JPS63299019A - Manufacture of thin film superconductive material - Google Patents

Manufacture of thin film superconductive material

Info

Publication number
JPS63299019A
JPS63299019A JP62135253A JP13525387A JPS63299019A JP S63299019 A JPS63299019 A JP S63299019A JP 62135253 A JP62135253 A JP 62135253A JP 13525387 A JP13525387 A JP 13525387A JP S63299019 A JPS63299019 A JP S63299019A
Authority
JP
Japan
Prior art keywords
thin film
superconductor according
hydrogen
manufacturing
composite compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62135253A
Other languages
Japanese (ja)
Other versions
JPH0818913B2 (en
Inventor
Kentaro Setsune
瀬恒 謙太郎
Takeshi Kamata
健 鎌田
Takashi Hirao
孝 平尾
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62135253A priority Critical patent/JPH0818913B2/en
Publication of JPS63299019A publication Critical patent/JPS63299019A/en
Publication of JPH0818913B2 publication Critical patent/JPH0818913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a superconductive material of a high accuracy by decomposing a specific raw material for the superconductive material into minute particles of an atomic state, depositing them on a substrate and irradiating hydrogen ions. CONSTITUTION:Hydrogen ions are irradiated to a complex compond film of an oxide containing an element A, an element B and Cu constituted with the mol ratio of the elements of 0.5<=(A+B)/Cu<=2.5. Here, A denotes at least one element of Sc, Y and an element of lanthanum family (atomic numbers 57-71), and B at least one element from the IIa group. Since the raw material of the superconductive material is deposited on the substrate after being decomposed into tiny particles of the atomic state, the composition of the superconductive material formed becomes uniform. Furthermore, hydrogen ion treatment has a good controllability, enabling the treatment within a short period of time, and compensates crystal defect to obtain a desired crystal structure. This makes it possible to obtain the superconductive material of a high accuracy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超電導体の製造方法に関するものである。特に
化合物薄膜超電導体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing superconductors. In particular, it relates to a method for manufacturing compound thin film superconductors.

従来の技術 高温超電導体として、A15型2元系化合物として窒化
ニオブ(NbN)やゲルマニウムニオブ(N b s 
G e )などが知られていたが、これらの材料の超電
導転移温度はたかだが24°にであった。一方、ペロブ
スカイト系3元化合物は、さらに高い転移温度が期待さ
れ、Ba−La−Cu−0系の高温超電導体が提案され
た[ J、 G、 Bend。
Conventional technology As high-temperature superconductors, niobium nitride (NbN) and germanium niobium (N b s ) are used as A15 type binary compounds.
G e ), etc. were known, but the superconducting transition temperature of these materials was at most 24°. On the other hand, perovskite-based ternary compounds are expected to have even higher transition temperatures, and Ba-La-Cu-0-based high-temperature superconductors have been proposed [J, G, Bend.

rz and K、A、Muller、ツアイト シュ
リフト フェアフィジーク(Ze tshrift t
 a rphysik B)−Condensed M
atter 64.189−193 (1986) ]
。さらに、]Y−Ba−Cu−0がより高温の超電導材
料であることが、最近提案された。(文献)  (l1
1. K、 Wu等。
rz and K, A, Muller,
a rphysik B)-Condensed M
atter 64.189-193 (1986)]
. Additionally, ]Y-Ba-Cu-0 was recently proposed to be a higher temperature superconducting material. (Literature) (l1
1. K., Wu et al.

フィジカルレビュー レターズ(Physical R
eview Letters) Vol、5B No9
.908’−910(19B?) ]]Y−Ba−Cu
−OJiの材料の超電導機構の詳細は明らかではないが
、転移温度が液体窒素温度□以上に高くなる可能性があ
り、高温超電導体として従来の2元系化合物より、より
有望な特性が期上記複合化合物系の材料はイオンプロセ
スにより薄膜化し、高温超電導体が形成され得るが、超
電導の良好な特性を実現するためには熱処理が必要とな
る。この熱処理は複合化合物被膜の結晶性と、酸素の量
を制御するために行われるが、これらの最適化条件は必
ずしも同一温度で得られるとは限らず、又長時間処理を
要し、昇温、冷却等の条件設定も複雑で再現性が悪いと
いう問題があった。
Physical Review Letters (Physical R
View Letters) Vol, 5B No9
.. 908'-910(19B?)]]Y-Ba-Cu
- The details of the superconducting mechanism of OJi materials are not clear, but the transition temperature may be higher than the liquid nitrogen temperature, and it has more promising properties as a high-temperature superconductor than conventional binary compounds. Composite compound materials can be made into thin films through ion processes to form high-temperature superconductors, but heat treatment is required to achieve good superconducting properties. This heat treatment is performed to control the crystallinity of the composite compound film and the amount of oxygen, but these optimization conditions cannot always be obtained at the same temperature, and the treatment requires a long time, and The problem was that the setting of conditions such as cooling was complicated and the reproducibility was poor.

問題点を解決するための手段 本発明の製造方法で形成する薄膜超電導体の基本構成は
、基体表面に少くともA、B、Cuを含む酸化物で、元
素のモル比率が A+B 0.5≦□≦2.5 Cu の3元化合物被膜12を付着させたことを特徴としてい
る。本発明者らは、この種の超電導体が、加熱された基
体上に、上記複合化合物被膜を例えば蒸着というプロセ
スで付着させ、さらに引き続いて、あるいは熱処理した
後、水素イオンを照射することにより、形成されること
を見い出し発明に致ったものである。ここにAはSc、
Yおよびランタン系列元素(原子番号57−7.1)の
うちす(な(とも一種、BはBa、Sr、Ca、Be、
MgなどIIa族元素のうちの少な(とも一種の元素を
示す。
Means for Solving the Problems The basic composition of the thin film superconductor formed by the manufacturing method of the present invention is an oxide containing at least A, B, and Cu on the substrate surface, and the molar ratio of the elements is A+B 0.5≦ It is characterized in that a ternary compound film 12 of □≦2.5 Cu is attached. The present inventors have discovered that this type of superconductor can be produced by depositing the above-mentioned composite compound film on a heated substrate through a process called vapor deposition, and then irradiating it with hydrogen ions either subsequently or after heat treatment. This invention was discovered after discovering that it can be formed. Here A is Sc,
Among Y and lanthanum series elements (atomic number 57-7.1), B is Ba, Sr, Ca, Be,
A small group of Group IIa elements such as Mg (also refers to one type of element).

作用 本発明にかかる薄膜超電導体の製造方法は、超電導体を
薄膜化している所に大きな特色がある。
Function: The method for producing a thin film superconductor according to the present invention has a major feature in that the superconductor is made into a thin film.

すなわち、薄膜化は超電導体の素材を原子状態とい゛う
極微粒子に分解してから基体上に堆積させ、引き続いて
、あるいは熱処理し、酸素処理した後、水素イオンを照
射するので形成された超電導体の組成は本質的に、従来
の焼結体に比べて均質である。したがって非常に高精度
の超電導体が本発明の方法を用いて実現される。
In other words, thinning is achieved by decomposing the superconductor material into ultrafine particles in the atomic state, depositing them on a substrate, and then irradiating the formed superconductor with hydrogen ions after heat treatment or oxygen treatment. The composition of the body is essentially homogeneous compared to conventional sintered bodies. Superconductors of very high precision are therefore realized using the method of the invention.

実施例 本発明の実施例を図面とともに説明する。Example Embodiments of the present invention will be described with reference to the drawings.

第1図において、3元化合物被膜12は、例えばスパッ
タリング法で形成する。この場合、基体11は、超電導
を示す3元化合物被膜12の保持を目的としている。こ
の被膜12は通常数100℃の高温で形成し、超電導を
例えば液体窒素温度(−195℃)の低温で動作させる
ため、特に基体11と被膜12の密着性が悪くなり、し
ばしば被膜12が破損されることを本発明者らは確認し
た。さらに本発明者らは、詳細な基体の熱的特性を各種
の材質について調べた結果、基体の線熱膨張係数α> 
10−6/l:であれば、上記被膜の破損がなく、実用
されることを確認した。例えばαく10−67むの石英
ガラスを基体に用いると、被膜12は無数の亀裂が入り
不連続な被膜となり、実用に供しにくいことを本発明者
らは確認した。
In FIG. 1, a ternary compound film 12 is formed by, for example, a sputtering method. In this case, the substrate 11 is intended to hold a ternary compound coating 12 exhibiting superconductivity. This coating 12 is usually formed at a high temperature of several hundred degrees Celsius, and since the superconductor is operated at a low temperature, for example, liquid nitrogen temperature (-195 degrees Celsius), the adhesion between the base 11 and the coating 12 is particularly poor, and the coating 12 is often damaged. The present inventors have confirmed that. Furthermore, as a result of investigating the detailed thermal characteristics of the substrate for various materials, the present inventors found that the linear thermal expansion coefficient α of the substrate
10-6/l: It was confirmed that the coating was not damaged and could be put to practical use. For example, the inventors of the present invention have confirmed that if quartz glass with a diameter of 10-67 mm is used as the substrate, the coating 12 will have numerous cracks and become a discontinuous coating, making it difficult to put it to practical use.

さらに、本発明者らは、第1図の基体11に機能性から
見て、最適の材料があることを見い出した。
Furthermore, the present inventors have discovered that there is an optimal material for the base body 11 shown in FIG. 1 from the viewpoint of functionality.

すなわち、結晶性の高い3元化合物被膜12を基体11
の表面13に形成させるためには、単結晶の基体が有効
である。本発明者らは詳細に最適基体材料を調べた結果
、基体11として、酸化マグネシウム、サファイア(α
−A120g)、スビネシレ、チタン酸ストロンチウム
、シリコン、ガリウム砒素等の単結晶が有効であること
を確認した。もっとも、これは表面13に効果的に結晶
性の高い被膜12を成長させるためのものであるがら、
少なくとも基体表面13が単峙晶であればよい。
That is, the highly crystalline ternary compound coating 12 is applied to the substrate 11.
A single crystal substrate is effective for forming it on the surface 13 of. As a result of detailed investigation into the optimal substrate material, the present inventors found that the substrate 11 was made of magnesium oxide, sapphire (α
It was confirmed that single crystals such as -A120g), strontium titanate, silicon, and gallium arsenide are effective. However, although this is to effectively grow a highly crystalline coating 12 on the surface 13,
It suffices if at least the substrate surface 13 is single crystal.

本発明者らは、この種の超電導体を任意の形状例えば円
筒状に加工する場合、基体としては単結晶よりも、断端
焼結磁器が有効であることを確認するともに、最適の磁
器材料を見い出した。すなわち、磁器基体として、アル
ミナ、酸化マグルシウム、酸化デルコニウム、ステアタ
イト、ホルステライト、ベリリア、スピネル等が基体の
加工等、超電導被膜12の基体11への密着性が最適で
あることを本発明者らは確認した。この場合も単結晶と
同様に、基体の表面さえこの種の磁器で構されていると
よい。
The present inventors confirmed that when processing this type of superconductor into an arbitrary shape, such as a cylinder, sintered porcelain is more effective than a single crystal as a base material, and also found that the most suitable porcelain material I found out. In other words, the present inventors have found that alumina, maglucium oxide, derconium oxide, steatite, forsterite, beryllia, spinel, etc. are used as the porcelain substrate to provide optimal adhesion of the superconducting coating 12 to the substrate 11 during processing of the substrate. confirmed. In this case as well, it is preferable that even the surface of the substrate is made of this type of porcelain, as in the case of single crystals.

薄膜超電導体の形成には、まずA−B−Cu−0の複合
化合物被膜をスパッタリング蒸着あるいは熱蒸着例えば
電子ビーム蒸着、レーザビーム蒸着等の物理的気相成長
法で基体上に付着させる。
To form a thin film superconductor, a composite compound film of AB-Cu-0 is first deposited on a substrate by physical vapor deposition such as sputtering or thermal evaporation, such as electron beam evaporation or laser beam evaporation.

この場合、超電導体A−B−Cu−0は結晶構造や組成
式がまだ明確には決定されていないが、酸素欠損ペロブ
スカイト(A、B)ecusotaともいわれている。
In this case, the superconductor A-B-Cu-0 is also said to be an oxygen-deficient perovskite (A, B) ecusota, although its crystal structure and composition formula have not yet been clearly determined.

本発明者等は、作製された被膜において元素比率が の範囲にあれば、臨界温度に多少の差があっても超電導
現象が見出されることを確認した。この複合化合物被膜
の形成法は物理的気相成長法に限定されたものではなく
、化学的気相成長法例えば常圧あるいは減圧化学的気相
成長法、プラズマ化学的気相成長法、光化学的気相成長
法も、成分A。
The present inventors have confirmed that if the element ratio in the produced film is within the range of , superconductivity can be observed even if there is a slight difference in critical temperature. The method for forming this composite compound film is not limited to physical vapor deposition, but also chemical vapor deposition, such as atmospheric or low pressure chemical vapor deposition, plasma chemical vapor deposition, and photochemical vapor deposition. The vapor phase growth method also uses component A.

B、Cuの比を合致させれば、有効であることを本発明
者らは確認した。
The present inventors have confirmed that it is effective if the ratios of B and Cu match.

本発明者らは複合化合物被膜を基体11の表面13に付
着させる場合、基体の最適の温度範囲が存在することを
本発明者らは確認した。すなわち基体最適温度範囲は1
00〜1000℃である。
The present inventors have confirmed that when a composite compound coating is applied to the surface 13 of the substrate 11, there is an optimum temperature range for the substrate. In other words, the optimum temperature range for the substrate is 1
00-1000°C.

なお、100℃以下では、基体表面への複合酸化物被膜
の付着性が悪くなる。また、1000℃以上では複合酸
化物被膜中の成分A、BおよびCuの構造比からのずれ
が大きくなる。
Note that below 100°C, the adhesion of the composite oxide film to the substrate surface deteriorates. Moreover, at 1000° C. or higher, the deviation from the structural ratio of components A, B, and Cu in the composite oxide film becomes large.

さらに、複合化合物被膜を付着させる時の基体の温度は
とりわけ500〜900℃の範囲がこの種の蒸着装置の
機能、複合酸化物被膜の特性の再現性から見て最適であ
ることを本発明者らは確認した。この場合、形成された
複合化合物被膜は、アモルファスあるいは、微結晶ある
いは単結晶から構成されている。
Furthermore, the present inventors have found that a temperature range of 500 to 900° C. for the substrate when depositing the composite compound film is optimal in terms of the functionality of this type of vapor deposition equipment and the reproducibility of the properties of the composite oxide film. confirmed. In this case, the formed composite compound film is amorphous, microcrystalline, or single crystalline.

しかしながら意外にもこの種の被膜は半導体的な特性を
示し、超電導は液体He温度(4°K)で見られない場
合もある。又空気中に放電してお(と高抵抗となり非常
に不安定で信頼性のない被膜であることを確認した。
However, surprisingly, this type of coating exhibits semiconducting properties, and superconductivity may not be observed at liquid He temperatures (4°K). It was also confirmed that when the film was discharged into the air, the resistance became high and the film was extremely unstable and unreliable.

本発明者らはこの種の複合化合物被膜をさらに常圧の空
気、アルゴンと酸素の混合ガスあるいは純酸素などの酸
化物性雰囲気で熱処理することにより、超電導が発生し
、長期的安定性も太き(向上することを発見した。この
場合最適の熱処理温度は700〜1000℃、熱処理時
間は0.1〜10時間である。また、10時間以上にな
ると抵抗率が高くなるとともに、被膜の特性が不安定に
なり、急峻な超電導を示さない。
The present inventors discovered that by further heat-treating this type of composite compound film in an oxidizing atmosphere such as air at normal pressure, a mixed gas of argon and oxygen, or pure oxygen, superconductivity occurs and long-term stability is also improved. In this case, the optimal heat treatment temperature is 700 to 1000°C and the heat treatment time is 0.1 to 10 hours.In addition, when the heat treatment time exceeds 10 hours, the resistivity increases and the properties of the film deteriorate. It becomes unstable and does not exhibit steep superconductivity.

一方又本発明者らは水素イオンを被膜に照射することに
より超電導特性を改善出来ることを見出した。この場合
、被膜は300〜600℃に加熱した場合効果の大きい
ことを見出した。600℃以上では水素イオンは、被膜
複合化合物と反応しなくなり効果は得られない。
On the other hand, the present inventors have also discovered that the superconducting properties can be improved by irradiating the film with hydrogen ions. In this case, it has been found that the coating is more effective when heated to 300 to 600°C. At 600° C. or higher, hydrogen ions stop reacting with the coating composite compound and no effect can be obtained.

(具体実施例) サファイア単結晶R面を基体11として用い高周波ブレ
ナーマグネトロンスパッタにより、焼結したY2Ba4
cuao+aターゲットをArと02の混合ガス雰囲気
でスパッタリング蒸着して、上記基体上に結晶性のY 
2 B a 4 Cu e Os 4被膜として付着さ
せ層状構造を形成した。
(Specific Example) Y2Ba4 sintered by high-frequency Brenner magnetron sputtering using a sapphire single crystal R-plane as the base 11
A cuao+a target was sputter-deposited in a mixed gas atmosphere of Ar and 02, and crystalline Y was deposited on the above substrate.
It was deposited as a 2 Ba 4 Cue Os 4 coating to form a layered structure.

この場合、ガス圧力は0.5Pa、スパッタリング電力
150W、スパッータリング時間1時間、被膜の膜厚0
.5μm、基体温度800℃であった。形成された被膜
をそのまま、あるいはさらに空気中あるいは酸素雰囲気
中で900℃2時間熱処理後3〜4時間で除冷し、その
後450℃に被膜を加熱し水素イオンを2KVの電圧で
加速して照射した。
In this case, the gas pressure was 0.5 Pa, the sputtering power was 150 W, the sputtering time was 1 hour, and the film thickness was 0.
.. The thickness was 5 μm, and the substrate temperature was 800°C. The formed coating may be heat-treated for 2 hours at 900°C in air or oxygen atmosphere, then cooled slowly for 3 to 4 hours, and then heated to 450°C and irradiated with hydrogen ions accelerated at a voltage of 2KV. did.

第2図は、サファイアR面を基体11に用い、スパッタ
リング蒸着法で主成分がY t B a a Cu e
01番の3元化合物被膜12を付着させた時の実施例に
おける3元化合物被膜12のX線回折スペクトルを示す
。第2図において、スペクトルaは本発明の方法で処理
した被膜12から得たものであり、スペクトルbは超電
導を示す構造から得たものを示す。同図が示すごとく、
被膜スペクトルaはスペクトルbと類似し超電導が発生
した。
In FIG. 2, a sapphire R-face is used as the base 11, and the main component is Y t Ba a Cu e by sputtering deposition method.
The X-ray diffraction spectrum of the ternary compound coating 12 in the example when the ternary compound coating 12 No. 01 was attached is shown. In FIG. 2, spectrum a is obtained from a coating 12 treated according to the method of the present invention, and spectrum b is obtained from a structure exhibiting superconductivity. As the figure shows,
The coating spectrum a was similar to the spectrum b, and superconductivity occurred.

被膜の超電導転移温度90°にであった。The superconducting transition temperature of the coating was 90°.

この実施例では被膜12の膜厚は0.5μ糟であるが、
膜厚は0.1μ鶴かそれ以下の薄い場合、10μ−以上
の厚い場合も超電導が発生することを確認した。
In this example, the film thickness of the coating 12 is 0.5 μm,
It was confirmed that superconductivity occurs when the film thickness is as thin as 0.1 μm or less, and when it is thicker than 10 μm.

本発明者らは、サファイア以外の結晶性基体についての
有効性を詳細に実験的に調べた。酸化マグネシウム、ス
ピネル単結晶基体上に、Y2Ba4Cu60I4構造の
被膜を、サファイア単結晶の場合と同様にスパッタリン
グ蒸着法で付着させ、これらの被膜を本発明の水素イオ
ン処理を行うことによりいずれも超電導を示すことが確
認された。
The present inventors experimentally investigated in detail the effectiveness of crystalline substrates other than sapphire. A film having a Y2Ba4Cu60I4 structure is deposited on a magnesium oxide, spinel single crystal substrate by sputtering deposition method in the same manner as in the case of a sapphire single crystal, and by subjecting these films to the hydrogen ion treatment of the present invention, both exhibit superconductivity. This was confirmed.

また、チタン酸ストロンチウム、シリコン、ガリウム砒
素単結晶についても同様の結果が得られた。
Similar results were also obtained for strontium titanate, silicon, and gallium arsenide single crystals.

本発明の超電導体は結晶構造が複雑でまだ良く分かって
いない。単結晶基体に基体温度をエピタキシャル温度以
上にあげて、単結晶性を高めると正方晶ペロブスカイト
構造が生成し易(、再現性よく超電導体が得られない場
合が多い。したがって、本発明の実施例に述べたごと(
、基体温度はむしろ低い範囲に選び斜方晶ペロブスカイ
トないしは微結晶構造を含む複合化合物被膜を形成した
後熱処理により結晶化し水素処理により酸素量と結晶欠
陥を最適化する方が再現性よく超電導体が得られること
を本発明者らは実験的に確認した。
The superconductor of the present invention has a complex crystal structure and is not yet well understood. If the substrate temperature is raised to above the epitaxial temperature of a single crystal substrate to increase single crystallinity, a tetragonal perovskite structure is likely to be generated (and a superconductor cannot be obtained with good reproducibility in many cases. Therefore, the embodiments of the present invention As stated in (
However, it is better to select the substrate temperature in a low range, form a composite compound film containing orthorhombic perovskite or microcrystalline structure, crystallize it by heat treatment, and optimize the amount of oxygen and crystal defects by hydrogen treatment. The present inventors have experimentally confirmed that this can be obtained.

この場合、単結晶構造の基体は熱処理を行うと被膜の固
相エピタキシャル成長を助は有効である。特に基体上に
アモルファス状態の被膜をあらかじめ形成し、これを熱
処理すると結晶性基体表面により効果的に結晶性の被膜
が固相エピタキシャルし、その後被膜形成装置の真空を
やふることなく引き続き本発明の水素イオン処理を行う
ことが超電導特性の優れた薄膜の形成に有効であること
を本発明者らは確認した。なお、超電導被膜の結晶性が
特に要求されない場合(急峻な超電導転位が不要の時)
は、多結晶の磁器基体が有効である。
In this case, it is effective to heat-treat the single-crystal structure substrate to facilitate solid-phase epitaxial growth of the film. In particular, by forming an amorphous film on a substrate in advance and heat-treating it, the crystalline film is effectively solid-phase epitaxially formed on the surface of the crystalline substrate, and then the present invention can be continued without breaking the vacuum of the film forming apparatus. The present inventors have confirmed that hydrogen ion treatment is effective in forming a thin film with excellent superconducting properties. In addition, when crystallinity of the superconducting film is not particularly required (when steep superconducting dislocations are not required)
A polycrystalline porcelain substrate is effective.

なお、基体表面に複合化合物被膜の形成法として、金属
主成分を物理的気相成長法で基体上に付着させ、さらに
酸素ビームあるいは酸素イオンを被膜形成中に被膜に照
射し、基体表面で金属主成分を酸化させることも可能で
ある。しかしこのようにして得られた必要以上に酸素を
含有する被膜は良好な結晶性を示すが、超電導特性は最
適なものではない場合がある。
In addition, as a method for forming a composite compound film on the surface of a substrate, the main component of the metal is deposited on the substrate by physical vapor deposition, and the film is further irradiated with an oxygen beam or oxygen ions during film formation. It is also possible to oxidize the main component. However, although the resulting film containing more oxygen than necessary exhibits good crystallinity, its superconducting properties may not be optimal.

この薄膜複合化合物被膜は800℃以上で熱処理するこ
とにより結晶性が改善去れることを発明発明者らは見出
している。それ数本発明の水素処理は800℃以上で熱
処理された被膜に対してなされた場合特に効果的である
。以上水素処理は通常用いられるような真空槽内に所望
のガスを導入し、このガスに高周波を平行電極より印加
印加して放電させ、この放電プラズマ中に複合化合物被
膜を配置して行うことが出来、この方法により超電導特
性の向上することが確認された。しかし、この方法では
被膜にイオン以外の粒子が照射され、被膜の表面状態を
変化させるので、イオン源とイオン照射部を分離するこ
とが望ましい。
The inventors have discovered that the crystallinity of this thin composite compound coating can be improved by heat-treating it at 800° C. or higher. The hydrogen treatment of the present invention is particularly effective when applied to a film that has been heat treated at 800° C. or higher. As mentioned above, hydrogen treatment can be carried out by introducing a desired gas into a commonly used vacuum chamber, applying high frequency waves to this gas from parallel electrodes to cause a discharge, and placing a composite compound coating in this discharge plasma. It was confirmed that this method improves superconducting properties. However, in this method, the coating is irradiated with particles other than ions, changing the surface condition of the coating, so it is desirable to separate the ion source and the ion irradiation section.

第3図はこの条件を実現するための方法を示している。FIG. 3 shows a method for realizing this condition.

イオン源31に水素ガスあるいは水素を含むガスを導入
しこのガスをはさんで対向した電極32.33に高周波
電圧を印加してプラズマを発生させる。このプラズマ中
に磁場を形成するための磁場発生源34を配置し、効率
よく発生させた水素イオンを複合化合物被膜を形成した
基板35を配置した基板台36と上記イオン源のプラズ
マの間に電圧を印加することにより、酸素イオンをイオ
ン源より引き出し、基板台上の複合化合物被膜に照射す
る。この時基板は300〜600℃にヒータ37により
加熱することにより水素イオン処理の効率を上げ、処理
時間を短縮でき被膜の超電導特性が向上することを発明
者らは見出した。
Hydrogen gas or a gas containing hydrogen is introduced into the ion source 31, and a high frequency voltage is applied to electrodes 32 and 33 facing each other across the gas to generate plasma. A magnetic field generation source 34 for forming a magnetic field in this plasma is disposed, and a voltage is applied between the plasma of the ion source and the substrate table 36 on which the substrate 35 on which the composite compound film is formed is disposed. By applying , oxygen ions are extracted from the ion source and irradiated onto the composite compound film on the substrate stage. At this time, the inventors have discovered that by heating the substrate to 300 to 600° C. with the heater 37, the efficiency of the hydrogen ion treatment can be increased, the treatment time can be shortened, and the superconducting properties of the film can be improved.

又、プラズマと特性試料台の間に印加する電圧が5KV
以下の場合には上記被膜の表面はスパッタリングされる
が、被膜内部に対して効果的に水素イオン処理が行える
ことを確認・した。
Also, the voltage applied between the plasma and the characteristic sample stage is 5KV.
In the following cases, the surface of the film was sputtered, but it was confirmed that the inside of the film could be effectively treated with hydrogen ions.

第4図は真空槽41内に水素ガスあるいは水素を含むガ
スを導入し、このガスにマイクロ波を照射して放電させ
、プラズマを発生させ、プラズマに磁場42を印加して
水素イオンのイオン化効率を上げたものをイオン源とし
て用いたものである。この場合通常マイクロ波源43に
は2.45GHzのマイクロ波を使用し、磁場強度を8
75ガウス程度にすると電子のサイクロトロン共鳴が生
じるので水素イオン化の効率が上がる。このイオン源4
4より引き出された水素イオンを試料台に配置した複合
化合物被膜に照射する構造となっている。この場合マイ
クロ波により効率よくイオン化された高エネルギーの水
素イオンが複合化合物被膜を効率的に水素化し超電導特
性を向上させることを見い出した。
Figure 4 shows hydrogen gas or hydrogen-containing gas introduced into a vacuum chamber 41, irradiated with microwaves to generate a plasma, and a magnetic field 42 applied to the plasma to increase the ionization efficiency of hydrogen ions. The ion source was used as an ion source. In this case, a 2.45 GHz microwave is normally used as the microwave source 43, and the magnetic field strength is set to 8.
When the temperature is set to about 75 Gauss, electron cyclotron resonance occurs, which increases the efficiency of hydrogen ionization. This ion source 4
It has a structure in which hydrogen ions extracted from 4 are irradiated onto a composite compound coating placed on a sample stage. In this case, we discovered that high-energy hydrogen ions efficiently ionized by microwaves efficiently hydrogenate the composite compound film and improve its superconducting properties.

以上のような水素処理方法において被膜に水素イオンを
照射すると同時に500nm以下の短波長光線を照射す
ることにより水素化による結晶欠陥の補償が効率的に行
われ、特に紫外線照射が効果大なることを確認した。
In the hydrogen treatment method described above, by irradiating the film with hydrogen ions and at the same time irradiating it with short wavelength light of 500 nm or less, crystal defects caused by hydrogenation can be efficiently compensated for, and it has been shown that ultraviolet irradiation is particularly effective. confirmed.

この種の被膜の結晶構造など詳細な特性は、基体上に被
膜が拘束されているため、被膜内には通常の焼結体では
存在しない様な大きな歪とか欠陥が存在する。このため
、焼結体の製造方法から被膜の製造方法を類推できるも
のでない。なお、被膜の水素処理の物理的な意味の詳細
は明らかではないが、おおよそつぎにように考えられる
。すなわち、スパッタリング蒸着等で基体上に付着させ
た複合化合物被膜では、(A 、 B ) e Cu 
e OIaという化合物を形成していない。この場合、
例えばBCuOs正方晶のペロブスカイト構造のネット
ワーク中にA元素の酸化物が分散した複合酸化物を形成
している。超電導を示す構造の発生は熱処理に関連する
。すなわち、熱処理時間が1時間以下で超電導性が得ら
れないのは、この構造の生成が不充分であった事に起因
していると考えられる。さらに適切に酸素を含有するこ
とが良好な超電導特性を得るために必要であり多すぎる
と絶縁体となり少なすぎると不安定で水分等により分解
してしまう。本発明による水素処理を行うと、酸素の含
有量を適当なものに容易に制御でき、かつ短時間での処
理が可能であり、超電導薄膜の製造に好都合となる。
The detailed characteristics of this type of coating, such as its crystal structure, are such that because the coating is constrained on the substrate, there are large strains and defects within the coating that do not exist in ordinary sintered bodies. For this reason, it is not possible to infer the method of manufacturing the coating from the method of manufacturing the sintered body. Although the details of the physical meaning of the hydrogen treatment of the film are not clear, it can be roughly considered as follows. That is, in a composite compound film deposited on a substrate by sputtering vapor deposition or the like, (A, B) e Cu
e No compound called OIa is formed. in this case,
For example, a composite oxide is formed in which an oxide of element A is dispersed in a BCuOs tetragonal perovskite structure network. The generation of structures exhibiting superconductivity is related to heat treatment. That is, the reason why superconductivity cannot be obtained when the heat treatment time is 1 hour or less is considered to be due to insufficient formation of this structure. Furthermore, it is necessary to appropriately contain oxygen in order to obtain good superconducting properties; if it is too large, it becomes an insulator, and if it is too small, it is unstable and decomposes due to moisture or the like. When the hydrogen treatment according to the present invention is performed, the oxygen content can be easily controlled to an appropriate value, and the treatment can be carried out in a short time, which is convenient for producing superconducting thin films.

なお、熱処理は通常のヒータ加熱炉により行ったが、レ
ーザ光、赤外線等の工学的熱処理方法あるいは電子線に
よる加熱方法等が応用可能である。
Although the heat treatment was carried out using an ordinary heater heating furnace, it is also possible to apply an engineering heat treatment method using laser light, infrared rays, etc., or a heating method using an electron beam.

この種の3元化合物超電導体(A、B)acue014
の構成元素AおよびBの変化に−よる超電導特性の変化
の詳細は明らかではない。ただAは、3価、Bは2価を
示しているのは事実ではある。A元素としてYについて
例をあげて説明したが、SCやLa、さらにランタン系
列の元素(原子番号57〜71)でも0、超電導転移温
度が変化する程度で本質的な発明の特性を変えるもので
はない。
This kind of ternary compound superconductor (A, B)acue014
The details of changes in superconducting properties due to changes in constituent elements A and B are not clear. However, it is true that A indicates trivalence and B indicates divalence. Although the explanation has been given using an example of Y as element A, SC, La, and even lanthanum series elements (atomic numbers 57 to 71) are also 0, and the fact that the superconducting transition temperature changes does not change the essential characteristics of the invention. do not have.

また、B元素においても、Sr、Ca、Ba等na族元
素の変化は超電導転移温度を10°に程度変化させるが
、本質的に本発明の特性を変えるものではない。
Also, regarding B elements, changes in Na group elements such as Sr, Ca, and Ba change the superconducting transition temperature by about 10°, but this does not essentially change the characteristics of the present invention.

発明の効果 とりわけ、本発明にかかる超電導体は、超電導体を薄膜
化して水素イオン処理している所に大きな特色がある。
Effects of the Invention Particularly, the superconductor according to the present invention is characterized in that the superconductor is made into a thin film and treated with hydrogen ions.

すなわち、薄膜化は超電導体の素材を原子状態という極
微粒子に分解してから、基体上に堆積させるから、形成
された超電導体の組成は本質的に、従来の焼結体に比べ
て均質である。さらに通常行われる熱だけの処理に比べ
て本発明による水素イオン処理は制御性が良好で短時間
処理が可能であり、結晶欠陥を補償して、所望の結晶構
造を実現することが出来る。したがって、非常に高精度
の超電導体が本発明で実現される。
In other words, in thin film formation, the superconductor material is decomposed into ultrafine particles in the atomic state and then deposited on the substrate, so the composition of the formed superconductor is essentially more homogeneous than that of conventional sintered bodies. be. Furthermore, compared to the conventional treatment using only heat, the hydrogen ion treatment according to the present invention has better controllability and can be performed in a shorter time, and can compensate for crystal defects and realize a desired crystal structure. Therefore, a superconductor with very high precision is realized with the present invention.

以上の説明のごとく本発明の薄膜超電導体の製造方法に
よると、例えば結晶性基体上に薄膜状で形成されるので
焼結体より本質的により精度が高い上SiあるいはGa
Asなどのデバイスとの集積化が可能であるとともに、
ジョセフソン素子など各種の超電導デバイスの製造に実
用される。特にこの種の化合物超電導体の転移温度が室
温になる可能性もあり、従来の実用の範囲は広く、本発
明の工業的価値は高い。
As explained above, according to the method for producing a thin film superconductor of the present invention, it is formed in the form of a thin film on a crystalline substrate, so it is essentially more accurate than a sintered body, and is made of Si or Ga.
It is possible to integrate devices such as As, and
It is used in the production of various superconducting devices such as Josephson elements. In particular, the transition temperature of this type of compound superconductor may be room temperature, so the range of conventional practical use is wide, and the industrial value of the present invention is high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の薄膜超電導体の製造方法で
形成した薄膜超電導体の基本構成図、第2図は本発明の
薄膜超電導体の基本特性図、第3図、第4図は本発明の
水素処理装置のための装置の概略構成図である。 11・・・基体、12・・・3元化合物被膜、31.3
4・・・イオン源、32.33・参〇高周波電極、34
.42・・・磁場発生源、35・・・基板、36・・・
基板台、37・・・ヒータ。 代理人の氏名 弁理士 中尾敏男 ほか1名第1図 第2図 酸化マグネシウム 、、、        M2O2UQ 2θ (友つ 0ff 2θ (7〕 第3図 第4図
FIG. 1 is a basic configuration diagram of a thin film superconductor formed by a method for producing a thin film superconductor according to an embodiment of the present invention, FIG. 2 is a basic characteristic diagram of the thin film superconductor of the present invention, FIGS. 3 and 4 1 is a schematic configuration diagram of an apparatus for a hydrogen treatment apparatus of the present invention. 11... Substrate, 12... Ternary compound coating, 31.3
4...Ion source, 32.33.High frequency electrode, 34
.. 42... Magnetic field generation source, 35... Substrate, 36...
Board stand, 37...heater. Name of agent: Patent attorney Toshio Nakao and one other person Fig. 1 Fig. 2 Magnesium oxide... M2O2UQ 2θ (Friend 0ff 2θ (7) Fig. 3 Fig. 4

Claims (15)

【特許請求の範囲】[Claims] (1)A元素、B元素およびCuを含む酸化物で、元素
のモル比率が 0.5≦(A+B)/Cu≦2.5 で構成される複合化合物被膜に対し、水素イオンを照射
することを特徴とする薄膜超電導体の製造方法。 ここに、AはSc、Yおよびランタン系列元素(原子番
号57〜71)のうち少なくとも一種、BはIIa族元素
のうちの少なくとも一種の元素を示す。
(1) Irradiating hydrogen ions to a composite compound film composed of an oxide containing element A, element B, and Cu, with a molar ratio of elements of 0.5≦(A+B)/Cu≦2.5. A method for producing a thin film superconductor characterized by: Here, A represents at least one element among Sc, Y, and lanthanum series elements (atomic numbers 57 to 71), and B represents at least one element among group IIa elements.
(2)水素イオン照射時の複合化合物被膜を加熱するこ
とを特徴とする特許請求の範囲第1項記載の薄膜超電導
体の製造方法。
(2) The method for producing a thin film superconductor according to claim 1, which comprises heating the composite compound film during hydrogen ion irradiation.
(3)水素イオン源として、少なくとも水素を含むガス
の真空槽内での放電により生成したプラズマを用いるこ
とを特徴とする特許請求の範囲第1項記載の薄膜超電導
体の製造方法。
(3) The method for producing a thin film superconductor according to claim 1, wherein plasma generated by discharging a gas containing at least hydrogen in a vacuum chamber is used as the hydrogen ion source.
(4)水素イオン源装置として、マイクロ波を含む高周
波電圧をガスに印加して生成したプラズマを用いること
を特徴とする特許請求の範囲第3項記載の薄膜超電導体
の製造方法。
(4) The method for producing a thin film superconductor according to claim 3, wherein plasma generated by applying a high frequency voltage including microwaves to a gas is used as the hydrogen ion source device.
(5)プラズマに磁界を印加して生成した水素イオンを
照射することを特徴とする特許請求の範囲第4項記載の
薄膜超電導体の製造方法。
(5) A method for manufacturing a thin film superconductor according to claim 4, characterized in that plasma is irradiated with hydrogen ions generated by applying a magnetic field.
(6)水素イオン照射時の複合化合物被膜を300℃か
ら600℃以下に加熱することを特徴とする特許請求の
範囲第2項記載の薄膜超電導体の製造方法。
(6) The method for producing a thin film superconductor according to claim 2, characterized in that the composite compound coating during hydrogen ion irradiation is heated from 300°C to 600°C or less.
(7)真空槽内でのガスの放電により生成した水素イオ
ンを、この真空槽内のプラズマと複合化合物被膜を設置
した試料台との間に電圧を印加して照射することを特徴
とする特許請求の範囲第3項記載の薄膜超電導体の製造
方法。
(7) A patent characterized in that hydrogen ions generated by gas discharge in a vacuum chamber are irradiated by applying a voltage between the plasma in the vacuum chamber and a sample stage on which a composite compound coating is installed. A method for manufacturing a thin film superconductor according to claim 3.
(8)水素ガスに高周波電圧を印加して生成したプラズ
マと試料台の間に所定の電位に設置した電極を設置して
水素イオンを照射することを特徴とする特許請求の範囲
第7項記載の薄膜超電導体の製造方法。
(8) Claim 7, characterized in that an electrode set at a predetermined potential is installed between the plasma generated by applying a high frequency voltage to hydrogen gas and the sample stage, and hydrogen ions are irradiated. A method for manufacturing thin film superconductors.
(9)プラズマと試料台との間に5KV以下の直流電圧
を印加することを特徴とする特許請求の範囲第7項記載
の薄膜超電導体の製造方法。
(9) The method for manufacturing a thin film superconductor according to claim 7, characterized in that a DC voltage of 5 KV or less is applied between the plasma and the sample stage.
(10)高周波電圧を印加して生成したプラズマ中に複
合化合物被膜を設置したことを特徴とする特許請求の範
囲第4項記載の薄膜超電導体の製造方法。
(10) A method for manufacturing a thin film superconductor according to claim 4, characterized in that a composite compound coating is placed in plasma generated by applying a high frequency voltage.
(11)水素イオンと同時に光線を照射することを特徴
とする特許請求の範囲第3項記載の薄膜超電導体の製造
方法。
(11) A method for manufacturing a thin film superconductor according to claim 3, characterized in that hydrogen ions are irradiated with light at the same time.
(12)複合化合物被膜を形成した後、同一の装置によ
り引き続き水素イオン照射を行うことを特徴とする特許
請求の範囲第1項記載の薄膜超電導体の製造方法。
(12) The method for manufacturing a thin film superconductor according to claim 1, wherein after forming the composite compound film, hydrogen ion irradiation is performed successively using the same device.
(13)複合化合物被膜を形成した後、酸素を含む雰囲
気中で熱処理し、その後水素イオンを照射することを特
徴とする特許請求の範囲第1項記載の薄膜超電導体の製
造方法。
(13) The method for producing a thin film superconductor according to claim 1, which comprises forming the composite compound film, then heat-treating it in an oxygen-containing atmosphere, and then irradiating it with hydrogen ions.
(14)熱処理を800℃以上、水素イオン照射を60
0℃以下の被膜に対して行うことを特徴とする特許請求
の範囲第13項記載の薄膜超電導体の製造方法。
(14) Heat treatment at 800℃ or higher, hydrogen ion irradiation at 60℃
14. The method for manufacturing a thin film superconductor according to claim 13, wherein the method is performed for a film at a temperature of 0° C. or lower.
(15)水素イオンを照射しながら作成された複合化合
物被膜に水素イオンを照射することを特徴とする特許請
求の範囲第1項記載の薄膜超電導体の製造方法。
(15) The method for manufacturing a thin film superconductor according to claim 1, characterized in that the composite compound film created is irradiated with hydrogen ions while being irradiated with hydrogen ions.
JP62135253A 1987-05-29 1987-05-29 Method of manufacturing thin film superconductor Expired - Fee Related JPH0818913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62135253A JPH0818913B2 (en) 1987-05-29 1987-05-29 Method of manufacturing thin film superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62135253A JPH0818913B2 (en) 1987-05-29 1987-05-29 Method of manufacturing thin film superconductor

Publications (2)

Publication Number Publication Date
JPS63299019A true JPS63299019A (en) 1988-12-06
JPH0818913B2 JPH0818913B2 (en) 1996-02-28

Family

ID=15147389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62135253A Expired - Fee Related JPH0818913B2 (en) 1987-05-29 1987-05-29 Method of manufacturing thin film superconductor

Country Status (1)

Country Link
JP (1) JPH0818913B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0564915A2 (en) * 1992-03-26 1993-10-13 Canon Kabushiki Kaisha Methods for growing compound semiconductor layers
JP2007039729A (en) * 2005-08-02 2007-02-15 Bridgestone Corp Crystallization method of cu2o thin film, and laminate having cu2o thin film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268087A (en) * 1987-04-27 1988-11-04 Hitachi Ltd Memory medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268087A (en) * 1987-04-27 1988-11-04 Hitachi Ltd Memory medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0564915A2 (en) * 1992-03-26 1993-10-13 Canon Kabushiki Kaisha Methods for growing compound semiconductor layers
EP0564915A3 (en) * 1992-03-26 1997-04-16 Canon Kk Methods for growing compound semiconductor layers
JP2007039729A (en) * 2005-08-02 2007-02-15 Bridgestone Corp Crystallization method of cu2o thin film, and laminate having cu2o thin film

Also Published As

Publication number Publication date
JPH0818913B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
JPH0597588A (en) Production of oxide superconductor film
US4874741A (en) Non-enhanced laser evaporation of oxide superconductors
JPS63224116A (en) Manufacture of thin film superconductor
JPS63239742A (en) Manufacture for film superconductor
JPS63299019A (en) Manufacture of thin film superconductive material
JPH01208327A (en) Production of thin film of superconductor
JPH0825742B2 (en) How to make superconducting material
EP0624910B1 (en) Method of fabricating a Hg-based superconducting thin film
JP2713343B2 (en) Superconducting circuit fabrication method
JP2702711B2 (en) Manufacturing method of thin film superconductor
JPS63298920A (en) Manufacture of membranous superconductor
JPH06291375A (en) Manufacture of thin film superconductor and its manufacture
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
JPH01246142A (en) Production of thin film superconductor
JPH01246132A (en) Production of thin film superconductor
JP2742418B2 (en) Method for producing oxide superconducting thin film
EP0333513B1 (en) Oxide superconductor
JP2611332B2 (en) Manufacturing method of thin film superconductor
JPH01298005A (en) Production of oxide-based superconductor
JPS63292524A (en) Manufacture of superconductive film
JPH01215963A (en) Formation of thin superconducting film
JPH01286914A (en) Production of superconductor of thin film
JPH01298006A (en) Production of oxide-based superconductor
JPH01112614A (en) Manufacture of super conductive film
JPH012218A (en) Manufacturing method of thin film superconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees