JPS63306677A - Superconducting device and manufacture thereof - Google Patents

Superconducting device and manufacture thereof

Info

Publication number
JPS63306677A
JPS63306677A JP62142625A JP14262587A JPS63306677A JP S63306677 A JPS63306677 A JP S63306677A JP 62142625 A JP62142625 A JP 62142625A JP 14262587 A JP14262587 A JP 14262587A JP S63306677 A JPS63306677 A JP S63306677A
Authority
JP
Japan
Prior art keywords
superconducting device
substrate
manufacturing
sputtering
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62142625A
Other languages
Japanese (ja)
Inventor
Osamu Yamazaki
山崎 攻
Kiyotaka Wasa
清孝 和佐
Masamitsu Haruna
正光 春名
Hiroshi Nishihara
西原 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62142625A priority Critical patent/JPS63306677A/en
Publication of JPS63306677A publication Critical patent/JPS63306677A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices
    • H10N60/124Josephson-effect devices comprising high-Tc ceramic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form the composition of a formed superconductor substantially homogeneous and a fine structure homogeneous by forming a fine pattern in a previous stage for forming a superconductor, and reducing the thickness of a superconducting material in coincidence with its shape. CONSTITUTION:A photoresist pattern is formed by a photophosphorus process using a photomask on a single crystalline material, such as the round face of a sapphire substrate 11 in a DC SQUID shape, i.e., in the shape in which two arms are formed in a ring having two contractions. Subsequently, a thin tantalum oxide film 12 is adhered by magnetron sputtering over the whole surface. Here, the substrate 11 is again set in a magnetron sputtering device, with sintered YBa2Cu3O7-delta(0<=delta<=7) as a target oxygen argon mixture gas (0.1Pa of pressure) is deposited by sputtering, and a thin superconducting film 13 having 1mum of thickness is formed. The formed layer structure is heat treated in the air, and gradually cooled to obtain a DC SQUID 10.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超電導装置およびその製造方法に関するもので
ある。特に複合酸化物薄膜超電導装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a superconducting device and a method for manufacturing the same. In particular, it relates to composite oxide thin film superconducting devices.

従来の技術 高温超電導体として、ムラ5型2元素化合物として窒化
ニオブ(NbN )やゲルマニウムニオブ(Wb、Ge
 )などが知られていたが、これらの材料の超電導転移
温度はたかだか24°にであった。
Conventional technology As high temperature superconductors, niobium nitride (NbN) and germanium niobium (Wb, Ge
), but the superconducting transition temperature of these materials was at most 24°.

一方、ペロプスカイト系3元化合物は、さらに高い転移
温度が期待され、Ba −La −Cu −0系の高温
超電導体が提案された( J、 G、 Bednorz
and K、 A、 Muller 、  7フイトシ
ユリフト フユアフージーク(Zeitschrif’
t fur Physik、)−conaensea 
Matter 64 、189−193(1986))
。さらに、Y−Ba−Cu−o系がより高温の超電導材
料であることが最近提案された。(M、 K、 Wu等
フィジカル レピューレターズ(Physical R
eview Letters ) Vol。
On the other hand, peropskite-based ternary compounds are expected to have even higher transition temperatures, and Ba-La-Cu-0-based high-temperature superconductors have been proposed (J, G, Bednorz
and K. A. Muller, 7 Zeitschrif'
t fur Physik,)-conaensea
Matter 64, 189-193 (1986))
. Furthermore, it has recently been proposed that the Y-Ba-Cu-o system is a higher temperature superconducting material. (M, K, Wu et al. Physical Repureters (Physical R
View Letters) Vol.

68 、、Ks 、 908−910 (1987) 
)Y−−Ba −1u−0系材料の超電導機構の詳細は
明らかではないが、転移温度が液体窒素温度以上に高く
なる可能性があり、高温超電導体として従来の2元素化
合物より、より有望な特性が期待される。
68, Ks, 908-910 (1987)
) The details of the superconducting mechanism of Y--Ba-1u-0-based materials are not clear, but the transition temperature may be higher than the liquid nitrogen temperature, making them more promising as high-temperature superconductors than conventional two-element compounds. characteristics are expected.

発明が解決しようとする問題点 しかしながら、この種の高温超電導体の材料は、現在の
技術では焼結という過程でしか形成できないため、セラ
ミックの粉末あるいはブロックの形状でしか得られない
。一方、この種の材料を用いた電子回路や光回路を構成
するには超電導体の薄膜化加工と超電導体の微細加工が
強く要望されているが、従来の技術では、薄膜化が極め
て困難なうえ、上記の超電導体は多孔質で、親水性が強
くこの種の加工は非常に困難とされていた。
Problems to be Solved by the Invention However, with current technology, this type of high-temperature superconductor material can only be formed through a process called sintering, so it can only be obtained in the form of ceramic powder or blocks. On the other hand, in order to construct electronic circuits and optical circuits using this type of material, there is a strong demand for superconductor thin film processing and superconductor microfabrication, but with conventional technology, thin film processing is extremely difficult. Moreover, the above-mentioned superconductors are porous and highly hydrophilic, making this type of processing extremely difficult.

本発明者らは、この種の材料の薄膜がイオンプロセスに
より付着させると、薄膜状の高温超電導体が形成される
ことともに、基板表面状態により選択的に超電導を示す
ことを発見し、これにもとづいて新規な超電導装置とそ
の製造方法を発見した。
The present inventors have discovered that when a thin film of this type of material is deposited by an ion process, a thin film-like high-temperature superconductor is formed and that superconductivity is selectively exhibited depending on the substrate surface condition. Based on this, we discovered a new superconducting device and its manufacturing method.

問題点を解決するだめの手段 本発明の超電導装置は、面内異方性を有する基板の一主
面に基板と異なる材料よりなる薄層で覆った部分を形成
し、この上に超電導性薄膜を形成して成るものであり、
超電導性薄膜材料の主成分としてA−8−1u−o系複
合酸化物材料(ムはスカンジウム、イツトリウム、ラン
タン系列元素のうちすくなくとも一種、Bはh族元素の
うちすくなくとも一種、A、B元素とCu元素の濃度で
処理することにより実施される。
Means to Solve the Problems The superconducting device of the present invention forms a part covered with a thin layer made of a material different from that of the substrate on one principal surface of a substrate having in-plane anisotropy, and a superconducting thin film is formed on this part. It is made up of
The main component of the superconducting thin film material is an A-8-1u-o based composite oxide material (Mu is at least one of scandium, yttrium, lanthanum series elements, B is at least one of the h group elements, A, B elements and This is carried out by treatment with a concentration of Cu element.

作用 本発明は、超電導体を薄膜化していることと、薄膜形成
時における界面の差異により超電導性の制御を可能とす
るとともに、多孔質で親水性が強く、これまで困難とさ
れた精密微細加工を可能とするとともに、新しい超電導
装置を実現している所に大きな特色がある。すなわち、
薄膜化は超電導体の素材を原子状態という極微粒子に分
解してから、基体上に堆積させるから、形成された超電
導体の組成は本質的に従来の焼結体に比べて均質である
。しかも、分解して堆積し再結晶化する過程で、界面の
結晶状態によって、すなわち、酸化マグネシウム、チタ
ン酸ストロンチウム、サファイアといった単結晶の上に
は良好な超電導体が形成されるが、基板上に例えば酸化
タンタルといったアモルファス状の薄層を形成した上に
堆積した膜は著しく臨界温度が低かったり、超電導性を
示さないという現象が発見され、基板上に例えば酸化タ
ンタルなどでパターンを形成しておいて、全体に超電導
体を堆積させることにより、界面の差異が電気伝導の差
になるので、非常に高精度の超電導装置が実現される。
Function The present invention makes it possible to control superconductivity by making the superconductor into a thin film and by differentiating the interface during thin film formation.The present invention also makes it possible to control the superconductivity due to the fact that the superconductor is made into a thin film and the difference in the interface during thin film formation. The major feature of this technology is that it enables new superconducting devices. That is,
In film thinning, the superconductor material is decomposed into ultrafine particles in the atomic state and then deposited on the substrate, so the composition of the formed superconductor is essentially more homogeneous than that of conventional sintered bodies. Moreover, in the process of decomposition, deposition, and recrystallization, depending on the crystalline state of the interface, a good superconductor is formed on a single crystal such as magnesium oxide, strontium titanate, or sapphire, but a good superconductor is formed on a substrate. For example, it has been discovered that films deposited on an amorphous thin layer of tantalum oxide have extremely low critical temperatures and do not exhibit superconductivity. By depositing superconductors over the entire surface, the difference in the interface becomes the difference in electrical conductivity, so a superconducting device with extremely high precision can be realized.

実施例 本発明の一実施例を図面とともに説明する。Example An embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の装置を説明するための略平
面図で、同図のムー五′の略断面図を第2図に示した。
FIG. 1 is a schematic plan view for explaining an apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view of a mou 5' in the same figure.

基、板11は単結晶材料がよくここではR面のサファイ
アを使用した。次に、基板11上にホトマスクを用いた
フォトリソプロセスにてホトレジストパターンを直流ス
クイドの形状に、即ち2ケ所くびれのある円環に2ケ所
腕を設ける形状に形成する。ひきつづきマグネトロンス
パッタで酸化タンタル薄膜を全面にわたって付着させた
。ターゲットはタンタル、酸素・アルゴン混合雰囲気で
基板温度を100℃に保ち、膜厚が3Qnmになる−ま
で成長させ、ホトレジストパターンを除去すると、スク
イドの形状に従って除去された酸化タンタルパターン1
2が形成できた。
The base plate 11 is often made of a single crystal material, and R-plane sapphire was used here. Next, a photoresist pattern is formed on the substrate 11 by a photolithography process using a photomask in the shape of a DC SQUID, that is, a circular ring having two constrictions and two arms. Subsequently, a tantalum oxide thin film was deposited over the entire surface by magnetron sputtering. The target is tantalum. The substrate temperature is maintained at 100°C in an oxygen/argon mixed atmosphere, and the film is grown to a film thickness of 3 Q nm. When the photoresist pattern is removed, the tantalum oxide pattern 1 is removed according to the shape of the SQUID.
2 was formed.

くびれの部分は約1μmとホトマスクの設計通りの幅に
仕上げられた。
The width of the constriction was approximately 1 μm, as designed by the photomask.

ここで、再びマグネトロンスパ・ンタ装置に基板11を
セットし、焼結したYBa2Cu、 o、−δ(0≦δ
≦7)をターゲットとし、酸素アルゴン混合ガス(圧力
o、1PIL)、基板温度450℃、スパッタリング電
力200Wに保ち、2時間スハンタ蒸着し、膜厚1μm
の超電導性薄膜13を形成した。形成された層状講造を
空気中で90〜1000℃,約10時間熱処理し、徐冷
し、直流スクイド10を作成した。電気的測定の結果、
スクイドのくびれの部分1.2がジョセフソン接合とし
て機能していることが確認された。また2ケのくびれの
部分の超電導電流はほぼ等しく、スクイド装置として生
産しやすいことが立証された。そこで得られた超電導性
薄膜13の材料構造をX線回折で結晶性の分析をかけた
所、全面にわたり、ペロプスカイトの結晶であることが
判明した。
Here, the substrate 11 is again set in the magnetron sputtering device, and the sintered YBa2Cu, o, -δ (0≦δ
≦7) as a target, using an oxygen-argon mixed gas (pressure O, 1 PIL), keeping the substrate temperature at 450°C, and sputtering power at 200W, Shanter evaporation was performed for 2 hours, and the film thickness was 1 μm.
A superconducting thin film 13 was formed. The formed layered structure was heat treated in air at 90 to 1000°C for about 10 hours, and then slowly cooled to create a DC SQUID 10. As a result of electrical measurements,
It was confirmed that the SQUID constriction part 1.2 functions as a Josephson junction. Furthermore, the superconducting currents in the two constrictions are almost equal, proving that it is easy to produce a SQUID device. When the material structure of the obtained superconducting thin film 13 was analyzed for crystallinity by X-ray diffraction, it was found that the entire surface was perovskite crystal.

第3図は、第2図のX部分の拡大図である。FIG. 3 is an enlarged view of the X section in FIG.

2oは前述のレジストパターンが形成されこれが除去さ
れた部分である。薄膜13に多結性膜31の部分と単結
性膜32が形成されている。すなわち、詳細に調べてみ
ると、同じペロプスカイト構造でも微細には場所により
結晶性に差がみられ、酸化メンタルパターン12の上の
膜は、多結晶性膜31であり、サファイアの上に成長し
た部分は単結晶性膜32であることがわかった。この種
の複合酸化物の超電導の機構はまだ解明されておらず、
正確な説明はできないが、超電導電流が層状ペロプスカ
イトの層に沿って流れるとすれば、層のそろった単結晶
の方が超電導電流が大きくなると考えることができ、多
結晶の部分は電流が小さく、あるいはほとんど零となっ
てほとんど超電導を示さなくなっていると考えることも
できる。この現象のため超電導性薄膜を全面に設けても
、酸化タンタルのない部分にのみ形成したのと等価の電
気特性が得られていると考えられる。従来技術の延長で
考えると、超電導性薄膜を基板上に全面にわたって形成
した後、ホトエッチでパターン形成するのが常套手段で
あるが、この複合酸化物は酸素欠陥のためか異常ともい
える程親水性が強く、−〇基や一〇H基の溶液にも溶け
るため、従来技術では現実的に微細加工が困難であった
。本発明では微細加工を、このように異常な親水性を示
す複合酸化物形成の前の段階で済ませるので、安定して
、再現性よく加工できるという大きな効果がある。
2o is a portion where the above-mentioned resist pattern was formed and removed. The thin film 13 is formed with a polyconjunctival membrane 31 and a uniconjunctival membrane 32 . In other words, upon closer examination, even with the same perovskite structure, microscopic differences in crystallinity can be seen depending on the location. It was found that the exposed portion was a single-crystalline film 32. The mechanism of superconductivity in this type of composite oxide has not yet been elucidated.
Although an exact explanation cannot be given, if superconducting current flows along the layers of layered peropskite, it can be thought that the superconducting current will be larger in the single crystal where the layers are aligned, and the current will be smaller in the polycrystalline part. Alternatively, it can be considered that the superconductivity becomes almost zero and almost no superconductivity is exhibited. Because of this phenomenon, it is thought that even if a superconducting thin film is provided over the entire surface, electrical characteristics equivalent to those obtained by forming it only on areas without tantalum oxide are obtained. Considering this as an extension of conventional technology, the conventional method is to form a superconducting thin film over the entire surface of a substrate and then pattern it by photoetching, but this composite oxide is extremely hydrophilic, perhaps due to oxygen defects. is strong, and it is soluble in solutions containing -0 and 10H groups, so it is actually difficult to perform microfabrication using conventional techniques. In the present invention, the microfabrication is completed at a stage before the formation of the complex oxide exhibiting such abnormal hydrophilicity, so there is a great effect that the process can be carried out stably and with good reproducibility.

このように薄層のない部分上の超電導性薄膜を電気配線
として利用し、スクイド以外にもジッセフソン素子、超
電導回路配線として活用してもよく、低抵抗の特長をい
かせる。また、薄層を光導波に利用することも可能で、
その場合、電気と光と2つの回路を一体化して形成でき
る。
In this way, the superconducting thin film on the part without the thin layer can be used as an electrical wiring, and in addition to the SQUID, it can also be used as a Gisefson element or a superconducting circuit wiring, taking advantage of its low resistance feature. It is also possible to use thin layers for optical waveguide.
In that case, two circuits, one electrical and one optical, can be integrated and formed.

なお基板11の材料として8面サファイアの例に限って
説明したが、他の面も使用してもよく、また酸化マグネ
シウムやチタン酸ストロンチウムでも、格子定数がよく
合い、良好な超電導装置を形成できることを確認した。
Although the explanation has been limited to the example of 8-sided sapphire as the material of the substrate 11, other planes may be used, and magnesium oxide or strontium titanate may also be used, since the lattice constants match well and a good superconducting device can be formed. It was confirmed.

また薄層の材料として酸化タンタル(T!L205)の
場合について述べたが、窒化物としては例えばTiN 
、 TaN 、 MoN 、 NbN 、 WN 、 
MnNなどが、炭化物としてはTaC、Tie 、 N
bC、MoC。
Furthermore, although we have described the case of tantalum oxide (T!L205) as the material for the thin layer, examples of nitrides such as TiN
, TaN, MoN, NbN, WN,
MnN, etc., and carbides such as TaC, Tie, N
bC, MoC.

WO、MnCなどが、酸化物としてはWb205゜Ti
e2. Ta205. Al□O,、ZrO2,Y2O
5などが有効であることを本発明者らは確認した。
WO, MnC, etc. are used as oxides such as Wb205°Ti.
e2. Ta205. Al□O,, ZrO2, Y2O
The present inventors have confirmed that 5 and the like are effective.

これらの薄層の効果は、複合酸化物被膜の結晶性の制量
と、高温処理中の相互拡散の防止をはかるものであるか
ら基板と結晶性が異り、複合酸化物や基板との付着性が
満たされてさえすればよいので上述した材料に限定させ
たものではない。
The effect of these thin layers is to control the crystallinity of the composite oxide film and to prevent mutual diffusion during high-temperature processing. The material is not limited to the above-mentioned materials as long as the properties are satisfied.

またこの複合酸化物被膜は成分ム、BおよびCuの化学
量論比さえ合致していればよく、酸素量は特に重要では
ないことを本発明者らは確認した。
In addition, the present inventors have confirmed that this composite oxide film only needs to match the stoichiometric ratios of the components B and Cu, and the amount of oxygen is not particularly important.

その結果、複合酸化物被膜の形成法は物理的気相成長法
に限定されたものではなく、化学的気相成長法例えば常
圧あるいは減圧化学的気相成長法、プラズマ化学的気相
成長法、光化学的気相成長法も、成分ム、BおよびCu
の化学量論比さえ合致させれば有効であることを本発明
者らは゛確認した。
As a result, methods for forming composite oxide films are not limited to physical vapor deposition, but also chemical vapor deposition, such as atmospheric or low pressure chemical vapor deposition, plasma chemical vapor deposition, etc. , photochemical vapor deposition also uses the components Mu, B and Cu.
The present inventors have confirmed that it is effective as long as the stoichiometric ratios of .

この場合、基板加熱による最適の温度範囲が存在するこ
とを本発明者らは確認した。すなわち、最適の温度範囲
は10o〜10oO℃である。なお、10o′C以下で
は基体表面への複合化合物被膜の付着性が・悪くなる。
In this case, the present inventors have confirmed that there is an optimal temperature range for heating the substrate. That is, the optimum temperature range is 10o~10oO<0>C. Note that below 10 o'C, the adhesion of the composite compound coating to the substrate surface becomes poor.

また、10Oo′C以上では複合酸化物被膜中の成分ム
、BおよびCuの化学量論比からのずれが大きくなり、
引きつづく熱処理工程を経ても超電導体特性が得られな
いことを本発明者らは発見した。
Moreover, at 10 Oo'C or more, the deviation from the stoichiometric ratio of the components M, B, and Cu in the composite oxide film increases,
The inventors have discovered that superconducting properties cannot be obtained even after successive heat treatment steps.

さらに、複合酸化物被膜を付着させる時の基体の温度は
とりわけ200〜500℃の範囲がこの種の蒸着装置の
機能、複合酸化物被膜の特性の再現性から見て最適であ
ることを本発明者らは確認した。
Furthermore, the present invention has shown that a temperature range of 200 to 500°C for the substrate when depositing the composite oxide film is optimal in terms of the functionality of this type of vapor deposition apparatus and the reproducibility of the properties of the composite oxide film. They confirmed.

本発明者らはこの種の複合酸化物被膜をさらに常圧の空
気、アルゴンと酸素の混合ガスあるいは一純酸素などの
酸化物雰囲気で熱処理することにより、超電導が発生す
ることを発見した。この場合最適の熱処理温度は900
〜100〜1000℃,熱処理時間は1〜10時間であ
り、特に熱処理時間が薄膜材料の常識を破る長時間であ
ることと熱処理後の徐冷が特徴的である。熱処理時間が
1時間以下になると半導体的特性が多く、再現性よく超
電導特性が得られない。また、10時間以上になると抵
抗率が高くなるとともに、被膜の特性が不安定になり急
冷は超電導を示さない。例えば10時間以上の徐冷時間
が超電導を得るには必要である。
The present inventors have discovered that superconductivity can be generated by further heat-treating this type of composite oxide film in an oxide atmosphere such as air at normal pressure, a mixed gas of argon and oxygen, or pure oxygen. In this case, the optimal heat treatment temperature is 900
The heat treatment time is 1 to 10 hours at ~100 to 1000° C., and is particularly characterized by the long heat treatment time, which is unconventional for thin film materials, and the slow cooling after the heat treatment. If the heat treatment time is less than 1 hour, semiconductor-like properties will occur, and superconducting properties will not be obtained with good reproducibility. Further, if the cooling time exceeds 10 hours, the resistivity increases and the properties of the film become unstable, and the rapid cooling does not exhibit superconductivity. For example, an annealing time of 10 hours or more is required to obtain superconductivity.

この種の超電導焼結体の形成プロセスにおいても、本発
明に用いる熱処理と類似の1〜10時間という長時間熱
処理が用いられている。しかしながら、焼結体のような
バルク材料であれば、例えば100時間程度の熱処理時
間は、特に長時間ではなく通常広く用いられている。一
方、被膜の場合は材料そのものの寸法が例えば1μmか
それ以下というバルクに比べて3〜4桁以桁以上−。し
たがって、熱処理時間も物質の移動を考慮するとバルク
材料より3桁以下に短くなる。したがってバルク材料と
類似の熱処理プロセスであれば、数分以下の短い熱処理
で超電導特性が得られるはずである。さらに、被膜形成
中に酸化性雰囲気にすれば、この種の熱処理は不要と考
えられた。しかしながら、実験的には、上述のごとく長
時間熱処理が必要であることを確認した。この意外性は
、バルク材料と薄膜材料との本質的な特性の差異に起因
していると考えられる。
Also in the process of forming this type of superconducting sintered body, a long-time heat treatment of 1 to 10 hours, similar to the heat treatment used in the present invention, is used. However, in the case of a bulk material such as a sintered body, a heat treatment time of about 100 hours, for example, is not particularly long and is usually widely used. On the other hand, in the case of a film, the size of the material itself is, for example, 1 μm or less, which is three to four orders of magnitude larger than the bulk. Therefore, the heat treatment time is also three orders of magnitude shorter than that of bulk materials, considering the movement of substances. Therefore, if the heat treatment process is similar to that for bulk materials, superconducting properties should be obtained with a short heat treatment of several minutes or less. Furthermore, it was thought that this type of heat treatment would be unnecessary if an oxidizing atmosphere was used during film formation. However, it has been experimentally confirmed that a long heat treatment is required as described above. This unexpectedness is thought to be due to the essential difference in properties between the bulk material and the thin film material.

すなわち、この種の被膜の結晶構造など、詳細な特性は
、基体上に被膜が拘束されているため、被膜内には、通
常の焼結体では存在しない様な大きな歪とか欠陥が存在
する。このため、被膜の製造方法には、従来の焼結体の
製造方法をそのまま適応できるものではない。また、焼
結体の製造方法から被膜の製造方法を類推できるもので
もない。
That is, the detailed characteristics of this type of coating, such as the crystal structure, are such that because the coating is constrained on the substrate, there are large strains and defects in the coating that do not exist in ordinary sintered bodies. Therefore, the conventional method for manufacturing a sintered body cannot be directly applied to the method for manufacturing the coating. Furthermore, it is not possible to infer the method of manufacturing the coating from the method of manufacturing the sintered body.

なお、被膜の熱処理の物理的な意味の詳細は明らかでは
ないが、おおよそ、次のように考えられる。
Although the details of the physical meaning of the heat treatment of the film are not clear, it can be roughly considered as follows.

すなわち、スパッタリング蒸着等で基体上には付着させ
だ一複合酸化物被膜では、超電導を示す結晶構造を形成
していない。この場合、例えばBCuO3正方晶のペロ
プスカイト構造のネットワーク中に人元素の酸化物が分
散した複合酸化物を形成している。超電導は、層状ペロ
プスカイト構造の発生に起因し、この過程が熱処理に関
連する。
That is, a composite oxide film deposited on a substrate by sputtering vapor deposition or the like does not form a crystal structure exhibiting superconductivity. In this case, for example, a composite oxide is formed in which the oxide of the human element is dispersed in a network of a BCuO3 tetragonal perovskite structure. Superconductivity results from the development of a layered peropskite structure, and this process is associated with heat treatment.

なお、熱処理時間が1時間以下で超電導性が得られない
のは、層状ペロプスカイト構造の生成が不充分であった
事に起因していると考えられる。
Note that the reason why superconductivity was not obtained when the heat treatment time was 1 hour or less is considered to be due to insufficient formation of the layered perovskite structure.

ここでは酸素雰囲気中における熱処理の例について述べ
たが、酸素原子のビームあるいは酸素イオンのビームと
して膜中に照射注入して膜中の酸素の量を制御できるこ
とも確認している。
Although an example of heat treatment in an oxygen atmosphere has been described here, it has also been confirmed that the amount of oxygen in the film can be controlled by irradiating the film with a beam of oxygen atoms or a beam of oxygen ions.

また、この熱処理の前後で酸化タンタル薄層上に付着し
た酸化物薄膜の結晶性を調べた結果、熱処理の前ではア
モルファスに近い混合配向であったが、処理後は多結晶
化し、単結晶を示すサファイア上の薄膜と明らかに異る
結晶性を示していることを確認した。
Furthermore, as a result of examining the crystallinity of the oxide thin film deposited on the tantalum oxide thin layer before and after this heat treatment, it was found that before the heat treatment it had a mixed orientation close to amorphous, but after the treatment it became polycrystalline and became a single crystal. It was confirmed that the crystallinity of the thin film on sapphire was clearly different from that of the thin film shown on sapphire.

基体表面に複合酸化物被膜をスパッタリング蒸着で形成
する場合、上述したごとく、被膜中の成分ム、Bおよび
Cuの化学量論比制御が重要である。本発明者らは詳細
にスパッタリング蒸着に2ける最適条件を調べたが、意
外にもスパンタリング用ターゲットの組成は主成分が目
的とする超電導体と同じでよい事を見い出した。酸素量
はスパッタリング中あるいはスパッタリング後の熱処理
で調整できるので特にターゲット組成としては重要であ
る。さらに、この種の酸化物被膜のスパッタリング蒸着
では、例えばArと02 との混合ガスをスパッタリン
グガスに用いるが、02 ガスの存在は形成された化合
物被膜の抵抗率を高め、超電導体を形成しがたい場合が
ある事を本発明者らは見い出した。実験的に、ムr 、
 Xs  、 Ha 、 Krのような不活性ガスある
いはこれらの不活性ガスの混合ガスがスパッタリングガ
スとして有効であることを本発明者らは確認した。
When forming a composite oxide film on the surface of a substrate by sputtering vapor deposition, as described above, it is important to control the stoichiometric ratio of the components B and Cu in the film. The present inventors investigated in detail the optimum conditions for sputtering deposition, and surprisingly found that the composition of the sputtering target may be the same as the main component of the target superconductor. The amount of oxygen can be adjusted during sputtering or by heat treatment after sputtering, so it is particularly important for the target composition. Furthermore, in the sputtering deposition of this type of oxide film, for example, a mixed gas of Ar and O2 is used as the sputtering gas, but the presence of O2 gas increases the resistivity of the formed compound film and prevents the formation of a superconductor. The present inventors have found that there are cases where this is necessary. Experimentally, Mr.
The present inventors have confirmed that inert gases such as Xs, Ha, and Kr, or mixed gases of these inert gases, are effective as sputtering gases.

スパッタリング蒸着方式も高周波二唖スパッタ、直流二
翫スパヮタ、マグネトロンスパンタいずれも有効である
ことを本発明者らは確認した。特に直流スパッタの場合
、スパッタリングターゲットの抵抗率を10−5Ω備以
下に低くする事が必要で、これ以上の抵抗率では、充分
なスパッタリング放電が発生しない。なお、ターゲット
の抵抗率の調整は通常ターゲットの焼結条件によって行
う1.あるいは銅との合金としてターゲットを形成して
も抵抗をさげることができる。また複数個ターゲットを
用いてスパッタ蒸着するいわゆる多元スパッタリング法
も可能で、それぞれのターゲットへ供給する電力を調整
し、膜厚や膜質の均一化をはかることができた。
The present inventors have confirmed that sputtering vapor deposition methods such as high-frequency two-hole sputtering, direct current two-hole sputtering, and magnetron sputtering are all effective. Particularly in the case of DC sputtering, it is necessary to lower the resistivity of the sputtering target to less than 10@-5 Ω; if the resistivity is higher than this, sufficient sputtering discharge will not occur. Note that the resistivity of the target is usually adjusted by the sintering conditions of the target. Alternatively, the resistance can be lowered by forming the target as an alloy with copper. In addition, a so-called multi-source sputtering method in which sputter deposition is performed using multiple targets is also possible, and by adjusting the power supplied to each target, it is possible to achieve uniform film thickness and film quality.

なお、被膜の化学組成の積極的な調整、人工格子などの
人工的な化学組成のゆらぎを形成する事は、多元スパッ
タリングで可能になる。特にこの種の装置では、直流ス
パッタがスパッタ電力等の精密制御に有効であり、また
直流マグネトロンスパッタあるいは直流マグネトロンス
パッタガンなどが特に有効であることを本発明者らは確
認した。
Note that active adjustment of the chemical composition of the film and the formation of artificial chemical composition fluctuations such as an artificial lattice are made possible by multi-source sputtering. Particularly in this type of apparatus, the present inventors have confirmed that DC sputtering is effective for precise control of sputtering power, etc., and that DC magnetron sputtering or a DC magnetron sputter gun is particularly effective.

なお、基体表面に複合酸化物被膜の形成法として、金属
主成分を物理的気相成長法で基体上に付着させ、さらに
酸素ビームあるいは酸素イオンを被膜形成中に被膜に照
射し、基体表面で金属主成分を酸化させることも可能で
ある。物理的気相成長法としては、スパッタリング以外
に熱蒸着例えば電子ビーム蒸着も有効である。スパッタ
リング法では基体上に酸素イオンビームを照射しながら
、複合酸化物被膜の合金主成分をターゲットとしてスパ
ッタリング蒸着する。この場合複合酸化物ターゲットと
してスパッタリング蒸着するよりも被膜形成速度が1桁
以上速い特長を示し、工業的により有効である。
In addition, as a method for forming a composite oxide film on the substrate surface, the main metal component is deposited on the substrate by physical vapor deposition, and the coating is irradiated with an oxygen beam or oxygen ions during film formation, so that the coating is formed on the substrate surface. It is also possible to oxidize the metal main component. In addition to sputtering, thermal evaporation, such as electron beam evaporation, is also effective as a physical vapor deposition method. In the sputtering method, while irradiating the substrate with an oxygen ion beam, the main alloy component of the composite oxide film is sputter-deposited using a target. In this case, the film formation rate is more than an order of magnitude faster than sputtering vapor deposition using a composite oxide target, and it is industrially more effective.

発明の効果 本発明は、超電導体を形成する前段階で微細パターンを
形成し、その形状に合わせて超電導材料を薄膜化してい
る所に大きな特色がある。すなわち、薄膜化は超電導体
の素材を原子状態という極微粒子に分解してから、基体
上に堆積させるから、形成された超電導体の組成は本質
的に、従来の焼結体に比べて均質で微細構造の部分も均
質に形成できる。したがって、非常に高精度の超電導装
置が本発明で実現される。
Effects of the Invention The present invention is characterized in that a fine pattern is formed before forming a superconductor, and the superconducting material is thinned to match the shape. In other words, in thin film formation, the superconductor material is decomposed into ultrafine particles in the atomic state and then deposited on the substrate, so the composition of the formed superconductor is essentially more homogeneous than that of conventional sintered bodies. The fine structure can also be formed uniformly. Therefore, a superconducting device with very high precision is realized with the present invention.

特に、この種の酸化物超電導体の転移温度が室温になる
可能性もあり、従来の実用の範囲は広く、本発明の工業
的価値は高い。
In particular, the transition temperature of this type of oxide superconductor may be room temperature, so the range of conventional practical use is wide, and the industrial value of the present invention is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の装置の概略平面図、第2図
は同装置の略断面図、第3図−は第2図の丸印Xの部分
の拡大図である。 10・・・・・・超電導装置、11・・・・・・基板、
12・・・・・・酸化タンタルパターン、13・・・・
・・超電導性薄膜、31・・・・・・多結晶性膜、32
・・・・・・単結晶性膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図
FIG. 1 is a schematic plan view of an apparatus according to an embodiment of the present invention, FIG. 2 is a schematic cross-sectional view of the same apparatus, and FIG. 3 is an enlarged view of the portion marked with a circle X in FIG. 10...Superconducting device, 11...Substrate,
12... Tantalum oxide pattern, 13...
...Superconducting thin film, 31... Polycrystalline film, 32
...Single crystalline film. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 figure

Claims (20)

【特許請求の範囲】[Claims] (1)面内異方性を有する基板の一主面上に前記基板と
異なる材料からなる薄層を選択的に形成し、前記基板お
よび薄層上に超電導性薄膜を形成したことを特徴とする
超電導装置。
(1) A thin layer made of a material different from that of the substrate is selectively formed on one main surface of a substrate having in-plane anisotropy, and a superconducting thin film is formed on the substrate and the thin layer. superconducting device.
(2)基板として酸化マグネシウム、チタン酸ストロン
チウム、またはサファイアの単結晶を使用したことを特
徴とする特許請求の範囲第1項記載の超電導装置。
(2) The superconducting device according to claim 1, wherein a single crystal of magnesium oxide, strontium titanate, or sapphire is used as the substrate.
(3)薄層として酸化物、窒化物または炭化物を使用し
たことを特徴とする特許請求の範囲第1項記載の超電導
装置。
(3) The superconducting device according to claim 1, wherein an oxide, nitride, or carbide is used as the thin layer.
(4)超電導性薄膜の主成分としてA−B−Cu−O系
複合酸化物材料(Aはスカンジウム、イットリウム、ラ
ンタン系列元素のうちすくなくとも一種、BはIIa族元
素のうちすくなくとも一種、ただしA、B元素とCu元
素の濃度は、0.5≦(A+B/Cu)≦2.5)を使
用したことを特徴とする特許請求の範囲第1項記載の超
電導装置。
(4) A-B-Cu-O composite oxide material as the main component of the superconducting thin film (A is at least one of scandium, yttrium, and lanthanum series elements; B is at least one of group IIa elements; however, A, 2. The superconducting device according to claim 1, wherein the concentrations of B element and Cu element are 0.5≦(A+B/Cu)≦2.5).
(5)Aとしてイットリウム、Bとしてバリウムよりな
る複合酸化物材料を使用したことを特徴とする特許請求
の範囲第4項記載の超電導装置。
(5) The superconducting device according to claim 4, wherein A is a composite oxide material of yttrium and B is a composite oxide material of barium.
(6)基板の薄層で覆わない部分に形成される超電導性
薄膜を電気配線として使用したことを特徴とする特許請
求の範囲第1項記載の超電導装置。
(6) A superconducting device according to claim 1, characterized in that a superconducting thin film formed on a portion of the substrate not covered by the thin layer is used as electrical wiring.
(7)薄層の部分で光を導波せしめたことを特徴とする
特許請求の範囲第1項記載の超電導装置。
(7) The superconducting device according to claim 1, wherein light is guided in the thin layer portion.
(8)面内異方性を有する基板の一主面上にこの基板と
異なる材料からなる薄層を選択的に形成し、前記主面全
般に亘ってA−B−Cu−O系複合酸化物材料(Aはス
カンジウム、イットリウム、ランタン系列元素のうちす
くなくとも一種、BはIIa族元素のうちすくなくとも一
種、ただしA、B元素とCu元素濃度は0.5≦(A+
B/Cu)≦2.5)を主成分とする薄膜を形成し、酸
化性雰囲気で処理することを特徴とする超電導装置の製
造方法。
(8) A thin layer made of a material different from that of the substrate is selectively formed on one main surface of a substrate having in-plane anisotropy, and A-B-Cu-O based composite oxide is applied over the entire main surface. materials (A is at least one of scandium, yttrium, and lanthanum series elements; B is at least one of group IIa elements; however, the concentrations of A, B elements, and Cu element are 0.5≦(A+
A method for manufacturing a superconducting device, which comprises forming a thin film containing B/Cu)≦2.5) as a main component and treating it in an oxidizing atmosphere.
(9)薄膜を、スパッタリング蒸着、熱蒸着等の物理的
気相成長法で、基板上に付着させることを特徴とする特
許請求の範囲第8項記載の超電導装置の製造方法。
(9) A method for manufacturing a superconducting device according to claim 8, characterized in that the thin film is deposited on the substrate by a physical vapor deposition method such as sputtering deposition or thermal evaporation.
(10)薄膜を、常圧あるいは減圧化学的気相成長法、
プラズマ化学的気相成長法、光化学的気相成長法等の化
学的気相成長法で基体上に付着させることを特徴とする
特許請求の範囲第8項記載の超電導装置の製造方法。
(10) Thin films are grown by atmospheric or low pressure chemical vapor deposition;
9. The method of manufacturing a superconducting device according to claim 8, wherein the superconducting device is deposited on the substrate by a chemical vapor deposition method such as a plasma chemical vapor deposition method or a photochemical vapor deposition method.
(11)薄膜の加熱基板上への形成に際し、基板を10
0〜1000℃の範囲内に加熱することを特徴とする特
許請求の範囲第8項記載の超電導装置の製造方法。
(11) When forming a thin film on a heated substrate,
9. The method for manufacturing a superconducting device according to claim 8, wherein the heating is performed within a range of 0 to 1000°C.
(12)薄膜の加熱基板上への形成に際し、基板を20
0〜500℃の範囲内で加熱することを特徴とする特許
請求の範囲第8項記載の超電導装置の製造方法。
(12) When forming a thin film on a heated substrate,
9. The method for manufacturing a superconducting device according to claim 8, wherein heating is performed within a range of 0 to 500°C.
(13)雰囲気として常圧空気または純酸素を用いるこ
とを特徴とする特許請求の範囲第8項記載の超電導装置
の製造方法。
(13) The method for manufacturing a superconducting device according to claim 8, characterized in that normal pressure air or pure oxygen is used as the atmosphere.
(14)スパッタリング蒸着において主成分がA−B−
Cu−O系複合酸化物である複合化合物ターゲットをス
パッタリング蒸着することを特徴とする特許請求の範囲
第9項記載の超電導装置の製造方法。ここにAはスカン
ジウム、イットリウム、ランタン系列元素のうちすくな
くとも一種、BはIIa族元素のうちすくなくとも一種、
A、B元素とCu元素の濃度は0.5≦A+B/Cu≦
2.5。
(14) In sputtering deposition, the main component is A-B-
10. The method of manufacturing a superconducting device according to claim 9, wherein a composite compound target, which is a Cu-O-based composite oxide, is deposited by sputtering. Here, A is at least one of scandium, yttrium, and lanthanum series elements, B is at least one of group IIa elements,
The concentration of A, B elements and Cu element is 0.5≦A+B/Cu≦
2.5.
(15)スパッタリング蒸着において、Ar、Xe、N
e、Krのうちのすくなくとも一種あるいはこれらの混
合ガスでスパッタリング蒸着することを特徴とする特許
請求の範囲第14項記載の超電導装置の製造方法。
(15) In sputtering deposition, Ar, Xe, N
15. The method for manufacturing a superconducting device according to claim 14, characterized in that sputtering is carried out using at least one gas of e.g., Kr, or a mixture thereof.
(16)スパッタリング蒸着を、すくなくとも直流二極
スパッタまたは高周波二極スパッタのうちのいずれか一
種で行うことを特徴とする特許請求の範囲第9項記載の
超電導装置の製造方法。
(16) The method for manufacturing a superconducting device according to claim 9, wherein the sputtering deposition is performed by at least one of DC dipole sputtering and high-frequency dipole sputtering.
(17)スパッタリング蒸着を、複数個のターゲットを
同時にスパッタリングして行うことを特徴とする特許請
求の範囲第9項記載の超電導装置の製造方法。
(17) The method for manufacturing a superconducting device according to claim 9, wherein the sputtering vapor deposition is performed by simultaneously sputtering a plurality of targets.
(18)複合酸化物薄膜形成用のターゲットの電気抵抗
率を10^−^3Ωcm以下にすることを特徴とする特
許請求の範囲第9項記載の超電導装置の製造方法。
(18) The method for manufacturing a superconducting device according to claim 9, characterized in that the electrical resistivity of the target for forming the composite oxide thin film is set to 10^-^3 Ωcm or less.
(19)物理的気相成長法において、複合酸化物薄膜の
金属主成分を基板上に付着させ、さらに酸素ビームある
いは酸素イオンを被膜形成中に照射し、基体表面で金属
主成分を酸化させることを特徴とする特許請求の範囲第
9項記載の超電導装置の製造方法。
(19) In the physical vapor deposition method, the main metal component of a composite oxide thin film is deposited on a substrate, and then oxygen beam or oxygen ions are irradiated during film formation to oxidize the main metal component on the surface of the substrate. A method for manufacturing a superconducting device according to claim 9, characterized in that:
(20)物理的気相成長法において、基体上に酸素イオ
ンビーム照射しながら、複合酸化物被膜の合金主成分を
ターゲットとして、スパッタリング蒸着することを特徴
とする特許請求の範囲第9項記載の超電導装置の製造方
法。
(20) In the physical vapor deposition method, the main alloy component of the composite oxide film is sputtered and deposited as a target while irradiating the substrate with an oxygen ion beam. A method for manufacturing a superconducting device.
JP62142625A 1987-06-08 1987-06-08 Superconducting device and manufacture thereof Pending JPS63306677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62142625A JPS63306677A (en) 1987-06-08 1987-06-08 Superconducting device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62142625A JPS63306677A (en) 1987-06-08 1987-06-08 Superconducting device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63306677A true JPS63306677A (en) 1988-12-14

Family

ID=15319692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62142625A Pending JPS63306677A (en) 1987-06-08 1987-06-08 Superconducting device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63306677A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208981A (en) * 1989-02-09 1990-08-20 Canon Inc Formation of josephson junction device
JPH02260475A (en) * 1989-03-31 1990-10-23 Canon Inc Forming method for josephson junction element
JPH031583A (en) * 1989-05-29 1991-01-08 Canon Inc Method for forming josephson junction element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208981A (en) * 1989-02-09 1990-08-20 Canon Inc Formation of josephson junction device
JPH02260475A (en) * 1989-03-31 1990-10-23 Canon Inc Forming method for josephson junction element
JPH031583A (en) * 1989-05-29 1991-01-08 Canon Inc Method for forming josephson junction element

Similar Documents

Publication Publication Date Title
JP3278638B2 (en) High-temperature superconducting Josephson junction and method of manufacturing the same
JP2923372B2 (en) Manufacturing method of oxide superconductor film
JPH01157579A (en) Manufacture of superconductor and superconductive circuit
JPS63224116A (en) Manufacture of thin film superconductor
KR940002412B1 (en) Supercoductive multilayer circuit and manufacturing method thereof
JPS63306677A (en) Superconducting device and manufacture thereof
JPS63239742A (en) Manufacture for film superconductor
US5219834A (en) Process for producing a superconducting transistor
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
JPH01208327A (en) Production of thin film of superconductor
JPH01275434A (en) Production of high temperature superconducting oxide film
JP2713343B2 (en) Superconducting circuit fabrication method
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
JPH0375204A (en) Production of oxide superconductive film pattern
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
JP2976427B2 (en) Method of manufacturing Josephson device
JPS63299019A (en) Manufacture of thin film superconductive material
JPH01239004A (en) Oxide high-temperature superconductor and thin film superconductor therefrom and sputtering target therefor
JPH01286373A (en) Josephson element and manufacture thereof
JPH01286926A (en) Production of superconductor thin film
JPH01226183A (en) Manufacture of ceramic superconductor
JPH01105416A (en) Manufacture of thin film superconductor
JPH01112614A (en) Manufacture of super conductive film
JPH01170060A (en) Semiconductor substrate having superconductor layer
JPH01106484A (en) Forming of superconductive material