JPH01246142A - Production of thin film superconductor - Google Patents

Production of thin film superconductor

Info

Publication number
JPH01246142A
JPH01246142A JP63072466A JP7246688A JPH01246142A JP H01246142 A JPH01246142 A JP H01246142A JP 63072466 A JP63072466 A JP 63072466A JP 7246688 A JP7246688 A JP 7246688A JP H01246142 A JPH01246142 A JP H01246142A
Authority
JP
Japan
Prior art keywords
thin film
composite compound
oxygen
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63072466A
Other languages
Japanese (ja)
Inventor
Tomiyo Fukuda
福田 富代
Kentaro Setsune
瀬恒 謙太郎
Hideaki Adachi
秀明 足立
Yoshio Manabe
由雄 真鍋
Tsuneo Mitsuyu
常男 三露
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63072466A priority Critical patent/JPH01246142A/en
Publication of JPH01246142A publication Critical patent/JPH01246142A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the title high-quality superconductor excellent in reliability and long-term stability by irradiating oxygen ions on a composite compound film consisting of Bi, alkaline earth group IIa element(s) and Cu. CONSTITUTION:A composite compound film consisting of at least Bi, alkaline earth group IIa element(s) and Cu is irradiated with oxygen ions to oxidize the metallic chief component in said film. For example, a Bi-Sr-Ca-O-based composite compound film 2 is formed on a substrate 1 by sputterling vapor deposition to make a base plate 25. This base plate 25 is mounted on a table 26 heated by a heater 27 in a vacuum chamber; an oxygen gas g is introduced into an ion source 21 followed by discharge between electrodes 22 and 23 to generate oxygen ions, which are irradiated on the composite compound film 2 on the base plate 25.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超電導体の製造方法に関するものである。特に
化合物薄膜超電導体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing superconductors. In particular, it relates to a method for manufacturing compound thin film superconductors.

従来の技術 高温超電導体として、A15型2元系化合物として窒化
ニオブ(NbN )やゲルマニウムニオブ(NbGe 
)などが知られていたが、これらの材料の超電導転移温
度はたかだか24°にであった。
Conventional technology As high-temperature superconductors, niobium nitride (NbN) and germanium niobium (NbGe) are used as A15 type binary compounds.
), but the superconducting transition temperature of these materials was at most 24°.

一方、ペロブスカイト系3元化合物は、さらに高い転移
温度が期待され、B a −L a −Cu −0系の
高温超電導体が提案された[  J、 G、 Bend
orz and K、A、Muller、  ツァイト
 シュリフト フェア ツーlシーク(Ze tshr
ift f  rphysik B)−Condens
ed Matter 64.189−193 (198
6) ]。
On the other hand, perovskite-based ternary compounds are expected to have even higher transition temperatures, and a Ba-La-Cu-0-based high-temperature superconductor has been proposed [J, G, Bend
orz and K, A, Muller, Zet Schrift Fair Tour Seek (Ze tshr
if f rphysik B)-Condens
ed Matter 64.189-193 (198
6) ].

さらにB I −S r −Ca −Cu −0系の材
料が、100に以上の転移温度を示すことも発見された
Furthermore, it has been discovered that materials of the B I -S r -Ca -Cu -0 series exhibit a transition temperature of 100°C or higher.

この種の材料の超電導機構の詳細は明らかではないが、
転移温度が室温温度以上に高くなる可能性があり、高温
超電導体として従来の2元系化合物より、より有望な特
性が期待される。
Although the details of the superconducting mechanism of this type of material are not clear,
The transition temperature can be higher than room temperature, and it is expected to have more promising properties as a high-temperature superconductor than conventional binary compounds.

発明が解決しよとする課題 上述のようにB l −S r −Ca −Cu −0
系の複合化合物被膜は、酸素雰囲気中等で熱処理するこ
とにより、超電導の良好な特性を得ることができる。し
かし、その条件設定が難しいことと、処理するのに長い
時間かかることと、更には800℃以上での高温プロセ
スのため、高温炉等が必要であるという問題があった。
Problem to be Solved by the Invention As mentioned above, B l -S r -Ca -Cu -0
The composite compound film of the system can obtain good superconducting properties by heat-treating it in an oxygen atmosphere or the like. However, there are problems in that it is difficult to set the conditions, it takes a long time to process, and furthermore, a high-temperature furnace or the like is required due to the high-temperature process at 800° C. or higher.

課題を解決するための手段 本発明の製造方法で形成する薄膜超電導体の基本構成は
、基体表面に少くともビスマス(B1)、アルカリ土類
(II a族)、Cuを含む酸化物で構成される複合化
合物被膜を付着させたことを特徴としている0本発明者
らは、この種の超電導体が、加熱された基体上に、上記
複合化合物被膜を例えば蒸着というプロセスで付着させ
、さらに酸素イオンを照射することにより、被膜中の金
属主成分が酸化されて形成されることを見い出し発明に
致っなものである。ここアルカリ土類はB a * S
 r +Ca、Be、MgなどII a族元素のうちの
少くとも一種あるいは2種以上の元素を示す。
Means for Solving the Problems The basic composition of the thin film superconductor formed by the manufacturing method of the present invention is that the substrate surface is composed of an oxide containing at least bismuth (B1), alkaline earth (group II a), and Cu. The present inventors have discovered that this type of superconductor is characterized by depositing the composite compound coating on a heated substrate by a process called vapor deposition, and then adding oxygen ions to the superconductor. The inventors discovered that the main metal component in the film is oxidized and formed by irradiating the film with . Here, alkaline earth is B a * S
r + Indicates at least one or two or more elements of group II a elements such as Ca, Be, and Mg.

作用 本発明にかかる薄膜超電導体の製造方法は、ビスマス(
B1)、アルカリ土類、Cuを含む酸化物超電導体を薄
膜化している所に大きな特色がある。すなわち、薄膜化
は超電導体の素材を原子状態という極微粒子に分解して
から基体上に堆積させ、その後酸素イオン照射による破
膜中の金属主成分の酸化処理を行うので、形成された超
電導体の組成は本質的に、従来の焼結体に比べて均質で
あり、高精度の超電導体を得ることが出来る。したがっ
て本発明を、100に以上の転移温度を持つとされるB
 I −S r −Ca −Cu −0系の材料の薄膜
作製に応用することにより、高品質の超電導体が実現さ
れ、非常に有効である。
Function The method for producing a thin film superconductor according to the present invention is based on bismuth (
B1), the major feature is that the oxide superconductor containing alkaline earth metals and Cu is made into a thin film. In other words, in thinning the superconductor material, the material of the superconductor is decomposed into ultrafine particles in the atomic state and then deposited on the substrate, and then the main metal component in the broken film is oxidized by oxygen ion irradiation, so the formed superconductor The composition is essentially more homogeneous than that of conventional sintered bodies, and a highly precise superconductor can be obtained. Therefore, the present invention is applicable to B, which is said to have a transition temperature of 100 or more.
By applying this method to the production of thin films of I-Sr-Ca-Cu-0 type materials, high-quality superconductors can be realized and are very effective.

実施例 本発明の実施例を図面とともに説明する。Example Embodiments of the present invention will be described with reference to the drawings.

薄膜超電導体の形成には、まずB I −S r −C
a −Cu −0の複合化合物被膜をスパッタリング蒸
着あるいは熱蒸着例えば電子ビーム蒸着、レーザビーム
蒸着等の物理的気相成長法、あるいは化学的気相成長法
例えば常圧あるいは減圧化学的気相成長法、プラズマ化
学的気相成長法、光化学的気相成長法等で基体上に付着
させる。
To form a thin film superconductor, first B I -S r -C
A -Cu-0 composite compound film is deposited by sputtering or thermal evaporation, for example, by physical vapor deposition such as electron beam evaporation or laser beam evaporation, or by chemical vapor deposition, such as normal pressure or reduced pressure chemical vapor deposition. , plasma chemical vapor deposition, photochemical vapor deposition, or the like.

本発明者らは複合化合物被膜を基体の表面に付着させる
場合、基体の最適の温度範囲が存在することを本発明者
らは確認した。すなわち基体最適温度範囲は100〜1
000℃が望ましノい。なお、100℃以下では、基体
表面への複合酸化物被膜の付着性が悪くなる。また、1
000℃以上では複合酸化物被膜そのものが融解してし
まう。
The present inventors have confirmed that there is an optimal temperature range for the substrate when depositing a composite compound coating on the surface of the substrate. In other words, the optimum temperature range for the substrate is 100 to 1
000°C is desirable. Note that below 100°C, the adhesion of the composite oxide film to the substrate surface deteriorates. Also, 1
At temperatures above 000°C, the composite oxide film itself will melt.

さらに、複合化合物被膜を付着させる時の基体の温度は
とりわけ700〜900℃の範囲がこの種の蒸着装置の
機能、複合酸化物被膜の特性の再現性から見て最適であ
ることを本発明者らは確認した。この場合、形成された
複合化合物被膜は、アモルファスあるいは、微結晶から
構成されている。
Furthermore, the present inventors have found that a temperature range of 700 to 900°C for the substrate when depositing the composite compound film is optimal in terms of the functionality of this type of vapor deposition equipment and the reproducibility of the properties of the composite oxide film. confirmed. In this case, the formed composite compound film is amorphous or composed of microcrystals.

しかしながら意外にもこの種の被膜は、零抵抗温度がが
IOK付近と非常に低い。
However, surprisingly, this type of coating has a very low zero resistance temperature near IOK.

本発明者らはこの種の複合化合物被膜をさらに少なくと
も酸素を含むガスの放電により生成される酸素イオンに
より処理することにより、複合化合物被膜中の高金属主
成分が酸化されて高温で超電導が発生することを発見し
た。この場合基体を加熱することにより超電導特性が改
善されることを見い出した。最適の熱処理温度は室温〜
800℃であった。これ以上の温度になると被膜の特性
が不安定になり、急峻な超電導を示さない。
The present inventors further treated this type of composite compound film with oxygen ions generated by discharging a gas containing at least oxygen, so that the main high-metal components in the composite compound film were oxidized and superconductivity occurred at high temperatures. I discovered that. In this case, it has been found that superconducting properties can be improved by heating the substrate. The optimal heat treatment temperature is room temperature ~
The temperature was 800°C. At temperatures higher than this, the properties of the film become unstable and do not exhibit steep superconductivity.

(具体実施例) 酸化マグネシウム単結晶(100)面を基体1として用
い、高周波プレナーマグネトロンスパツタにより、焼結
したB I −S r −Ca −Cu −0ターゲツ
トをArとOの混合ガス雰囲気でスパッタリング蒸着し
て、上記基体1上に結晶性のB1−5 r −Ca −
Cu −0被yA2として付着させ層状構造を形成した
(Specific Example) Using a magnesium oxide single crystal (100) plane as the substrate 1, a sintered B I - S r - Ca - Cu -0 target was sintered in a mixed gas atmosphere of Ar and O by high frequency planar magnetron sputtering. Crystalline B1-5 r -Ca - is deposited on the substrate 1 by sputtering.
Cu-0 was deposited as yA2 to form a layered structure.

この場合、スパッタガス圧力はQ、5Pa、スパッタリ
ング電力150W、スパッタリング時間1時間、被膜の
膜厚0.5μm、基体温度600℃であった。形成され
た被膜をさらに400℃に保ち、酸素イオン処理を行っ
た。5X10−4Torrの真空槽内で処理時間10分
であった。第2図は処理後の被膜の特性曲線である。零
抵抗温度100に以上という良好な特性を持つ薄膜が得
られた。
In this case, the sputtering gas pressure was Q, 5 Pa, the sputtering power was 150 W, the sputtering time was 1 hour, the film thickness was 0.5 μm, and the substrate temperature was 600° C. The formed film was further maintained at 400°C and subjected to oxygen ion treatment. The processing time was 10 minutes in a vacuum chamber of 5×10 −4 Torr. FIG. 2 shows the characteristic curve of the coating after treatment. A thin film with good properties such as a zero resistance temperature of 100 or higher was obtained.

この実施例では被11’i12の膜厚は0.5μmであ
るが、膜厚は0.1μmかそれ以下の薄い場合、10μ
m以上の厚い場合も超電導が発生ずることを確認した。
In this example, the film thickness of the coating 11'i12 is 0.5 μm, but if the film thickness is as thin as 0.1 μm or less, it may be 10 μm.
It was confirmed that superconductivity occurs even when the thickness is thicker than m.

本発明者らは、酸化マグネシウム以外の結晶性基体につ
いての有効性を詳細に実験的に調べた。
The present inventors experimentally investigated in detail the effectiveness of crystalline substrates other than magnesium oxide.

サファイア、スピネル単結晶基体上に、B1−5r−C
a−Cu−0被膜を、同様にスパッタリング蒸着法で付
着させ、これらの被膜を本発明の酸素イオン処理を行う
ことによりいずれも高温で超電導を示すことが確認され
た。また、チタン酸ストロンチウム、シリコン、ガリウ
ム砒素単結晶についても同様の結果が得られた。
Sapphire, B1-5r-C on spinel single crystal substrate
It was confirmed that a-Cu-0 films were similarly deposited by the sputtering deposition method, and that these films exhibited superconductivity at high temperatures by subjecting them to the oxygen ion treatment of the present invention. Similar results were also obtained for strontium titanate, silicon, and gallium arsenide single crystals.

本発明の超電導体は結晶構造が複雑でまだ良く分かって
いない、単結晶基体に基体温度をエピタキシャル温度以
上にあげて、単結晶性を高めても再現性よく超電導体が
得られない場合が多い。したがっ°C1本発明の実施例
に述べたごとく、基体温度はむしろ低い範囲に選び微結
晶構造を含む複合化合物被膜を形成した後熱処理により
結晶化し酸素イオン処理する方が再現性よく超電導体が
得られることを本発明者らは実験的に確認した。
The superconductor of the present invention has a complex crystal structure that is not yet well understood. Even if the substrate temperature is raised to above the epitaxial temperature of a single crystal substrate to improve single crystallinity, it is often difficult to obtain a superconductor with good reproducibility. . Therefore, as described in the Example of the present invention at °C1, it is better to select the substrate temperature in a low range, form a composite compound film containing a microcrystalline structure, crystallize it by heat treatment, and then treat it with oxygen ions to obtain a superconductor with better reproducibility. The present inventors have experimentally confirmed that

この場合、単結晶構造の基体は熱処理を行うと被膜の固
相エピタキシャル成長を助は有効である。
In this case, it is effective to heat-treat the single-crystal structure substrate to facilitate solid-phase epitaxial growth of the film.

特に基体上にアモルファス状態の被膜をあらかじめ形成
し、これを熱処理すると結晶性基体表面により効果的に
結晶性の被膜が固相エピタキシャルし、その後被膜形成
装置の真空をやふることなく引き続き本発明の酸素イオ
ン処理を行うことが超電導特性の優れた薄膜の形成に有
効であることを本発明者らは確認した。なお、超電導被
膜の結晶性が特に要求されない場合(急峻な超電導転位
が不要の時)は、多結晶の磁器基体が有効である。
In particular, by forming an amorphous film on a substrate in advance and heat-treating it, the crystalline film is effectively solid-phase epitaxially formed on the surface of the crystalline substrate. The present inventors have confirmed that oxygen ion treatment is effective in forming a thin film with excellent superconducting properties. Note that when crystallinity of the superconducting film is not particularly required (when steep superconducting dislocations are not required), a polycrystalline ceramic substrate is effective.

この種の酸化物被膜のスパッタリング蒸着では例えばA
rとOとの混合ガスをスパッタリングガスに用いる。ま
た実験的に、Ar、Xs、Ne。
In sputtering deposition of this type of oxide film, for example, A
A mixed gas of r and O is used as the sputtering gas. Also, experimentally, Ar, Xs, and Ne.

Krのような不活性ガスあるいはこれらの不活性ガスの
混合ガスがスパッタリングガスとして有効であることを
本発明者らは確認した。
The present inventors have confirmed that an inert gas such as Kr or a mixed gas of these inert gases is effective as a sputtering gas.

スパッタリング蒸着方式も、高周波二極スパッタ、直流
二極スパッタ、マグネトロンスパッタいずれも有効であ
ることを本発明者らは確認した。
The present inventors have confirmed that all sputtering vapor deposition methods, such as high-frequency bipolar sputtering, direct current bipolar sputtering, and magnetron sputtering, are effective.

特にこの種の装置では、直流スパッタがスパッタ電力等
の精密制御に有効であり、また直流マグネトロンスパッ
タ、あるいは直流マグネトロンスパッタガンなどが特に
有効であることを本発明者らは確認した。
Particularly in this type of apparatus, the present inventors have confirmed that DC sputtering is effective for precise control of sputtering power, etc., and that DC magnetron sputtering or a DC magnetron sputter gun is particularly effective.

上述のような作成方法により得られた複合化合物被膜に
対して酸素処理を第3図、第4図の構成の装置を用いて
行った。
The composite compound film obtained by the above-described method was subjected to oxygen treatment using an apparatus having the configuration shown in FIGS. 3 and 4.

まず第3図のイオン源21に酸素ガスあるいは酸素を含
む混合ガスgを導入し、このガスをはさんで対向した電
極22.23に高周波信号を印加してプラズマを発生さ
せる。このプラズマ中に磁場を形成するたの磁場発生源
24を配置し、効率よく発生させた酸素イオンを、複合
化合物被膜を形成した基板25を配置した基板台26と
上記イオン源のプラズマの間に電圧を印加することによ
り、酸素イオンをイオン源より引き出し、基板台26の
基板25上の複合化合物被膜2に照射する。
First, oxygen gas or a mixed gas g containing oxygen is introduced into the ion source 21 shown in FIG. 3, and a high frequency signal is applied to electrodes 22 and 23 facing each other with this gas in between to generate plasma. A magnetic field generation source 24 for forming a magnetic field in this plasma is arranged, and the efficiently generated oxygen ions are placed between the substrate table 26 on which the substrate 25 on which the composite compound film is formed and the plasma of the ion source. By applying a voltage, oxygen ions are extracted from the ion source and irradiated onto the composite compound coating 2 on the substrate 25 on the substrate stand 26 .

この時基板はヒータ27により室温〜800℃に加熱す
ることにより酸素イオン処理時間が短縮され被膜の超電
導特性が向上することを発明者らは見出した。又、プラ
ズマと特性試料台の間に印加する電圧がl0KV以下の
場合には被膜2の表面はスパッタリングされるが、被膜
内部に対して効果的に酸素イオン処理が行えることを確
認した。
At this time, the inventors have discovered that by heating the substrate from room temperature to 800° C. with the heater 27, the oxygen ion treatment time is shortened and the superconducting properties of the film are improved. Furthermore, it was confirmed that when the voltage applied between the plasma and the characteristic sample stage was 10 KV or less, the surface of the coating 2 was sputtered, but the interior of the coating could be effectively treated with oxygen ions.

第3図は真空槽31内に酸素ガスあるいは酸素を含む混
合ガスを導入し、このガスにマイクロ波を11fl射し
て放電させプラズマを発生させ、プラズマに磁場32を
印加して、酸素イオンのイオン化効率なトげたものをイ
オン源として用いたものである。この場合通常マイクロ
波源33には2.45G Hzのマイクロ波を使用し磁
場強度を875ガウス程度にすると電子のサイクロトロ
ン共鳴が生じるので酸素イオン化の効率が上がる。この
イオン源より引き出された酸素イオンを試料台36上に
配置された複合化合物被膜に照射する構造となっている
。この場合マイクロ波により効率よくイオン化された高
エネルギーの酸素イオンが複合化合物被膜の効率的に酸
化し超電導特性を向上させることを見い出した。
In Figure 3, oxygen gas or a mixed gas containing oxygen is introduced into a vacuum chamber 31, 11 fl of microwaves are irradiated to this gas to generate a discharge, and a magnetic field 32 is applied to the plasma to generate oxygen ions. An ion source with high ionization efficiency is used. In this case, if a 2.45 GHz microwave is normally used for the microwave source 33 and the magnetic field strength is set to about 875 Gauss, electron cyclotron resonance will occur, thereby increasing the efficiency of oxygen ionization. The structure is such that oxygen ions extracted from this ion source are irradiated onto the composite compound coating placed on the sample stage 36. In this case, we discovered that high-energy oxygen ions efficiently ionized by microwaves efficiently oxidize the composite compound film, improving its superconducting properties.

これ以外にも真空槽内に酸素ガスあるいは酸素を含む混
合ガスを導入し、このガスに高周波を平行1!極に印加
して放電させ、この放電プラズマ中に複合化合物被膜を
配置して、酸素処理することも出来る。この方法により
発明者らは被膜の超電導特性の向上することを確認した
。しかしこの方法では被膜にイオン以外が照射され表面
状態を変化させるので上述の酸素処理方法がより好まし
い。
In addition to this, oxygen gas or a mixed gas containing oxygen is introduced into the vacuum chamber, and high frequency waves are applied parallel to this gas! Oxygen treatment can also be performed by applying a voltage to a pole to cause a discharge, disposing a composite compound film in this discharge plasma, and treating the composite compound film with oxygen. The inventors confirmed that this method improves the superconducting properties of the coating. However, in this method, the coating is irradiated with a substance other than ions, changing the surface condition, so the above-mentioned oxygen treatment method is more preferable.

この理由で数IQKV以上の加速電圧を用いる通常のイ
オン注入技術による酸素処理等も十分効果のあることを
確認した。
For this reason, it has been confirmed that oxygen treatment using a normal ion implantation technique using an accelerating voltage of several IQKV or higher is sufficiently effective.

この種の被膜の結晶構造など詳細な特性は、基体上に被
n口が拘束されているため、被膜内には通常の焼結体で
は存在しない様な大きな歪とか欠陥が存在する。このた
め、焼結体の製造方法から被膜の製造方法を類推できる
ものでない、なお、被膜の熱処理の物理的な意味の詳細
は明らかではないが、超電導を示す構造の発生は被膜の
酸化処理に関連する。この場合本発明の被膜では、50
に7以上の注入電圧が損傷の少ない処理を可能にするこ
とが判った。
Regarding the detailed characteristics of this type of coating, such as its crystal structure, since the n-hole is restrained on the substrate, there are large strains and defects in the coating that do not exist in ordinary sintered bodies. For this reason, it is not possible to infer the manufacturing method of the film from the method of manufacturing the sintered body.Although the details of the physical meaning of the heat treatment of the film are not clear, the generation of a structure exhibiting superconductivity is due to the oxidation treatment of the film. Related. In this case, in the coating of the present invention, 50
It has been found that injection voltages of 7 or higher allow less damaging processing.

以上のような、酸素処理方法において複合化合物被膜に
酸素イオンを照射すると同時に500nm以下の短波長
の光線を照射することにより、酸素処理の効率を向上さ
せることが可能であることを見い出した。特に、紫外線
照射によるとその効果が大なることを確認した。つまり
これら酸素イオン処理により複合化合物被膜の超電導特
性が改善され、信頼性、長期安定性も著しく改善された
It has been found that in the above oxygen treatment method, the efficiency of oxygen treatment can be improved by irradiating the composite compound film with oxygen ions and simultaneously irradiating it with a light beam with a short wavelength of 500 nm or less. In particular, it was confirmed that the effect of ultraviolet irradiation was greater. In other words, these oxygen ion treatments improved the superconducting properties of the composite compound film, and significantly improved its reliability and long-term stability.

この種の複合化合物の構成元素であるII a族元素(
Sr、Ca、Ba等)の変化は転移温度を10に程度変
化させるが、本質的に本発明の特性を変えるものではな
い。
Group II a elements (
A change in Sr, Ca, Ba, etc.) changes the transition temperature by about 10 degrees, but this does not essentially change the characteristics of the present invention.

発明の効果 とりわけ、本発明にかかる超電導体は、超電導体を薄膜
化して酸素イオン処理している所に大きな特色がある。
Effects of the Invention Particularly, the superconductor according to the present invention is characterized in that the superconductor is made into a thin film and treated with oxygen ions.

すなわち、薄膜化は超電導体の素材を原子状態という極
微粒子に分解してから、基体上に堆積させるから、形成
された超電導体の組成は本質的に、従来の焼結体に比べ
て均質である。
In other words, in thin film formation, the superconductor material is decomposed into ultrafine particles in the atomic state and then deposited on the substrate, so the composition of the formed superconductor is essentially more homogeneous than that of conventional sintered bodies. be.

さらに通常行われている熱によるアニールに比べて本発
明による酸素イオンによる酸化処理は低温で制御性が良
好で短時間処理が可能である。したがって、非常に高精
度の超電導体が本発明で実現される。
Furthermore, compared to the commonly used thermal annealing, the oxidation treatment using oxygen ions according to the present invention can be performed at low temperatures, with good controllability, and in a short time. Therefore, a superconductor with very high precision is realized with the present invention.

以上の説明のごとく本発明の薄膜超電導体の製造方法に
よると、例えば結晶性基体上に薄膜状で形成されるので
焼結体より本質的により精度が高い上S1あるいはGa
Asなとのデバイスとの集積化が可能であるとともに、
ジョセフソン素子など各種の超電導デバイスの製造に実
用される。特にこの種の化合物超電導体の転移温度が室
温になる可能性もあり、従来の実用の範囲は広く、本発
明の工業的価値は高い。
As explained above, according to the method for producing a thin film superconductor of the present invention, it is formed in the form of a thin film on a crystalline substrate, so it is essentially more accurate than a sintered body, and S1 or Ga
It is possible to integrate devices such as As,
It is used in the production of various superconducting devices such as Josephson elements. In particular, the transition temperature of this type of compound superconductor may be room temperature, so the range of conventional practical use is wide, and the industrial value of the present invention is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の薄膜超電導体の製造方法で
形成した薄膜超電導体断面図、第2図はその特性曲線図
、第3図、第4図は本発明に用いるイオン処理装置の概
略構成図である。 1・・・基体、2・・・Bi−5r−Ca−Cu −0
被膜、g・・・酸素を含むガス。 代理人の氏名 弁理士 中尾敏男 ばか1名第1図 第2図 7X  屓 (k、)
FIG. 1 is a cross-sectional view of a thin film superconductor formed by the method for producing a thin film superconductor according to an embodiment of the present invention, FIG. 2 is a characteristic curve diagram thereof, and FIGS. 3 and 4 are ion processing equipment used in the present invention. FIG. 1...Substrate, 2...Bi-5r-Ca-Cu-0
Film, g... gas containing oxygen. Name of agent Patent attorney Toshio Nakao One idiot Figure 1 Figure 2 7X 屓 (k,)

Claims (6)

【特許請求の範囲】[Claims] (1)主成分が少なくともビスマス(Bi)、アルカリ
土類IIa族元素およびCuで構成される複合化合物被膜
に対し、酸素イオンを照射して前記被膜中の金属主成分
を酸化することを特徴とする薄膜超電導体の製造方法。 ここで、アルカリ土類はIIa族元素のうちの少なくとも
一種あるいは2種以上の元素を示す。
(1) A composite compound film whose main components are at least bismuth (Bi), an alkaline earth group IIa element, and Cu is irradiated with oxygen ions to oxidize the main metal components in the film. A method for manufacturing thin film superconductors. Here, alkaline earth refers to at least one or two or more elements of Group IIa elements.
(2)酸素イオン照射時の複合化合物被膜を加熱するこ
とを特徴とする特許請求の範囲第1項記載の薄膜超電導
体の製造方法。
(2) The method for producing a thin film superconductor according to claim 1, which comprises heating the composite compound film during oxygen ion irradiation.
(3)酸素イオン源として、少なくとも酸素を含むガス
の真空槽内での放電により生成したプラズマを用いるこ
とを特徴とする特許請求の範囲第1項記載の薄膜超電導
体の製造方法。
(3) The method for manufacturing a thin film superconductor according to claim 1, wherein plasma generated by discharging a gas containing at least oxygen in a vacuum chamber is used as the oxygen ion source.
(4)真空槽内での放電により生成した酸素イオンをこ
の真空槽内のプラズマと複合化合物被膜を設置した試料
台との間に電圧を印加して加速し照射することを特徴と
する特許請求の範囲第3項記載の薄膜超電導体の製造方
法。
(4) A patent claim characterized in that oxygen ions generated by electric discharge in a vacuum chamber are accelerated and irradiated by applying a voltage between the plasma in the vacuum chamber and a sample stage on which a composite compound coating is installed. A method for producing a thin film superconductor according to item 3.
(5)酸素イオンの照射と同時に光線を照射することを
特徴とする特許請求の範囲第3項記載の薄膜超電導体の
製造方法。
(5) The method for producing a thin film superconductor according to claim 3, characterized in that the light beam is irradiated at the same time as the oxygen ion irradiation.
(6)複合化合物被膜を形成した後同一の装置により引
き続き酸素イオン照射を行うことを特徴とする特許請求
の範囲第1項記載の薄膜超電導体の製造方法。
(6) The method for producing a thin film superconductor according to claim 1, characterized in that after forming the composite compound film, oxygen ion irradiation is performed using the same device.
JP63072466A 1988-03-25 1988-03-25 Production of thin film superconductor Pending JPH01246142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63072466A JPH01246142A (en) 1988-03-25 1988-03-25 Production of thin film superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63072466A JPH01246142A (en) 1988-03-25 1988-03-25 Production of thin film superconductor

Publications (1)

Publication Number Publication Date
JPH01246142A true JPH01246142A (en) 1989-10-02

Family

ID=13490114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63072466A Pending JPH01246142A (en) 1988-03-25 1988-03-25 Production of thin film superconductor

Country Status (1)

Country Link
JP (1) JPH01246142A (en)

Similar Documents

Publication Publication Date Title
EP0288001B1 (en) Process for producing superconducting thin film and device therefor
JP2923372B2 (en) Manufacturing method of oxide superconductor film
US4874741A (en) Non-enhanced laser evaporation of oxide superconductors
JPS63224116A (en) Manufacture of thin film superconductor
JPS63239742A (en) Manufacture for film superconductor
Shrivastava Deposition techniques for high-tc superconducting YBCO thin films
JPH01246142A (en) Production of thin film superconductor
JPH01208327A (en) Production of thin film of superconductor
JPS63299019A (en) Manufacture of thin film superconductive material
JPH01286914A (en) Production of superconductor of thin film
JPH06291375A (en) Manufacture of thin film superconductor and its manufacture
JP2702711B2 (en) Manufacturing method of thin film superconductor
JPS63298920A (en) Manufacture of membranous superconductor
JPH06116094A (en) Thin film superconductor and its production
JPH01261204A (en) Production of oxide based superconductor
JPH01112614A (en) Manufacture of super conductive film
JP2742418B2 (en) Method for producing oxide superconducting thin film
JP2525852B2 (en) Preparation method of superconducting thin film
JPH05170448A (en) Production of thin ceramic film
JPH06280018A (en) Method and device for production of thin film superconductor
JPH02296724A (en) Manufacture of thin film superconductor
JPH05194095A (en) Production of thin-film electric conductor
JPH02170311A (en) Manufacture of oxide superconductor thin film
JP2501615B2 (en) Preparation method of superconducting thin film
JPH01298005A (en) Production of oxide-based superconductor