S63239738 A JPS63239738 A JP S63239738A
Authority
JP
Japan
Prior art keywords
substrate
superconductor wire
wire according
manufacturing
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62074718A
Other languages
Japanese (ja)
Other versions
JP2563315B2 (en
Inventor
Kiyotaka Wasa
清孝 和佐
Kentaro Setsune
瀬恒 謙太郎
Hideaki Adachi
秀明 足立
Tsuneo Mitsuyu
常男 三露
Shinichiro Hatta
八田 真一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62074718A priority Critical patent/JP2563315B2/en
Publication of JPS63239738A publication Critical patent/JPS63239738A/en
Application granted granted Critical
Publication of JP2563315B2 publication Critical patent/JP2563315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To secure such a superconductor wire that is homogeneous and excellent in accuracy as compared with the conventional sintered body securable by installing a coat with a specific main constituent, on a string or ribbonlike substrate. CONSTITUTION:A layer structure, where a ternary compound superconductive coat 12 of a Y-Ba-Cu-O system, that is, (A, B)3Cu2O7 in a base is stuck, is formed on the surface 13 of a string or ribbonlike substrate 11. Here, a shows at least one type of Sc, Y and lanthanum elements (atomic number 57-71) and B shows at least one type of elements of groups IIa such as Ba, Sr, Ca, Be, Mg, etc. In this manner, it comes to well homogeneity as compared with the conventional sintered body, thus a highly accurate superconductor wire is securable.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超電導体線およびその製造方法に関するもので
ある。特に化合物薄膜超電導体線に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a superconductor wire and a method for manufacturing the same. In particular, it relates to compound thin film superconductor wires.

従来の技術 高温超電導体として、A15型2元素化合物として窒化
ニオブ(NbN)やゲルマニウムニオブ(N b 3G
 e )などが知られていたが、これらの材料の超電導
転移温度はたかだか24°にであった。一方、ペロブス
カイト系3元化合物は、さらに高い転移温度が期待され
、Ba−La−Cu−0系の高温超電導体が提案された
[ J、 G、 Bend。
Conventional technology As a high temperature superconductor, niobium nitride (NbN) and germanium niobium (Nb3G) are used as A15 type two-element compounds.
e), etc., but the superconducting transition temperature of these materials was at most 24°. On the other hand, perovskite-based ternary compounds are expected to have even higher transition temperatures, and Ba-La-Cu-0-based high-temperature superconductors have been proposed [J, G, Bend.

rz  and  K、A、MOller、ツアイトシ
ュリフト フユア フージーク(Zeitschrif
t f ar Physik、  )−Condens
ed Matter 64.189−193 (198
6) ]。さらに、]Y−Ba−Cu−0がより高温の
超電導材料であることが最近提案された。[F4.  
K、  WnM。
rz and K, A, Moller, Zeitschrif
t f ar Physik, )-Condens
ed Matter 64.189-193 (198
6) ]. Furthermore, ]Y-Ba-Cu-0 was recently proposed to be a higher temperature superconducting material. [F4.
K, WnM.

K、 Wn等、フィジカルレピューレターズ(Phys
icat Review Letters )Vol、
58. No9.908−910 (198Y−Ba−
Cu−0系材料の超電導機構の詳細は明らかではないが
、転移温度が液体窒素温度以上に高くなる可能性があり
、高温超電導体として従来の2元素化合物より、より有
望な特性が期待しかしながら、Y−Ba−Cu−0系の
材料は、現在の技術では焼結という過程でしか形成でき
ないため、セラミックの粉末あるいはブロックの形状で
しか得られない。一方、この種の材料を実用化する場合
、線状あるいは薄膜状に加工することが強く要望されて
いるが、従来の技術では、この種の加工は非常に困難と
されていた。
K, Wn, etc., Physical Reputation Letters (Phys
icat Review Letters) Vol.
58. No9.908-910 (198Y-Ba-
Although the details of the superconducting mechanism of Cu-0-based materials are not clear, the transition temperature may be higher than the liquid nitrogen temperature, and as a high-temperature superconductor, it is expected to have more promising properties than conventional two-element compounds. Y-Ba-Cu-0 based materials can only be formed through the process of sintering with current technology, so they can only be obtained in the form of ceramic powder or blocks. On the other hand, when this type of material is put to practical use, there is a strong demand for processing it into a linear or thin film shape, but this type of processing has been considered extremely difficult with conventional techniques.

本発明者らは、この種の材料の薄膜がイオンプロセスに
より付着させると、薄膜状の高温超電導体が形成される
ことを発見し、これにもとづいて新規な超電導体線の製
造方法を発見した。
The present inventors have discovered that a thin film-like high-temperature superconductor is formed when a thin film of this type of material is deposited by an ion process, and based on this discovery, a novel method for manufacturing superconductor wire has been discovered. .

問題点を解決するための手段 本発明の超電導体線で形成する超電導体線の基本構成は
、線状あるいはリボン状の基体表面に、Y−Ba−Cu
−0系すなわち、主成分が(A。
Means for Solving the Problems The basic structure of the superconductor wire of the present invention is that Y-Ba-Cu is coated on the surface of a linear or ribbon-like substrate.
-0 system, that is, the main component is (A.

B)3cugoyの3元化合物超電導被膜を付着させた
層状構造を特徴としている。本発明者らは、この様の層
状超電導体線は、線状あるいはリボン状基体上に、主成
分(A、B)3Cu207複合化合物被膜を例えば蒸着
というプロセスで付着させ、さらに酸化性雰囲気で熱処
理することにより形成されることを見い出した。ここに
AはSc、Yおよびランタン系列元素(原子番号57−
71)のうち少なくとも一種、BはBa、S r、Ca
、Be、Mgなどna族元素のうちの少なくとも一種の
元素を示す。
B) It is characterized by a layered structure to which a ternary compound superconducting film of 3 cugoy is attached. The present inventors have proposed that such a layered superconductor wire can be produced by depositing a 3Cu207 composite compound film of the main components (A, B) on a linear or ribbon-like substrate, for example, by a process called vapor deposition, and then heat-treating it in an oxidizing atmosphere. They found that it is formed by Here, A is Sc, Y, and lanthanum series elements (atomic number 57-
71), B is Ba, S r, Ca
, Be, Mg, and other elements of the na group.

作用 本発明の方法により作成された超電導体線は、超電導体
を薄膜化している所に大きな特色がある。すなわち、薄
膜化は超電導体の素材を原子状態という極微粒子に分解
してから、基体上に堆積させるから、形成された超電導
体線の組成は本質的に従来の焼結体に比べて均質である
。したがって非常に高精度の超電導体線が本発明で実現
される。
Function: The superconductor wire produced by the method of the present invention has a major feature in that the superconductor is made into a thin film. In other words, because film thinning involves decomposing the superconductor material into ultrafine particles in the atomic state and then depositing them on the substrate, the composition of the formed superconductor wire is essentially more homogeneous than that of conventional sintered bodies. be. Therefore, a superconductor wire of very high precision is realized with the present invention.

実施例 本発明の一実施例の方法を図面とともに説明する。Example A method according to an embodiment of the present invention will be explained with reference to the drawings.

第1図に示すように通常3元化合物被膜12は基板11
の表面13上に例えばスパッタリング法で形成する。こ
の場合、基体11は、超電導を示す3元化合物被膜12
の保持を目的としている。本発明の超電導体は本質的に
このような層状構造からなっている。この層状構造は通
常数100℃の高温で形成し、超電導を例えば液体窒素
温度(−195℃)の低温で動作させるため、特に基体
11と被膜12の密着性が悪(なり、しばしば層状構造
が破損されることを本発明者らは確認した。さらに本発
明者らは、詳細な基体の熱的特性を各種の材質について
調べた結果、基体の線熱膨張係数α> l Q−8/ご
てあれば、上記層状構造の破損がな(、実用されること
を確認した。例えばα〈1〇−67この石英ガラスを基
体に用いると、被膜12は無数の亀裂が入り不連続な被
膜となり、実用に供しないことを本発明者らは確認した
As shown in FIG.
It is formed on the surface 13 by, for example, a sputtering method. In this case, the base 11 has a ternary compound coating 12 exhibiting superconductivity.
The purpose is to maintain the The superconductor of the present invention essentially consists of such a layered structure. This layered structure is usually formed at a high temperature of several hundred degrees Celsius, and since superconductors are operated at a low temperature of, for example, liquid nitrogen temperature (-195 degrees Celsius), the adhesion between the substrate 11 and the coating 12 is particularly poor (and the layered structure is often formed). The inventors have confirmed that the substrate is damaged.Furthermore, the inventors investigated the detailed thermal characteristics of the substrate for various materials, and found that the linear thermal expansion coefficient α>lQ-8/ If this quartz glass is used as a substrate, the layered structure will not be damaged (and it has been confirmed that it can be put into practical use.For example, α〈10-67) If this quartz glass is used as a substrate, the coating 12 will have countless cracks and become a discontinuous coating. The inventors have confirmed that this method is not practical.

さらに、本発明者らは、第1図の層状構造の基体11に
機能性から見て、最適の材料があることを見い出した。
Furthermore, the present inventors have discovered that there is an optimal material for the layered structure substrate 11 shown in FIG. 1 from the viewpoint of functionality.

すなわち基体11として、Cu、Ni、Ti。That is, the base body 11 is made of Cu, Ni, or Ti.

Mo+ Ta、W、Mn+ Fe−等の金属のあるいは
これらの金属元素を含んだ合金、例えばニクロム、ステ
ンレスなとが有効であること本発明者らは確認した。こ
の場合、この種の基体は、線状あるいはリボン状に加工
させるから、これらの線状あるいはリボン状の基体表面
に、超電導体被膜12を付着させると超電導体線が形成
される。第2図(a)、(b)は本発明の実施例の超電
導体線を示し、リボン状基体11Aと線状基体11B表
面に超電導体被膜12を形成したものである。
The present inventors have confirmed that metals such as Mo+ Ta, W, Mn+ Fe-, or alloys containing these metal elements, such as nichrome and stainless steel, are effective. In this case, since this type of substrate is processed into a linear or ribbon shape, a superconductor wire is formed by attaching the superconductor coating 12 to the surface of the linear or ribbon-shaped substrate. FIGS. 2(a) and 2(b) show a superconductor wire according to an embodiment of the present invention, in which a superconductor coating 12 is formed on the surfaces of a ribbon-like substrate 11A and a linear substrate 11B.

超電導体線の形成には、まず(A、B)sCuz07−
J成分の複合化合物被膜をスパッタリング蒸着等の物理
的気相成長法で基体上に付着させる。
To form a superconductor wire, first (A, B) sCuz07-
A composite compound film of component J is deposited on the substrate by a physical vapor deposition method such as sputtering vapor deposition.

ここにO≦δ≦7゜ この場合複合化合物被膜は成分A、BおよびCUの化学
量論比さえ合致していればよく、酸素量は特に重要では
ないことを本発明者らは確認した。その結果、複合化合
物被膜の形成法は物理的気相成長法に限定されたもので
はな(、化学的気相成長法例えば常圧あるいは減圧化学
的気相成長法、プラズマ化学的気相成長法、光化学的気
相成長法も、成分A、BおよびCuの化学量論比さえ合
致させれば有効であることを本発明者らは確認した。
Here, O≦δ≦7°. In this case, the composite compound film only needs to match the stoichiometric ratio of components A, B, and CU, and the present inventors have confirmed that the amount of oxygen is not particularly important. As a result, methods for forming composite compound films are not limited to physical vapor deposition (e.g., atmospheric or low pressure chemical vapor deposition, plasma chemical vapor deposition). The present inventors have confirmed that the photochemical vapor deposition method is also effective as long as the stoichiometric ratios of components A, B, and Cu match.

本発明者らは、複合化合物被膜を基体11の表面13に
付着させる場合、第2図に示すごとく、導電性の基体を
用い基体を線状あるいはリボン状に加工し、基体に電流
を流すことによって発熱自己加熱させることがこの種の
超電導体線の製造に特に有効であることを見い出した。
The present inventors have proposed that when attaching a composite compound film to the surface 13 of the substrate 11, as shown in FIG. It has been found that self-heating by heat generation is particularly effective for manufacturing this type of superconductor wire.

この場合、基体の自己加熱による最適の温度範囲が存在
することを本発明者らは確認した。すなわち、基体の最
適の温度範囲は100〜1000℃である。なお、10
0℃以下では基体表面への複合化合物被膜の付着性が悪
くなる。また、1000℃以上では複合化合物被膜中の
成分A、BおよびCuの化学量論比からのずれが大きく
なり、引きつづく熱処理工程を経ても超電導体特性が得
られないことを本発明者らは発見した。
In this case, the present inventors have confirmed that there is an optimal temperature range due to self-heating of the substrate. That is, the optimum temperature range of the substrate is 100 to 1000°C. In addition, 10
At temperatures below 0°C, the adhesion of the composite compound coating to the substrate surface deteriorates. In addition, the inventors have found that at temperatures above 1000°C, the deviation from the stoichiometric ratio of components A, B, and Cu in the composite compound film becomes large, and superconducting properties cannot be obtained even after subsequent heat treatment steps. discovered.

さらに、複合化合物被膜を付着させる時の基体の温度は
とりわけ200〜500℃の範囲がこの種の蒸着装置の
機能、複合化合物被膜の特性の再現性から見て最適であ
ることを本発明者らは確認した。この場合、形成された
複合化合物被膜は、アモルファスあるいは超電導を示す
(A、B)3Cu z O?などの微結晶がら構成され
ている。しがしながら、意外にもこの種の被膜は半導体
的な特性を示し、超電導は液体He温度(4°K)でも
見られないことがしばしば起こる。
Furthermore, the present inventors have found that a temperature range of 200 to 500°C for the substrate when depositing the composite compound film is optimal in terms of the functionality of this type of vapor deposition apparatus and the reproducibility of the properties of the composite compound film. confirmed. In this case, the formed composite compound film is amorphous or superconducting (A, B) 3Cu z O? It is composed of microcrystals such as. However, surprisingly, this type of coating exhibits semiconducting properties and superconductivity is often not observed even at liquid He temperatures (4°K).

本発明者らはこの種の複合化合物被膜をさらに、常圧の
空気、アルゴンと酸素の混合ガスあるいは純酸素などの
酸化物雰囲気で熱処理することにより、超電導が発生す
ることを発見した。この場合最適の熱処理温度は900
〜1000℃、熱処理時間は10〜100時間であり、
特に熱処理時間が薄膜材料の常識を破る長時間であるこ
とと熱処理後の徐冷が特徴的である。熱処理時間が10
時間以下になると半導体的特性が多く、再現性よ(超電
導特性が得られない。また、100時間以上になると抵
抗率が高くなるとともに、被膜の特性が不安定になり急
冷は超電導を示さない。例えば20時間以上の徐冷時間
が超電導を得るには必要である。
The present inventors have discovered that superconductivity can be generated by further heat-treating this type of composite compound film in an oxide atmosphere such as air at normal pressure, a mixed gas of argon and oxygen, or pure oxygen. In this case, the optimal heat treatment temperature is 900
~1000°C, heat treatment time is 10 to 100 hours,
In particular, it is characterized by a long heat treatment time, which is unconventional for thin film materials, and by slow cooling after heat treatment. Heat treatment time: 10
If the cooling time is less than 100 hours, there will be many semiconductor-like characteristics, and the reproducibility will deteriorate (superconducting characteristics will not be obtained).If the cooling time is longer than 100 hours, the resistivity will increase and the properties of the film will become unstable, and quenching will not show superconductivity. For example, an annealing time of 20 hours or more is required to obtain superconductivity.

この種の超電導焼結体の形成プロセスにおいても、本発
明に用いる熱処理と類似の10〜100時間という長時
間熱処理が用いられている。しかしながら、焼結体のよ
うなバルク材料であれば、例えば100時間程度の熱処
理時間は、特に長時間ではなく通常広く用いられている
。一方、被膜の場合は材料そのものの寸法が例えば1μ
mがそれ以下というバルクに比べて3〜4桁以上小さい
。したがって、熱処理時間も物質の移動を考慮するとバ
ルク材料より2桁以下に短(なる。したがってバルク材
料と類似の熱処理プロセスであれば、1時間以下の短い
熱処理で超電導特性が得られるはずである。さらに、被
膜形成中に酸化性雰囲気にすれば、この種の熱処理は不
要と考えられた。しかしながら、実験的には、上述のご
とく長時間熱処理が必要であることを確認した。この意
外性は、バルク材料と薄膜材料との本質的な特性の差異
に起因していると考えられる。
In the process of forming this type of superconducting sintered body, a long heat treatment of 10 to 100 hours, similar to the heat treatment used in the present invention, is used. However, in the case of a bulk material such as a sintered body, a heat treatment time of about 100 hours, for example, is not particularly long and is usually widely used. On the other hand, in the case of a film, the dimensions of the material itself are, for example, 1 μm.
This is three to four orders of magnitude smaller than the bulk where m is less than that. Therefore, the heat treatment time is also less than two orders of magnitude shorter than that of bulk materials when considering the movement of substances.Therefore, if the heat treatment process is similar to that of bulk materials, superconducting properties should be obtained with a short heat treatment of one hour or less. Furthermore, it was thought that this type of heat treatment would be unnecessary if an oxidizing atmosphere was used during film formation.However, it was experimentally confirmed that a long heat treatment was required as described above.This unexpectedness This is thought to be due to the essential difference in properties between the bulk material and the thin film material.

すなわち、この種の被膜の結晶構造など、詳細な特性は
、基体上に被膜が拘束されているため、被膜内には、通
常の焼結体では存在しない様な大きな歪とか欠陥が存在
する。このため、被膜の製造方法には、従来の焼結体の
製造方法をそのまま適応できるものではない。また、焼
結体の製造方法から被膜の製造方法を類推できるもので
もない。なお、被膜の熱処理の物理的な意味の詳細は明
らかではないが、おおよそ、次のように考えられる。す
なわち、スパッタリング蒸着等で基体上には付着させた
複合酸化物被膜では、(A、B)3CI4207という
化合物を形成していない。この場合、例えばBCuOs
正方晶のペロブスカイト構造のネットワーク中にへ元素
の酸化物が分散した複合酸化物を形成している。超電導
は、層状へロブスカイト構造の発生に起因し、この過程
が熱処理に関連する。
That is, the detailed characteristics of this type of coating, such as the crystal structure, are such that because the coating is constrained on the substrate, there are large strains and defects in the coating that do not exist in ordinary sintered bodies. Therefore, the conventional method for manufacturing a sintered body cannot be directly applied to the method for manufacturing the coating. Furthermore, it is not possible to infer the method of manufacturing the coating from the method of manufacturing the sintered body. Although the details of the physical meaning of the heat treatment of the film are not clear, it can be roughly considered as follows. That is, the compound 3CI4207 (A, B) is not formed in the composite oxide film deposited on the substrate by sputtering vapor deposition or the like. In this case, for example, BCuOs
A complex oxide is formed in which the oxide of the element is dispersed in a network of a tetragonal perovskite structure. Superconductivity results from the development of a layered herovskite structure, a process that is associated with heat treatment.

なお、熱処理時間が10時間以下で超電導性が得られな
いのは、層状ペロブスカイト構造の生成が不充分であっ
た事に起因していると考えられる。
Note that the reason why superconductivity was not obtained when the heat treatment time was 10 hours or less is considered to be due to insufficient formation of the layered perovskite structure.

基体表面に複合化合物被膜をスパッタリング蒸着で形成
する場合、上述したごと(、被膜中の成分A、Bおよび
Cuの化学量論比制御が重要である。本発明者らは詳細
にスパッタリング蒸着における最適条件を調べたが、意
外にもスパッタリング用ターゲットの組成は主成分が目
的とする超電導体と同様(A、B)sCuzo7−aで
よい事を見い出した。ここにO≦δ≦7で、酸素量はス
パッタリング中あるいはスパッタリング後の熱処理で調
整できるので特にターゲット組成としては重要である。
When forming a composite compound film on the surface of a substrate by sputtering deposition, it is important to control the stoichiometric ratio of components A, B, and Cu in the film, as described above. We investigated the conditions, and surprisingly found that the composition of the sputtering target could be sCuzo7-a, whose main components are the same as the target superconductor (A, B). Here, O≦δ≦7, and oxygen The amount can be adjusted by heat treatment during or after sputtering, so it is particularly important for the target composition.

さらに、この種の化合物被膜のスパッタリング蒸着では
、例えばArと○Zとの混合ガスをスパッタリングガス
に用いるが、02ガスの存在は形成された化合物被膜の
抵抗率を高め、超電導体を形成しがたい場合がある事を
本発明者らは見い出した。実験的に、Ar、Xe、Ne
、Krのような不活性ガスあるいはこれらの不活性ガス
の混合ガスがスパッタリングガスとして有効であること
を本発明者らは確認した。
Furthermore, in sputtering deposition of this type of compound film, a mixed gas of Ar and ○Z is used as the sputtering gas, but the presence of 02 gas increases the resistivity of the formed compound film and prevents the formation of a superconductor. The present inventors have found that there are cases where this is necessary. Experimentally, Ar, Xe, Ne
The present inventors have confirmed that an inert gas such as , Kr, or a mixed gas of these inert gases is effective as a sputtering gas.

スパッタリング蒸着方式も高周波二極スパッタ、直流二
極スパッタ、マグネトロンスパッタいずれも有効である
ことを本発明者らは確認した。
The present inventors have confirmed that all sputtering vapor deposition methods, such as high-frequency bipolar sputtering, direct current bipolar sputtering, and magnetron sputtering, are effective.

特に直流スパッタの場合、スパッタリングターゲットの
抵抗率を10−3Ωam以下に低(する事が必要で、こ
れ以上の抵抗率では、充分なスパッタリング放電が発生
しない。なお、ターゲットの抵抗率の調整は通常ターゲ
ットの焼結条件によって行う。
Particularly in the case of DC sputtering, it is necessary to lower the resistivity of the sputtering target to below 10-3 Ωam; if the resistivity is higher than this, sufficient sputtering discharge will not occur. Note that the target resistivity is usually adjusted. This is done depending on the target sintering conditions.

第3図はこの種のスパッタリング蒸着法で線状あるいは
リボン状の基体に複合酸化物被膜を形成する時の基体構
成を示す。同図に示すごとく、複数個のターゲット21
.22から構成し、線状23あるいはリボン状24の基
体表面に一様に複合酸化物被膜を付着させる。例えばリ
ボン状基体24には表面252表面26に同時被膜を付
け、リボン状基体の機械的変形を防ぐ。
FIG. 3 shows the structure of a substrate when a composite oxide film is formed on a linear or ribbon-shaped substrate by this type of sputtering deposition method. As shown in the figure, a plurality of targets 21
.. 22, and a complex oxide film is uniformly adhered to the surface of a linear 23 or ribbon 24 substrate. For example, ribbon substrate 24 may be coated simultaneously on surface 252 and surface 26 to prevent mechanical deformation of the ribbon substrate.

なお、被膜の化学組成の積極的な調整、人工格子などの
人工的な化学組成のゆらぎを形成する事は、多元スパッ
タリングで可能になる。特にこの種の装置では、直流ス
パッタがスパッタ電力等の精密制御に有効であり、また
直流マグネトロンスパッタあるいは直流マグネトロンス
パッタガンなどが特に有効であることを本発明者らは確
認した。
Note that active adjustment of the chemical composition of the film and the formation of artificial chemical composition fluctuations such as an artificial lattice are made possible by multi-source sputtering. Particularly in this type of apparatus, the present inventors have confirmed that DC sputtering is effective for precise control of sputtering power, etc., and that DC magnetron sputtering or a DC magnetron sputter gun is particularly effective.

なお、基体表面に複合化合物被膜の形成法として、金属
主成分を物理的気相成長法で基体上に付着させ、さらに
酸素ビームあるいは酸素イオンを被膜形成中に被膜に照
射し、基体表面で金属主成分を酸化させることも可能で
ある。物理的気相成長法としては、スパッタリング以外
に熱蒸着例えば電子ビーム蒸着も有効である。スパッタ
リング法では基体上に酸素イオンビームを照射しながら
、複合酸化物被膜の合金主成分をターゲットとしてスパ
ッタリング蒸着する。この場合複合酸化物ターゲットと
してスパッタリング蒸着するよりも被膜形成速度が1桁
以上速い特長を示し、工業的により有効である。
In addition, as a method for forming a composite compound film on the surface of a substrate, the main component of the metal is deposited on the substrate by physical vapor deposition, and the film is further irradiated with an oxygen beam or oxygen ions during film formation. It is also possible to oxidize the main component. In addition to sputtering, thermal evaporation, such as electron beam evaporation, is also effective as a physical vapor deposition method. In the sputtering method, while irradiating the substrate with an oxygen ion beam, the main alloy component of the composite oxide film is sputter-deposited using a target. In this case, the film formation rate is more than an order of magnitude faster than sputtering vapor deposition using a composite oxide target, and it is industrially more effective.

さらに本発明者らは線状あるいはリボン状基体の表面に
、複合酸化物被膜を形成するまでに、基体の表面例えば
金属基体表面に、耐熱性被膜をあらかじめ形成しておく
と、安定した超電導性を実現できることを発見した。
Furthermore, the present inventors have found that, before forming a complex oxide film on the surface of a linear or ribbon-shaped substrate, if a heat-resistant coating is previously formed on the surface of the substrate, for example, on the surface of a metal substrate, stable superconductivity can be achieved. I discovered that it is possible to achieve this.

第4図は耐熱性被膜の結果を示すX線回折スペクトル図
である。基体はMo金属で耐熱性被膜として酸化タンタ
ルO,lμliGスパッタリング法で付着させた場合を
示す。同図特性aは耐熱被膜がない時、特性すは耐熱被
膜がある場合、特性Cは超電導特性を示す層状ペロブス
カイト構造の特性を示す。
FIG. 4 is an X-ray diffraction spectrum diagram showing the results of the heat-resistant coating. The substrate is made of Mo metal and a heat-resistant film is deposited using tantalum oxide O, lμliG sputtering method. Characteristic a in the figure shows the property when there is no heat-resistant coating, property C shows the property when there is a heat-resistant film, and property C shows the property of the layered perovskite structure exhibiting superconducting properties.

同図から耐熱被膜を設けると層状ペロブスカイト構造と
類似の特性を示すが耐熱被膜がないときはX線回折スペ
クトルに差がある。この理由の詳細は明らかでないが、
基体金属と複合化合物被膜が複合酸化物被膜蒸着中に層
間拡散したためと思われる。
As can be seen from the figure, when a heat-resistant coating is provided, it exhibits characteristics similar to those of a layered perovskite structure, but when there is no heat-resistant coating, there is a difference in the X-ray diffraction spectrum. The details of this reason are not clear, but
This is thought to be due to interlayer diffusion between the base metal and the composite compound film during the deposition of the composite oxide film.

耐熱性被膜の形成法は上述した様な蒸着法でも、基体金
属表面を化学反応的に表面改質してもよい。例えば、酸
化性、窒化性あるいは炭化性雰囲気中で基体金属表面を
酸化、窒化あるいは炭化させ、基体金属の酸化物、窒化
物あるいは炭化物被膜を基体表面に形成しても同様の効
果がある。
The heat-resistant coating may be formed by the vapor deposition method described above, or by chemically modifying the surface of the base metal. For example, the same effect can be obtained by oxidizing, nitriding or carbonizing the base metal surface in an oxidizing, nitriding or carbonizing atmosphere to form an oxide, nitride or carbide film of the base metal on the base metal surface.

また、タンタル、チタンなどの金属を基体に用いた時は
、所謂陽極化成法により表面を酸化させることも可能で
ある。
Furthermore, when a metal such as tantalum or titanium is used for the substrate, it is also possible to oxidize the surface by a so-called anodization method.

耐熱被膜として窒化物としては例えばTiN。Examples of nitrides used as the heat-resistant coating include TiN.

TaN、MoN、NbN、WN、MnNなどが、炭化物
としてはTaC,’ric、NbC,M。
TaN, MoN, NbN, WN, MnN, etc., and carbides include TaC, 'ric, NbC, M.

C,WC,MnCなどが、酸化物としてはN b 20
s、 T i OI!、 Ta2’5. A I 20
3. Z r O,21Y 20 aなどが有効である
ことを本発明者らは確認した。
C, WC, MnC, etc., but N b 20 as an oxide
s, T i OI! , Ta2'5. AI 20
3. The present inventors have confirmed that Z r O, 21Y 20 a, etc. are effective.

これらの耐熱被膜の効果は、複合化合物被膜の高温処理
中の安定化をはかるものであるから耐熱性と基体との付
着性が満たされてさえすればよいので上述した材料に限
定させたものではない。ただ付着特性からは基体金属の
表面反応で形成した耐熱被膜例えばTa/Tag’s、
Ti/TiO2などが有効である。
The effect of these heat-resistant coatings is to stabilize the composite compound coating during high-temperature processing, so it is only necessary that heat resistance and adhesion to the substrate be satisfied, so they are not limited to the materials mentioned above. do not have. However, from the viewpoint of adhesion properties, heat-resistant coatings formed by surface reactions of base metals, such as Ta/Tag's,
Ti/TiO2 etc. are effective.

また、耐熱性からすれば、基体金属が耐熱性がよければ
、必ずしも耐熱被膜は必要としない。例えばステンレス
金属は耐熱被膜なしでも安定にこの種の超電導被膜が形
成されることを本発明者らは確認した。
In addition, from the viewpoint of heat resistance, if the base metal has good heat resistance, a heat-resistant coating is not necessarily required. For example, the present inventors have confirmed that this type of superconducting film can be stably formed on stainless steel metal even without a heat-resistant film.

以下本発明の内容をさらに深(理解されるために、さら
に具体的な具体実施例を示す。
In order to further understand the contents of the present invention, more specific examples will be shown below.

(具体実施例) 第2図(b)のタンクルリボン11A[巾10  、閣
、厚さ0.1mn+1を基体として用い、まず、タンタ
ルリボン11Aの表面酸化タンタル耐熱層を高周波ブレ
ナーマグネトロンスパッタにより形成し、さらに、同じ
く高周波プレナーマグネトロンスパッタにより、焼結し
た(Y、Ba)3cugo7ターゲツトをArガス雰囲
気でスパッタリング蒸着して、上記基体上に結晶性の(
Y、Ba)3Cu207被膜12を付着させ層状構造を
形成した。この場合、Arガスの圧力は0.5 P a
、スパッタリング電力150W、スパッタリング時間1
0時間、被膜の膜厚6μm、基体温度250℃であった
。形成された層状構造をさらに空気中で900℃、70
時間熱処理した。超電導転移温度45゜Kであった。
(Specific Example) Using the tantalum ribbon 11A shown in FIG. 2(b) [width 10 mm, thickness 0.1 mm+1] as a base, first, a tantalum oxide heat-resistant layer is formed on the surface of the tantalum ribbon 11A by high-frequency Brenner magnetron sputtering. Furthermore, a sintered (Y,Ba)3cugo7 target was sputter-deposited on the substrate by sputtering in an Ar gas atmosphere using high-frequency planar magnetron sputtering.
Y, Ba)3Cu207 coating 12 was deposited to form a layered structure. In this case, the pressure of Ar gas is 0.5 Pa
, sputtering power 150W, sputtering time 1
0 hours, the film thickness of the film was 6 μm, and the substrate temperature was 250°C. The formed layered structure was further heated in air at 900°C and 70°C.
Heat treated for hours. The superconducting transition temperature was 45°K.

この種の3元化合物超電導体(A + B ) s C
ti 207の構成元素AおよびBの変化による超電導
特性の変化の詳細は明らかではない。ただAは3価、B
は2g!4を示しているのは事実である。へ元素として
Yについて例をあげて説明したが、ScやLa、さらに
ランタン系列の元素(原子番号57〜71〉でも、超電
導転移温度が変化する程度で本質的な発明の層状構造の
特性を変えるものではない。
This type of ternary compound superconductor (A + B) s C
The details of changes in superconducting properties due to changes in constituent elements A and B of ti 207 are not clear. However, A is trivalent, B
is 2g! It is true that it shows 4. Although the explanation was given using Y as an example, Sc, La, and even lanthanum series elements (atomic numbers 57 to 71) can change the essential characteristics of the layered structure of the invention to the extent that the superconducting transition temperature changes. It's not a thing.

また、B元素においても、Sr、Ca、Ba等11a族
元素の変化は超電導転移温度を10゛に程度変化させる
が、本質的に本発明層状構造の特性を変えるものではな
い。
Also, regarding B elements, changes in group 11a elements such as Sr, Ca, and Ba change the superconducting transition temperature by about 10°, but this does not essentially change the characteristics of the layered structure of the present invention.

なお、ここで示した超電導材料は、2層構造ペロブスカ
イト構造であるが、さらに3層構造、4層構造など多層
(0層)構造のこの種のペロブスカイト構造超電導材料
(A 、 B ) h−++Cuno3n++について
も、本発明と同様の製造方法で形成でき、超電導材料と
して実用され得る。
The superconducting material shown here has a two-layer perovskite structure, but this type of perovskite-structure superconducting material (A, B) h-++Cuno3n++ has a multilayer (0-layer) structure such as a three-layer structure or a four-layer structure. can also be formed by the same manufacturing method as the present invention, and can be put to practical use as a superconducting material.

発明の効果 本発明にかかる超電導体線の製造方法は、超電導体を薄
膜化している所に大きな特色がある。すなわち、薄膜化
は超電導体の素材を原子状態という極微粒子に分解して
から、基体上に堆積させるから、形成された超電導体の
組成は本質的に、従来の焼結体に比べて均質である。し
たがって、非常に高精度の超電導体線が本発明で実現さ
れる。
Effects of the Invention The method for manufacturing a superconductor wire according to the present invention is characterized in that the superconductor is made into a thin film. In other words, in thin film formation, the superconductor material is decomposed into ultrafine particles in the atomic state and then deposited on the substrate, so the composition of the formed superconductor is essentially more homogeneous than that of conventional sintered bodies. be. Therefore, a superconductor wire with very high precision is realized with the present invention.

特に、この種の化合物超電導体の転移温度が室温になる
可能性もあり、従来の実用の範囲は広(、本発明の工業
的価値は高い。
In particular, the transition temperature of this type of compound superconductor may be room temperature, so the range of conventional practical use is wide (and the industrial value of the present invention is high).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための図、第2図は本
発明の一実施例の超電導体線の製造方法で形成した超電
導体線の基本構成図、第3図は本発明の超電導体線の製
造装置の基本構成図、第4図は本発明の超電導体線の基
本特性図である。 11・・・基体、12・・・3元化合物被膜。 代理人の氏名 弁理士 中尾敏男 はか1名第1凹 /11亨1r 第2図
FIG. 1 is a diagram for explaining the present invention in detail, FIG. 2 is a basic configuration diagram of a superconductor wire formed by a method for manufacturing a superconductor wire according to an embodiment of the present invention, and FIG. 3 is a diagram for explaining the present invention in detail. FIG. 4 is a basic configuration diagram of a superconductor wire manufacturing apparatus and a basic characteristic diagram of the superconductor wire of the present invention. 11...Substrate, 12...Ternary compound coating. Name of agent: Patent attorney Toshio Nakao 1st person / 11th Toru 1r Figure 2

Claims (21)

【特許請求の範囲】[Claims] (1)線状あるいはリボン状基体上に、主成分が(A、
B)_3Cu_2O_7である被膜を設けた事を特徴と
する超電導体線。ここに、AはSc、Y、およびランタ
ン系列元素(原子番号57〜71)のうちすくなくとも
一種、BはIIa族元素のうちのすくなくとも一種の元素
を示す。
(1) On a linear or ribbon-like substrate, the main components (A,
B) A superconductor wire characterized by being provided with a coating of _3Cu_2O_7. Here, A represents at least one kind of Sc, Y, and lanthanum series elements (atomic numbers 57 to 71), and B represents at least one kind of group IIa elements.
(2)基体上に耐熱性被膜を設けたことを特徴とする特
許請求の範囲第1項記載の超電導体線。
(2) The superconductor wire according to claim 1, characterized in that a heat-resistant coating is provided on the base.
(3)線状あるいはリボン状基体上に、主成分がAB_
2Cu_3O_7_−_δである複合化合物被膜を付着
させ、さらに酸化性雰囲気で熱処理することを特徴とす
る超電導体線の製造方法。 ここに、AはSc、Yおよびランタン系列元素(原子番
号57〜71)のうちすくなくとも一種、BはIIa族元
素のうちのすくなくとも一種の元素を示す。また0≦δ
≦7。
(3) On a linear or ribbon-shaped substrate, the main component is AB_
A method for producing a superconductor wire, which comprises depositing a composite compound film of 2Cu_3O_7_-_δ and further heat-treating in an oxidizing atmosphere. Here, A represents at least one kind of Sc, Y, and lanthanum series elements (atomic numbers 57 to 71), and B represents at least one kind of group IIa elements. Also, 0≦δ
≦7.
(4)基体を、線膨脹係数α>10^−^6/℃の材質
で構成したことを特徴とする特許請求の範囲第3項記載
の超電導体線の製造方法。
(4) The method for manufacturing a superconductor wire according to claim 3, characterized in that the substrate is made of a material having a coefficient of linear expansion α>10^-^6/°C.
(5)基体を、Cu、Ni、Ti、Mo、Nb、Ta、
W、Mn、Fe等の金属のうちの一種あるいはこれらの
金属を含んだ合金例えばステンレスで構成したことを特
徴とする特許請求の範囲第3項記載の超電導体線の製造
方法。
(5) The substrate is Cu, Ni, Ti, Mo, Nb, Ta,
4. The method of manufacturing a superconductor wire according to claim 3, wherein the superconductor wire is made of one of metals such as W, Mn, and Fe, or an alloy containing these metals, such as stainless steel.
(6)線状あるいはリボン状基体の表面に、耐熱被膜を
形成した後、複合化合物被膜を付着させることを特徴と
する特許請求の範囲第3項記載の超電導体線の製造方法
(6) The method for manufacturing a superconductor wire according to claim 3, characterized in that after forming a heat-resistant coating on the surface of a linear or ribbon-shaped substrate, a composite compound coating is attached.
(7)耐熱被膜を金属の酸化物、窒化物、炭化物で構成
したことを特徴とする特許請求の範囲第6項記載の超電
導体線の製造方法。
(7) The method for manufacturing a superconductor wire according to claim 6, wherein the heat-resistant coating is made of a metal oxide, nitride, or carbide.
(8)基体を線状およびリボン状のNi、Ti、Mo、
Nb、Ta、W、Mnのうちの少なくとも一種か、これ
らの金属をを含んだ合金で構成し、複合化合物被膜を付
着させる前に、これらの基体表面のこれらの各金属を酸
化性、窒化性あるいは炭化性雰囲気で基体表面を酸化、
窒化あるいは炭化させることを特徴とする第6項記載の
超電導体線の製造方法。
(8) The substrate is made of linear or ribbon-like Ni, Ti, Mo,
The substrate is made of at least one of Nb, Ta, W, and Mn, or an alloy containing these metals, and each of these metals on the surface of the substrate is oxidized and nitrided before the composite compound film is attached. Or oxidize the substrate surface in a carbonizing atmosphere.
7. The method for producing a superconductor wire according to item 6, which comprises nitriding or carbonizing the superconductor wire.
(9)複合化合物被膜を、スパッタリング蒸着、熱蒸着
等の物理的気相成長法で、気体上に付着させることを特
徴とする特許請求の範囲第3項記載の超電導体線の製造
方法。
(9) The method for producing a superconductor wire according to claim 3, characterized in that the composite compound film is deposited on a gas by a physical vapor deposition method such as sputtering vapor deposition or thermal vapor deposition.
(10)複合化合物被膜を、常圧あるいは減圧化学的気
相成長法、プラズマ化学的気相成長法、光化学的気相成
長法等の化学的気相成長法で基体上に付着させることを
特徴とする特許請求の範囲第3項記載の超電導体線の製
造方法。
(10) The composite compound coating is deposited on the substrate by a chemical vapor deposition method such as normal pressure or reduced pressure chemical vapor deposition method, plasma chemical vapor deposition method, or photochemical vapor deposition method. A method for manufacturing a superconductor wire according to claim 3.
(11)複合化合物被膜の基体上への付着に関し、線状
あるいはリボン状基体を導電性物質で構成し、基体に電
流を流すことにより発熱自己加熱させて被膜を付着させ
ることを特徴とする特許請求の範囲第3項記載の超電導
体線の製造方法。
(11) Regarding the attachment of a composite compound coating onto a substrate, a patent characterized in that a linear or ribbon-shaped substrate is made of a conductive material, and the coating is attached by generating heat and self-heating by passing an electric current through the substrate. A method for manufacturing a superconductor wire according to claim 3.
(12)複合化合物被膜の加熱基体上への付着に関し、
基体を100〜1000℃の範囲内に加熱することを特
徴とする特許請求の範囲第3項記載の超電導体線の製造
方法。
(12) Regarding the attachment of the composite compound coating onto the heated substrate,
4. The method of manufacturing a superconductor wire according to claim 3, wherein the substrate is heated to a temperature in the range of 100 to 1000°C.
(13)複合化合物被膜の加熱基体上への付着に関し、
基体を200〜500℃の範囲内で加熱することを特徴
とする特許請求の範囲第3項記載の超電導体線の製造方
法。
(13) Regarding the attachment of the composite compound coating onto the heated substrate,
4. The method for manufacturing a superconductor wire according to claim 3, wherein the substrate is heated within a range of 200 to 500°C.
(14)雰囲気として常圧空気または純酸素を用いるこ
とを特徴とする特許請求の範囲第3項記載の超電導体線
の製造方法。
(14) The method for manufacturing a superconductor wire according to claim 3, characterized in that atmospheric pressure air or pure oxygen is used as the atmosphere.
(15)スパッタリング蒸着において主成分が(A、B
)_3Cu_2O_7_−_δである複合化合物ターゲ
ットをスパッタリング蒸着することを特徴とする特許請
求の範囲第9項記載の超電導体線の製造方法。ここに0
≦δ≦7。
(15) In sputtering deposition, the main components are (A, B
10. The method for manufacturing a superconductor wire according to claim 9, characterized in that a composite compound target of )_3Cu_2O_7_-_δ is sputter-deposited. 0 here
≦δ≦7.
(16)スパッタリング蒸着において、Ar、Xe、N
e、Krのうちの少なくとも一種あるいはこれらの混合
ガスでスパッタリング蒸着することを特徴とする特許請
求の範囲第15項記載の超電導体線の製造方法。
(16) In sputtering deposition, Ar, Xe, N
16. The method for manufacturing a superconductor wire according to claim 15, characterized in that sputtering is performed using at least one of E, Kr, or a mixed gas thereof.
(17)スパッタリング蒸着を、少なくとも高周波二極
スパッタのうちのいずれか一種で行うことを特徴とする
特許請求の範囲第9項記載の超電導体線の製造方法。
(17) The method for producing a superconductor wire according to claim 9, wherein the sputtering vapor deposition is performed by at least one type of high-frequency dipole sputtering.
(18)スパッタリング蒸着を、複数個のターゲットを
同時にスパッタリングして行うことを特徴とする特許請
求の範囲第9項記載の超電導体線の製造方法。
(18) The method for producing a superconductor wire according to claim 9, wherein the sputtering vapor deposition is performed by simultaneously sputtering a plurality of targets.
(19)複合化合物ターゲットの電気抵抗率を10^−
^3Ωcm以下にすることを特徴とする特許請求の範囲
第9項記載の超電導体線の製造方法。
(19) The electrical resistivity of the composite compound target is 10^-
The method for manufacturing a superconductor wire according to claim 9, characterized in that the resistance is 3 Ωcm or less.
(20)物理的気相成長法において、複合化合物被膜の
金属主成分を基体上に付着させ、さらに酸素ビームある
いは酸素イオンを被膜形成中に照射し、基体表面で金属
主成分を酸化させることを特徴とする特許請求の範囲第
9項記載の超電導体線の製造方法。
(20) In the physical vapor deposition method, the main metal component of the composite compound film is deposited on the substrate, and then oxygen beam or oxygen ions are irradiated during film formation to oxidize the main metal component on the surface of the substrate. A method for manufacturing a superconductor wire according to claim 9.
(21)物理的気相成長法において、基体上に酸素イオ
ンビーム照射しながら、複合化合物被膜の合金主成分を
ターゲットとして、スパッタリング蒸着することを特徴
とする特許請求の範囲第9項記載の超電導体線の製造方
法。
(21) In the physical vapor deposition method, the superconductor according to claim 9, wherein the main alloy component of the composite compound film is sputter-deposited while irradiating the substrate with an oxygen ion beam. Method of manufacturing body lines.
JP62074718A 1987-03-27 1987-03-27 Superconductor wire and method of manufacturing the same Expired - Fee Related JP2563315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074718A JP2563315B2 (en) 1987-03-27 1987-03-27 Superconductor wire and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074718A JP2563315B2 (en) 1987-03-27 1987-03-27 Superconductor wire and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS63239738A true JPS63239738A (en) 1988-10-05
JP2563315B2 JP2563315B2 (en) 1996-12-11

Family

ID=13555280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074718A Expired - Fee Related JP2563315B2 (en) 1987-03-27 1987-03-27 Superconductor wire and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2563315B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279519A (en) * 1987-05-11 1988-11-16 Toshiba Corp Superconductor device
JPS6487763A (en) * 1987-05-26 1989-03-31 Sumitomo Electric Industries Superconducting material
JPH0197314A (en) * 1987-10-09 1989-04-14 Fujitsu Ltd Superconductor material structure
JPH02168515A (en) * 1988-12-21 1990-06-28 Ngk Spark Plug Co Ltd Superconducting thin film construction and manufacture thereof
JPH02311398A (en) * 1989-05-29 1990-12-26 Sumitomo Electric Ind Ltd Production of oxide superconducting film
JPH02311397A (en) * 1989-05-29 1990-12-26 Sumitomo Electric Ind Ltd Production of oxide superconducting film
JP2001110256A (en) * 1999-10-14 2001-04-20 Toshiba Corp Superconductive complex and its manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193410A (en) * 1987-02-05 1988-08-10 Sumitomo Electric Ind Ltd Manufacture of superconductive wire
JPS63231819A (en) * 1987-03-18 1988-09-27 Agency Of Ind Science & Technol Manufacture of oxide superconductive material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193410A (en) * 1987-02-05 1988-08-10 Sumitomo Electric Ind Ltd Manufacture of superconductive wire
JPS63231819A (en) * 1987-03-18 1988-09-27 Agency Of Ind Science & Technol Manufacture of oxide superconductive material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279519A (en) * 1987-05-11 1988-11-16 Toshiba Corp Superconductor device
JPS6487763A (en) * 1987-05-26 1989-03-31 Sumitomo Electric Industries Superconducting material
JPH0197314A (en) * 1987-10-09 1989-04-14 Fujitsu Ltd Superconductor material structure
JPH02168515A (en) * 1988-12-21 1990-06-28 Ngk Spark Plug Co Ltd Superconducting thin film construction and manufacture thereof
JPH02311398A (en) * 1989-05-29 1990-12-26 Sumitomo Electric Ind Ltd Production of oxide superconducting film
JPH02311397A (en) * 1989-05-29 1990-12-26 Sumitomo Electric Ind Ltd Production of oxide superconducting film
JP2001110256A (en) * 1999-10-14 2001-04-20 Toshiba Corp Superconductive complex and its manufacture

Also Published As

Publication number Publication date
JP2563315B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
US5158933A (en) Phase separated composite materials
JP2829221B2 (en) Method of forming oxide film on metal substrate by thermal plasma evaporation method
JPS63224112A (en) Superconducting wire and its manufacture
JPS63224116A (en) Manufacture of thin film superconductor
JPS63239738A (en) Superconductor wire and manufacture thereof
JPS63239742A (en) Manufacture for film superconductor
JPH0358488A (en) Planar josephson element and manufacturing method of the same
WO2013008851A1 (en) Superconducting thin film and method for manufacturing superconducting thin film
JPH01275434A (en) Production of high temperature superconducting oxide film
JP2702711B2 (en) Manufacturing method of thin film superconductor
RU2173733C2 (en) Method of forming superconductive niobium nitride film coating and conductor based on the latter
JP2643972B2 (en) Oxide superconducting material
JP2575442B2 (en) Method for producing oxide-based superconducting wire
JP2009501414A (en) Improvements in and related to superconducting materials
JPS63310951A (en) Production of superconductor
JPS63247363A (en) Sputtering target
EP0333513B1 (en) Oxide superconductor
JPH04179004A (en) Oxide superconductive tape conductor
JPS63292524A (en) Manufacture of superconductive film
JPH01105416A (en) Manufacture of thin film superconductor
JP2575443B2 (en) Method for producing oxide-based superconducting wire
JPS63306677A (en) Superconducting device and manufacture thereof
JPH01125878A (en) Thin film multilayer superconductor
JP2514049B2 (en) Superconducting film coated composite object
JPH07226115A (en) Ittrium oxide superconductive member and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees