JPH01208327A - Production of thin film of superconductor - Google Patents

Production of thin film of superconductor

Info

Publication number
JPH01208327A
JPH01208327A JP63032238A JP3223888A JPH01208327A JP H01208327 A JPH01208327 A JP H01208327A JP 63032238 A JP63032238 A JP 63032238A JP 3223888 A JP3223888 A JP 3223888A JP H01208327 A JPH01208327 A JP H01208327A
Authority
JP
Japan
Prior art keywords
thin film
substrate
vapor deposition
film superconductor
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63032238A
Other languages
Japanese (ja)
Inventor
Hideaki Adachi
秀明 足立
Hiroshi Ichikawa
洋 市川
Shinichiro Hatta
八田 真一郎
Kiyotaka Wasa
清孝 和佐
Kentaro Setsune
瀬恒 謙太郎
Kumiko Hirochi
広地 久美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63032238A priority Critical patent/JPH01208327A/en
Publication of JPH01208327A publication Critical patent/JPH01208327A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain thin-film superconductor having a transition point over 100K, by forming a coating film of Bi-Sr-Ca-Cu-O complex on the base plate, then heat-treating. CONSTITUTION:A more than 0.1 micrometer thick coating film 12 of a complex containing Bi, Sr, Ca, Cu as major components is formed on the base which is heated over 600 deg.C and has a linear expansion coefficient of alpha>10<-8>/ deg.C such as MgO single crystal 11, by a physical gas-phase process such as the sputtering metallization, thermal metallization or a chemical gas-phase method such as plasma-chemical gas-phase method or photochemical gas-phase method. Then, the coated base is heat-treated at 600-1,000 deg.C for 1-100 hours by introducing an oxygen-containing gas into the apparatus for forming the coating layer without exposure to air to give a coating layer of Bi-Sr-Ca-Cu-O complex.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超電導体の製造方法に関するものである。特に
化合物薄膜超電導体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing superconductors. In particular, it relates to a method for manufacturing compound thin film superconductors.

従来の技術 高温超電導体として、A15型2元系化合物として窒化
ニオブ(NbN)やゲルマニウムニオブ(NbsGe)
などが知られていたが、これらの材料の超電導転移温度
はたかだか24°にであった。一方、ペロブスカイト系
3元化合物は、さらに高い転移温度が期待され、Ba−
La−Cu−0系の高温超電導体が提案された[ J、
 G、 Bend。
Conventional technology Niobium nitride (NbN) and germanium niobium (NbsGe) are used as A15 type binary compounds as high-temperature superconductors.
were known, but the superconducting transition temperature of these materials was at most 24°. On the other hand, perovskite-based ternary compounds are expected to have even higher transition temperatures, and Ba-
A La-Cu-0-based high-temperature superconductor was proposed [J,
G. Bend.

rz and K、A、Muller、ツァイト シコ
リフト フェアフィジーク(Ze tshrift f
 (I rphysik B)−Condensed 
Matter 64.189−193 (1986) 
]。さらに、]Y−Ba−Cu−0がより高温の超電導
材料であることが最近提案された。(文献)  [8,
K、  Wu 等。
rz and K, A, Muller, Ze tshrift f.
(I rphysik B)-Condensed
Matter 64.189-193 (1986)
]. Furthermore, ]Y-Ba-Cu-0 was recently proposed to be a higher temperature superconducting material. (Reference) [8,
K., Wu et al.

フィジカルレビュー レターズ(Physical R
eview Letters) Vol、58 No9
.908−910 (1987) ]さらに、]B1−
8r−Ca−Cu−0の材料が100に以上の転移温度
を示すことも発見された。
Physical Review Letters (Physical R
(view Letters) Vol, 58 No9
.. 908-910 (1987)]Furthermore,]B1-
It has also been discovered that the 8r-Ca-Cu-0 material exhibits a transition temperature of over 100°C.

この種の材料の超電導機構の詳細は明らかではないが、
転移温度が液体窒素温度以上に高くなる可能性があり、
高温超電導体として従来の3元系化合物より、より有望
な特性が期待される。
Although the details of the superconducting mechanism of this type of material are not clear,
The transition temperature can be higher than liquid nitrogen temperature,
It is expected to have more promising properties as a high-temperature superconductor than conventional ternary compounds.

発明が解決しよとする課題 しかしながら、B1−5r−Ca−Cu  O系の材料
は、現在の技術では焼結という過程でしか形成できない
ため、セラミックの粉末あるいはブロックの形状でしか
得られない。一方、この種の材料を実用化する場合、薄
膜状に加工することが強(要望されているが、従来の技
術では、薄膜化は非常に困難とされている。
Problems to be Solved by the Invention However, B1-5r-Ca-CuO-based materials can only be formed through the process of sintering using current technology, and therefore can only be obtained in the form of ceramic powder or blocks. On the other hand, if this type of material is to be put to practical use, it is highly desirable to process it into a thin film, but with conventional techniques, it is considered extremely difficult to process the material into a thin film.

本発明者らは、この種の材料の薄膜をイオンプロセスに
より付着させると、薄膜状の高温超電体が形成されるこ
とを発見し、これにもとづいて薄膜超電導体の製造方法
を発明した。
The present inventors have discovered that when a thin film of this type of material is deposited by an ion process, a thin film-like high temperature superconductor is formed, and based on this discovery, they have invented a method for producing a thin film superconductor.

課題を解決するための手段 本発明の製造方法で形成する薄膜超電導体の基本構成は
、基体表面に主成分がBi、Sr、Cal Cu、Oの
4元化合物被膜を付着させた層状構造を特徴としている
。本発明者らこの種の層状構造超電導体は、加熱された
基体上に、主成分がBi、Sr、Ca、Cu、Oである
複合化合物被膜を例えば蒸着というプロセスで付着させ
、さらに酸化性雰囲気で熱処理することにより、形成さ
れることを見い出し発明に致ったものである。
Means for Solving the Problems The basic structure of the thin film superconductor formed by the manufacturing method of the present invention is characterized by a layered structure in which a quaternary compound coating containing Bi, Sr, Cal Cu, and O as main components is adhered to the surface of the substrate. It is said that The present inventors have developed this type of layered structure superconductor by depositing a composite compound film containing Bi, Sr, Ca, Cu, and O as main components on a heated substrate, for example, by a process called vapor deposition, and then depositing it in an oxidizing atmosphere. The present invention was based on the discovery that it can be formed by heat treatment.

作用 本発明にかかる薄膜超電導体の製造方法は、特定の組成
の超電導体を薄膜化している所に大きな特色がある。す
なわち、薄膜化は超電導体の素材を原子状態という極微
粒子に分解してから基体上に堆積させるから、形成され
た超電導体の組成は本質的に、従来の焼結体に比べて均
質である。したがってBi、Sr、Ca、Cu、O薄膜
よりなる非常に高精度の超電導体が本発明の方法を用い
て実現される。
Function: The method for manufacturing a thin film superconductor according to the present invention is characterized in that a superconductor having a specific composition is made into a thin film. In other words, because film thinning involves decomposing the superconductor material into ultrafine particles in the atomic state and then depositing them on the substrate, the composition of the formed superconductor is essentially more homogeneous than that of conventional sintered bodies. . Therefore, very high precision superconductors consisting of Bi, Sr, Ca, Cu, O thin films are realized using the method of the invention.

実施例 本発明の実施例を図面とともに説明する。Example Embodiments of the present invention will be described with reference to the drawings.

、 第1図において、4元化合物被膜12は、例えばス
パッタリング法で形成する。この場合、基体11は、超
電導を示す4元化合物被膜12の保持を目的としている
。したがって、本発明の超電導体は本質的に層状構造か
らなっている。この層状構造は通常数800〜900℃
の高温で形成し、超電導を例えば液体窒素温度(−19
5°C)の低温で動作させるため、特に基体11と被膜
12の密着性が悪(なり、しばしば層状構造が破損され
ることを本発明者らは確認した。さらに本発明者らは、
詳細な基体の熱的特性を各種の材質について調べた結果
、基体の線熱彫版係数α>10−’/eであれば、上記
層状構造の破損がな(、実用されることを確認した。例
えばα< 10−6/eの石英ガラスを基体に用いると
、被膜12は無数の亀裂が入り不連続な被膜となり、実
用に供しにくいことを本発明者らは確認した。
In FIG. 1, the quaternary compound film 12 is formed by, for example, a sputtering method. In this case, the substrate 11 is intended to hold a quaternary compound coating 12 exhibiting superconductivity. The superconductor of the invention therefore essentially consists of a layered structure. This layered structure usually has a temperature of several 800 to 900 degrees Celsius.
For example, superconductivity is formed at high temperatures of liquid nitrogen (-19
The present inventors have confirmed that due to the operation at a low temperature of 5° C., the adhesion between the substrate 11 and the coating 12 is particularly poor, and the layered structure is often damaged.
As a result of examining the detailed thermal characteristics of the substrate for various materials, it was confirmed that if the linear thermal engraving coefficient α>10-'/e of the substrate, the layered structure described above would not be damaged (and could be used in practical use). For example, the present inventors have confirmed that if quartz glass with α<10-6/e is used as the substrate, the coating 12 will have numerous cracks and become a discontinuous coating, making it difficult to put it to practical use.

さらに、本発明者らは、第1図の層状構造の基体11に
機能性から見て、最適の材料があることを見い出した。
Furthermore, the present inventors have discovered that there is an optimal material for the layered structure substrate 11 shown in FIG. 1 from the viewpoint of functionality.

すなわち、結晶性の高い4元化合物被膜12を基体11
の表面13に形成させるためには、単結晶の基体が有効
である。本発明者らは詳細に最適基体材料を調べた結果
、基体11として、酸化マグネシウム、サファイア(α
−Al2O3)、スピネル、チタン酸ストロンチウユウ
ム、シリコン、ガリウム砒素等の単結晶が有効であるこ
とを確認した。もっとも、これは表面13に効果的に結
晶性の高い被膜12を成長させるためのものであるから
、少なくとも基体表面13が単結晶であればよい。
That is, the highly crystalline quaternary compound coating 12 is applied to the substrate 11.
A single crystal substrate is effective for forming it on the surface 13 of. As a result of detailed investigation into the optimal substrate material, the present inventors found that the substrate 11 was made of magnesium oxide, sapphire (α
-Al2O3), spinel, strontium titanate, silicon, gallium arsenide, and other single crystals were confirmed to be effective. However, since this is for effectively growing a highly crystalline coating 12 on the surface 13, it is sufficient if at least the substrate surface 13 is a single crystal.

本発明者らは、この種の超電導体を任意の形状例えば円
筒状に加工する場合、基体としては単結晶よりも、所謂
焼結磁器が有効であることを確認するともに、最適の磁
器材料を見い出した。すなわち、磁器基体として、アル
ミナ、酸化マグルシウム、酸化ヂルコニウム、ステアタ
イト、ホルステライト、ヘリリア、スピネル等が基体の
加工等、超電導被膜12の基体11への密着性が最適で
あることを本発明者らは確認した。この場合も単結晶と
同様に、基体の表面さえこの種の磁器で構されていると
よい。
The present inventors have confirmed that so-called sintered porcelain is more effective as a substrate than a single crystal when processing this type of superconductor into an arbitrary shape, such as a cylinder, and have also found the most suitable porcelain material. I found it. That is, the present inventors have found that alumina, maglucium oxide, zirconium oxide, steatite, forsterite, heliaria, spinel, etc. are used as the porcelain substrate to provide optimal adhesion of the superconducting coating 12 to the substrate 11 during processing of the substrate. confirmed. In this case as well, it is preferable that even the surface of the substrate is made of this type of porcelain, as in the case of single crystals.

薄膜超電導体の形成には、まずBi、Sr、Ca、Cu
、O成分の複合化合物被膜をスパッタリング蒸着あるい
は熱蒸着例えば電子ビーム蒸着、レーザビーム蒸着等の
物理的気相成長法で基体上に付着させる。この場合、複
合化合物被膜は、成・分Bi、Sr、CaおよびCuの
化学量論比さえ合致していればよ(、酸素量は特に重要
ではなとことを本発明者らは確認した。その結果複合化
合物被膜の形成法は物理的気相成長法に限定されたもの
ではなく、化学的気相成長法例えば常圧あるいは減圧化
学的気相成長法、プラズマ化学的気相成長法、光化学的
気相成長法も、合致させれば、有効であることを本発明
者らは確認した。
To form a thin film superconductor, first Bi, Sr, Ca, Cu
, O component is deposited on the substrate by physical vapor deposition methods such as sputtering deposition or thermal evaporation, such as electron beam evaporation or laser beam evaporation. In this case, the composite compound film only needs to match the stoichiometric ratios of the components Bi, Sr, Ca, and Cu (the present inventors have confirmed that the amount of oxygen is not particularly important). As a result, methods for forming composite compound films are not limited to physical vapor deposition, but also chemical vapor deposition, such as atmospheric or reduced pressure chemical vapor deposition, plasma chemical vapor deposition, photochemical vapor deposition, and photochemical vapor deposition. The present inventors have confirmed that a chemical vapor phase growth method is also effective if matched.

本発明者らは複合化合物被膜を基体11の表面13に付
着させる場合、基体の最適の温度範囲が存在することを
本発明者らは確認した。すなわち基体最適温度範囲は1
00〜1000℃である。
The present inventors have confirmed that when a composite compound coating is applied to the surface 13 of the substrate 11, there is an optimum temperature range for the substrate. In other words, the optimum temperature range for the substrate is 1
00-1000°C.

なお、100℃以下では、基体表面への複合酸化物被膜
の付着性が悪くなる。また、1000℃以上では複合酸
化物被膜中の成分3 i、S r、CaおよびCuの化
学量論比からのずれが太き(なる。
Note that below 100°C, the adhesion of the composite oxide film to the substrate surface deteriorates. Further, at temperatures above 1000°C, the deviation from the stoichiometric ratio of components 3i, Sr, Ca, and Cu in the composite oxide film becomes large.

ところで、このBi、Sr、Ca、Cu、O系複合化合
物の超電導特性は、その組成と作製条件により転移温度
が100 K以下の相と100に以上の相を示す。これ
らの相は、複合化合物被膜を付着させる時の基体の温度
を600℃以上とすることにより、100に以上の複合
酸化物被膜の特性に対する再現性が良くなることを本発
明者らは確認した。
By the way, the superconducting properties of this Bi, Sr, Ca, Cu, O-based composite compound exhibit a phase with a transition temperature of 100 K or less and a phase with a transition temperature of 100 K or more, depending on its composition and manufacturing conditions. The present inventors have confirmed that the reproducibility of the properties of the composite oxide film of 100 or higher can be improved by setting the temperature of the substrate at 600°C or higher when attaching the composite compound film to these phases. .

しかしながら作製した被膜は、そのままは良好な超電導
転移特性を示さない。
However, the produced film does not exhibit good superconducting transition characteristics as it is.

本発明者らはこの種の複合化合物被膜をさらに空気、ア
ルゴンと酸素チッソお酸素の混合ガスあるいは純酸素な
どの酸化性雰囲気で熱処理することにより、超電導が発
生することを発見した。この場合最適の熱処理温度は6
00〜1000 ’C。
The present inventors have discovered that superconductivity can be generated by further heat-treating this type of composite compound film in an oxidizing atmosphere such as air, a mixed gas of argon, oxygen, nitrogen, and oxygen, or pure oxygen. In this case, the optimal heat treatment temperature is 6
00-1000'C.

熱処理時間は1〜100時間である。The heat treatment time is 1 to 100 hours.

以下本発明の内容をさらに深く理解されるために、さら
に具体的な具体実施例を示す。
In order to further understand the content of the present invention, more specific examples will be shown below.

(具体実施例) 酸化マグネシウム単結晶(100)面を基体11として
用い、高周波ブレナーマグネトロンスパッタにより、焼
結したB 1−3r−Ca−Cu−0ターゲツトをAr
と酸素の混合ガス雰囲気でスパッタリング蒸着して、上
記基体上に結晶性のBi −8r−Ca−Cu−0被膜
として付着させ71状構造を形成した。
(Specific Example) Using a magnesium oxide single crystal (100) plane as the substrate 11, a sintered B1-3r-Ca-Cu-0 target was sputtered with Ar by high-frequency Brenner magnetron sputtering.
A crystalline Bi-8r-Ca-Cu-0 film was deposited on the substrate by sputtering in a mixed gas atmosphere of and oxygen to form a 71-shaped structure.

この場合、Arと酸素の混合ガス圧力は0.5Pa、ス
パッタリング電力150W、スパッタリング時間1時間
、被膜の膜厚0.5μm、基体温度700℃であった。
In this case, the mixed gas pressure of Ar and oxygen was 0.5 Pa, the sputtering power was 150 W, the sputtering time was 1 hour, the film thickness was 0.5 μm, and the substrate temperature was 700° C.

形成された被膜に対し、その温度を700°Cとし、形
成装置内に酸素を含んだガスを引き継ぎ導入して、1時
間熱処理した。
The formed film was heat-treated for 1 hour at a temperature of 700° C. and an oxygen-containing gas was introduced into the forming apparatus.

又同様に形成された被膜を装置より取り出し、空気中で
880℃ 1時間熱処理後3時間で除冷した。
Further, a similarly formed film was taken out from the apparatus, heat-treated in air at 880° C. for 1 hour, and then slowly cooled for 3 hours.

この実施例では被膜の膜厚は0.5μmであるが、膜厚
は0.1μmかそれ以下の薄い場合、lOμ−以上の厚
い場合も超電導が発生することを確認した。
In this example, the film thickness of the film is 0.5 μm, but it was confirmed that superconductivity occurs even when the film thickness is as thin as 0.1 μm or less, or as thick as 10 μm or more.

本発明者らは、酸化マグネシウム以外の結晶性基体につ
いての有効性を詳細に実験的に調べた。
The present inventors experimentally investigated in detail the effectiveness of crystalline substrates other than magnesium oxide.

スピネル単結晶基体上に、Bi、Sr、Ca、Cu、O
系の被膜を、酸化マグネシウム単結晶の場合と同様にス
パッタリング蒸着法で付着させ、これらの被膜を空気中
で880℃1時間熱処理後3時間除冷するといずれも超
電導を示すことが確認された。また、チタン酸ストロン
チュウム、シリコン、ガリウム砒素単結晶についても同
様の結果が得られた。
Bi, Sr, Ca, Cu, O on spinel single crystal substrate
The system coatings were deposited by sputtering vapor deposition in the same manner as the magnesium oxide single crystal, and when these coatings were heat-treated in air at 880°C for 1 hour and then slowly cooled for 3 hours, it was confirmed that they all exhibited superconductivity. Similar results were also obtained for strontium titanate, silicon, and gallium arsenide single crystals.

B + + S r r Ca e Cu e O系の
超電導材料の構造は複雑であり、まだわかっていない。
The structure of B + + S r r Ca e Cu e O-based superconducting materials is complex and not yet understood.

単結晶基体に基体温度をエピタキシャル温度以上にあげ
た場合1作製条件により意図した結晶相が得られない場
合が多い。したがって、基体温度はむしろ低い範囲に選
らびアモルファスないしは微結晶構造の複合化合物被膜
を形成した後熱処理により結晶化する方が再現性よ(超
電導特性が得られることを本発明者らは実験的に確認し
た。
When the temperature of a single-crystal substrate is raised above the epitaxial temperature, the intended crystal phase cannot be obtained in many cases depending on the manufacturing conditions. Therefore, it is better to select the substrate temperature in a low range, form a complex compound film with an amorphous or microcrystalline structure, and then crystallize it by heat treatment. confirmed.

この場合、単結晶構造の基体は熱処理過程において、被
膜の固相エピタキシャル成長を助は有効である。特に基
体上にアモルファス状態の被膜をあらかじめ形成し、こ
れを熱処理すると基板単結晶材料を適切に選択すること
により、結晶性基体表面に効果的に結晶性の被膜が固相
エピタキシャルし、超電導特性の優れた薄膜の形成に有
効であることを本発明者らは確認した。なお、超電導被
膜の結晶性が特に要求されない場合(急峻な超電導転位
が不要の時)は、多結晶の磁器基体が有効である。
In this case, the substrate having a single crystal structure is effective in assisting the solid phase epitaxial growth of the coating during the heat treatment process. In particular, by forming an amorphous film on the substrate in advance and heat-treating it, by appropriately selecting the single crystal material of the substrate, the crystalline film can be effectively solid-phase epitaxially formed on the surface of the crystalline substrate, and the superconducting properties can be improved. The present inventors have confirmed that this method is effective in forming an excellent thin film. Note that when crystallinity of the superconducting film is not particularly required (when steep superconducting dislocations are not required), a polycrystalline ceramic substrate is effective.

この種の酸化物被膜のスパッタリング蒸着では例えばA
rと02との混合ガスをスパッタリングガスに用いる。
In sputtering deposition of this type of oxide film, for example, A
A mixed gas of r and 02 is used as the sputtering gas.

このほか実験的に、A r 、X e *Ne、Krの
ような不活性ガスあるいはこれらの不活性ガスの混合ガ
スがスパッタリングガスとして有効であることを本発明
者らは確認した。
In addition, the present inventors have experimentally confirmed that inert gases such as Ar, Xe*Ne, and Kr, or a mixed gas of these inert gases, are effective as sputtering gases.

スパッタリング蒸着方式も、二極スパッタ、高周波二極
スパッタ、直流二極スパッタ、マグネトロンスパッタい
ずれも有効であることを本発明者らは確認した。特に直
流スパッタの場合、スパッタリングターゲラ、トの抵抗
率を10−3Ω備以下に低くする事が必要で、これ以上
の抵抗率では、充分なスパッタリング放電が発生しない
。なお、ターゲットの抵抗率の調整は通常ターゲットの
焼結条件によって行う。
The present inventors have confirmed that all sputtering vapor deposition methods such as bipolar sputtering, high-frequency bipolar sputtering, DC bipolar sputtering, and magnetron sputtering are effective. Particularly in the case of DC sputtering, it is necessary to lower the resistivity of the sputtering target layer to less than 10@-3 Ω; if the resistivity is higher than this, sufficient sputtering discharge will not occur. Note that the resistivity of the target is usually adjusted by adjusting the sintering conditions of the target.

特にこの種の装置では、直流スパッタがスパッタ電力等
の精密制御に有効であり、また直′流マグネトロンスパ
ッタ、あるいは直流マグネトロンスパッタガンなどが特
に有効であることを本発明者らは確認した。
Particularly in this type of apparatus, the present inventors have confirmed that DC sputtering is effective for precise control of sputtering power, etc., and that DC magnetron sputtering or a DC magnetron sputter gun is particularly effective.

なお、基体表面に′複合化合物被膜の形成法として、金
属主成分を物理的気相成長法で基体上に付着させ、さら
に酸素ビームあるいは酸素イオンを被膜形成中に被膜に
照射し、基体表面で金属主成分を酸化させることも可能
である。物理的気相成長法としては、スパッタリング以
外に熱蒸着例えば電子ビームを照射しながら、複合酸化
物被膜の合金主成分をターゲットとしてスパッタリング
蒸着する。この場合複合酸化物ターゲットとしてスパッ
タリング蒸着するよりも被膜形成速度が1桁以上速い特
長を示し、工業的により有効である。
In addition, as a method for forming a composite compound film on the surface of a substrate, the main component of the metal is deposited on the substrate by physical vapor deposition, and then an oxygen beam or oxygen ions are irradiated onto the film during film formation. It is also possible to oxidize the metal main component. In addition to sputtering, the physical vapor deposition method includes thermal evaporation, for example, sputtering deposition using the main alloy component of the composite oxide film as a target while irradiating with an electron beam. In this case, the film formation rate is more than an order of magnitude faster than sputtering vapor deposition using a composite oxide target, and it is industrially more effective.

この種の被膜の結晶構造など詳細な特性は、基体上に被
膜が拘束されているため、被膜内には通常の焼結体では
存在しない様な大きな歪とか欠陥が存在する。このため
、焼結体の製造方法から被膜の製造方法を類推できるも
のでない。なお、被膜の熱処理の物理的な意味の詳細は
明らかではないが、おおよそつぎにように考えられる。
The detailed characteristics of this type of coating, such as its crystal structure, are such that because the coating is constrained on the substrate, there are large strains and defects within the coating that do not exist in ordinary sintered bodies. For this reason, it is not possible to infer the method of manufacturing the coating from the method of manufacturing the sintered body. Although the details of the physical meaning of the heat treatment of the film are not clear, it can be roughly considered as follows.

すなわち、スパッタリング蒸着等で基体上に付着させた
複合化合物被膜では、B1−8r−Ca−Cu −Oの
化合物を形成していない。この場合、例えば(Sr、C
a)Cub3正方晶のペロブスカイト構造のネットワー
ク中にA元素の酸化物が分散した複合酸化物を形成して
いる。超電導は、層状ペロブスカイト構造の発生に起因
し、この過程が熱処理に関連する。なお、熱処理時間が
1時間以下で超電導性が得られないのは、転移温度10
0に以上の結晶相の生成が不充分であった事に起因して
いると考えられる。なお、熱処理は通常のヒータ加熱炉
により行なったが、レーザ光、赤外線等の工学的熱処理
方法あるいは電子線による加熱方法等が応用可能である
That is, the composite compound film deposited on the substrate by sputtering vapor deposition or the like does not form the compound B1-8r-Ca-Cu-O. In this case, for example (Sr, C
a) A complex oxide is formed in which the oxide of element A is dispersed in a network of Cub3 tetragonal perovskite structure. Superconductivity results from the generation of layered perovskite structures, and this process is associated with heat treatment. It should be noted that superconductivity cannot be obtained when the heat treatment time is less than 1 hour because the transition temperature is 10
This is thought to be due to insufficient formation of crystalline phases of 0 or more. Although the heat treatment was carried out using an ordinary heater heating furnace, it is also possible to apply an engineering heat treatment method using laser light, infrared rays, etc., or a heating method using an electron beam.

この種の4元化合物超電導体B1−8r−Ca−Cu−
0の構成元素Bi、SrおよびCaの変化による超電導
特性の変化の詳細は明らかではない。ただBは、3価+
 S r + Caは2価を示しているのは事実ではあ
る。
This type of quaternary compound superconductor B1-8r-Ca-Cu-
The details of changes in superconducting properties due to changes in the constituent elements Bi, Sr, and Ca of 0 are not clear. However, B is trivalent +
It is true that S r + Ca indicates divalence.

発明の効果 とりわけ、本発明にかかる超電導体は、Bi。Effect of the invention In particular, the superconductor according to the present invention is made of Bi.

Sr、Ca、Cu、Oよりなる超電導体を薄膜化してい
る所に大きな特色がある。すなわち、薄膜化は超電導体
の素材を原子状態という極微粒子に分解してから、基体
上に堆積させるから、形成された超電導体の組成は本質
的に、従来の焼結体に比べて均質である。したがって、
非常に高精度の超電導体が本発明で実現される。
A major feature is that the superconductor made of Sr, Ca, Cu, and O is made into a thin film. In other words, in thin film formation, the superconductor material is decomposed into ultrafine particles in the atomic state and then deposited on the substrate, so the composition of the formed superconductor is essentially more homogeneous than that of conventional sintered bodies. be. therefore,
Superconductors of very high precision are realized with the present invention.

以上の説明のごとく本発明の薄膜超電導体の製造方法に
よると、例えば結晶性基体上に薄膜状で形成されるので
焼結体より本質的により精度が高い上SiあるいはGa
Asなどのデバイスとの集積化が可能であるとともに、
ジョセフソン素子など各種の超電導デバイスの製造に実
用される。特にこの種の化合物超電導体の転移温度が室
温になる可能性もあり、従来の実用の範囲は広(、本発
明の工業的価値は高い。
As explained above, according to the method for producing a thin film superconductor of the present invention, it is formed in the form of a thin film on a crystalline substrate, so it is essentially more accurate than a sintered body, and is made of Si or Ga.
It is possible to integrate devices such as As, and
It is used in the production of various superconducting devices such as Josephson elements. In particular, the transition temperature of this type of compound superconductor may be room temperature, so the range of conventional practical use is wide (and the industrial value of the present invention is high).

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例の薄膜超電導体の製造方法で形成
した薄膜超電導体の基本構成図である。 11・・・基体、12・・・4元化合物被膜。
The figure is a basic configuration diagram of a thin film superconductor formed by a method for manufacturing a thin film superconductor according to an embodiment of the present invention. 11... Substrate, 12... Quaternary compound coating.

Claims (8)

【特許請求の範囲】[Claims] (1)基体上に主成分がBi、Sr、Ca、Cu、Oで
ある複合化合物被膜を付着させ、さらに上記被膜を熱処
理することを特徴とする薄膜超電導体の製造方法。
(1) A method for producing a thin film superconductor, which comprises depositing a composite compound coating whose main components are Bi, Sr, Ca, Cu, and O on a substrate, and further heat-treating the coating.
(2)基体を、線膨脹係数α>10^−^6/℃の材質
で構成したことを特徴とする特許請求の範囲第1項記載
の薄膜超電導体の製造方法。
(2) The method for manufacturing a thin film superconductor according to claim 1, wherein the substrate is made of a material having a coefficient of linear expansion α>10^-^6/°C.
(3)基体を、酸化マグネシウム、サファイア(α−A
l_2O_3)、スピネル、チタン酸ストロンチュウム
、シリコン、ガリウム砒素等の単結晶の少なくとも一種
で構成したことを特徴とする特許請求の範囲第1項記載
の薄膜超電導体の製造方法。
(3) The substrate is magnesium oxide, sapphire (α-A
2. The method for producing a thin film superconductor according to claim 1, wherein the thin film superconductor is made of at least one of single crystals such as 1_2O_3), spinel, strontium titanate, silicon, and gallium arsenide.
(4)基体を、アルミナ、酸化マグネシウム、酸化ヂル
コニウム、ステアタイト、ホルステライト、ベリリア、
スピネル等の磁器で構成したことを特徴とする特許請求
の範囲第1項記載の薄膜超電導体の製造方法。
(4) The base material is alumina, magnesium oxide, zirconium oxide, steatite, forsterite, beryllia,
A method for manufacturing a thin film superconductor according to claim 1, characterized in that the thin film superconductor is made of porcelain such as spinel.
(5)複合化合物被膜を、スパッタリング蒸着、熱蒸着
等の物理的気相成長法もしくは、常圧あるいは減圧化学
的気相成長法、プラズマ化学的気相成長法、光化学的気
相成長法等の化学的気相成長法で基体上に付着させるこ
とを特徴とする特許請求の範囲第1項記載の薄膜超電導
体の製造方法。
(5) The composite compound film is formed by physical vapor deposition methods such as sputtering vapor deposition or thermal evaporation, or by atmospheric or low pressure chemical vapor deposition methods, plasma chemical vapor deposition methods, photochemical vapor deposition methods, etc. 2. A method for producing a thin film superconductor according to claim 1, wherein the thin film superconductor is deposited on a substrate by chemical vapor deposition.
(6)スパッタリング蒸着において、被膜蒸着中基体温
度を600℃以上に設定することを特徴とする特許請求
の範囲第5項記載の薄膜超電導体の製造方法。
(6) A method for manufacturing a thin film superconductor according to claim 5, characterized in that in sputtering deposition, the substrate temperature is set at 600° C. or higher during film deposition.
(7)形成した複合化合物被膜を、空気にさらすことな
く形成工程に引き継ぎ少なくとも酸素を含むガスを被膜
形成装置に導入し、基体温度を200〜900℃の範囲
内に設定することを特徴とする特許請求の範囲第5項記
載の薄膜超電導体の製造方法。
(7) The formed composite compound film is transferred to the forming process without being exposed to air, and a gas containing at least oxygen is introduced into the film forming apparatus, and the substrate temperature is set within the range of 200 to 900°C. A method for manufacturing a thin film superconductor according to claim 5.
(8)熱処理において、雰囲気として少なくとも酸素を
含むガスを用い、基板温度を600℃以上に設定するこ
とを特徴とする特許請求の範囲第1項記載の薄膜超電導
体の製造方法。
(8) The method for manufacturing a thin film superconductor according to claim 1, wherein in the heat treatment, a gas containing at least oxygen is used as an atmosphere, and the substrate temperature is set at 600° C. or higher.
JP63032238A 1988-02-15 1988-02-15 Production of thin film of superconductor Pending JPH01208327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63032238A JPH01208327A (en) 1988-02-15 1988-02-15 Production of thin film of superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63032238A JPH01208327A (en) 1988-02-15 1988-02-15 Production of thin film of superconductor

Publications (1)

Publication Number Publication Date
JPH01208327A true JPH01208327A (en) 1989-08-22

Family

ID=12353409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63032238A Pending JPH01208327A (en) 1988-02-15 1988-02-15 Production of thin film of superconductor

Country Status (1)

Country Link
JP (1) JPH01208327A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212227A (en) * 1988-02-17 1989-08-25 Nippon Telegr & Teleph Corp <Ntt> Oxide superconducting material
JPH01235103A (en) * 1988-03-15 1989-09-20 Toray Ind Inc Superconducting material
JPH01252534A (en) * 1988-03-31 1989-10-09 Mitsui Mining & Smelting Co Ltd Laminate of superconducting ceramics and production thereof
JPH01252536A (en) * 1988-03-31 1989-10-09 Matsushita Electric Ind Co Ltd Superconductor
JPH0288773A (en) * 1988-09-27 1990-03-28 Fujitsu Ltd Formation of oxide superconducting film using chemical vapor growth
WO1990003453A1 (en) * 1988-09-28 1990-04-05 Oki Electric Industry Co., Ltd. Process for forming superconducting thin film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212227A (en) * 1988-02-17 1989-08-25 Nippon Telegr & Teleph Corp <Ntt> Oxide superconducting material
JPH01235103A (en) * 1988-03-15 1989-09-20 Toray Ind Inc Superconducting material
JPH01252534A (en) * 1988-03-31 1989-10-09 Mitsui Mining & Smelting Co Ltd Laminate of superconducting ceramics and production thereof
JPH01252536A (en) * 1988-03-31 1989-10-09 Matsushita Electric Ind Co Ltd Superconductor
JP2517055B2 (en) * 1988-03-31 1996-07-24 松下電器産業株式会社 Superconductor
JPH0288773A (en) * 1988-09-27 1990-03-28 Fujitsu Ltd Formation of oxide superconducting film using chemical vapor growth
JP2551983B2 (en) * 1988-09-27 1996-11-06 富士通株式会社 Preparation method of oxide superconducting film using chemical vapor deposition
WO1990003453A1 (en) * 1988-09-28 1990-04-05 Oki Electric Industry Co., Ltd. Process for forming superconducting thin film

Similar Documents

Publication Publication Date Title
US20100093547A1 (en) Buffer layer for thin film structures
JPH029717A (en) Method for producing a superconductive oxide film on a substrate of silicon and silicon dioxide
US5453306A (en) Process for depositing oxide film on metallic substrate by heat plasma flash evaporation method
US4874741A (en) Non-enhanced laser evaporation of oxide superconductors
JPS63224116A (en) Manufacture of thin film superconductor
JPS63239742A (en) Manufacture for film superconductor
JPH01208327A (en) Production of thin film of superconductor
JP2702711B2 (en) Manufacturing method of thin film superconductor
JPH01224297A (en) Production of metal oxide superconductor material layer
JPS63306676A (en) Josephson element
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
JPS63225599A (en) Preparation of oxide superconductive thin film
JPH02252697A (en) Production of superconducting ceramic thin film
JPS63299019A (en) Manufacture of thin film superconductive material
JPH0375204A (en) Production of oxide superconductive film pattern
JPH01239004A (en) Oxide high-temperature superconductor and thin film superconductor therefrom and sputtering target therefor
JPS63292524A (en) Manufacture of superconductive film
JPS63306677A (en) Superconducting device and manufacture thereof
JPH01105416A (en) Manufacture of thin film superconductor
JPH012218A (en) Manufacturing method of thin film superconductor
JPH01112614A (en) Manufacture of super conductive film
JPS63236794A (en) Production of superconductive thin film of oxide
JPH0244782A (en) Superconductive element and manufacture thereof
JPS63298920A (en) Manufacture of membranous superconductor
JPS63239737A (en) Superconductor