JPH01112614A - Manufacture of super conductive film - Google Patents

Manufacture of super conductive film

Info

Publication number
JPH01112614A
JPH01112614A JP62268583A JP26858387A JPH01112614A JP H01112614 A JPH01112614 A JP H01112614A JP 62268583 A JP62268583 A JP 62268583A JP 26858387 A JP26858387 A JP 26858387A JP H01112614 A JPH01112614 A JP H01112614A
Authority
JP
Japan
Prior art keywords
thin film
high frequency
film
oxygen
base board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62268583A
Other languages
Japanese (ja)
Inventor
Yuji Nagata
裕二 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62268583A priority Critical patent/JPH01112614A/en
Publication of JPH01112614A publication Critical patent/JPH01112614A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide excellent mass productivity, eliminate necessity for annealing, and provide controllability for crystal of a film by installing a high frequency coil between an evaporation source and a base board, generating high frequency plasma, attaching evaporated substance to the base board, and forming a superconductive film in perovskite structure of oxygen missing type. CONSTITUTION:A high frequency coil 6 is installed between evaporation sources 3, 4, 5 and a base board 2, and high frequency plasma is generated. Evaporated substance is attached to the base board, and a superconductive film is formed which is made in perovskite structure of oxygen missing type. At this time of evaporating the thin film, oxygen is introduced into an empty tank 1, and evaporating particles are made in plasma condition, and thereby production of BaO and Y2O3 is suppressed, and formation of a superconductive film in perovskite structure of oxygen missing type is promoted, which is represented by Ba2YCu3O7-y. Also, counter-sputtering effect due to impression of negative DC voltage on the base board is utilized to control crystallinity of Ba2YCu3O7-y, and the C axis is oriented perpendicularly to the film surface.

Description

【発明の詳細な説明】 産業上の利用分野 本蒸明は、液体窒素温度(77,4K)以上で使える高
い超電導臨界温度(Tc)を示すBa−Y−Cu−0な
どの酸素欠損型ペロブスカイト構造を有する超電導薄膜
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to oxygen-deficient perovskites such as Ba-Y-Cu-0, which have a high superconducting critical temperature (Tc) that can be used at liquid nitrogen temperatures (77.4 K) or higher. The present invention relates to a method for manufacturing a superconducting thin film having a structure.

従来の技術 酸化物超電導材料としては焼結法及びスパッタ法などが
知られる。以下、焼結法についてBa−Y−Cu−〇超
電導材料を例にとって述べる。
Conventional techniques As oxide superconducting materials, sintering methods, sputtering methods, etc. are known. The sintering method will be described below using Ba-Y-Cu-〇 superconducting material as an example.

焼結法においては、まずCuQ、Y2O3,BaCO3
の混合粉末を930℃以下で仮焼結する。次に、仮焼結
後の粉末を砕き、正立4 Ky / cr1程度で圧力
成形し、再び焼結する。この時の温度は約930℃程度
で、焼結抜栓々に炉冷し、超電導バルク材が作製される
In the sintering method, first CuQ, Y2O3, BaCO3
The mixed powder is pre-sintered at 930°C or lower. Next, the powder after preliminary sintering is crushed, pressure-formed at about 4 Ky/cr1, and sintered again. The temperature at this time is about 930° C., and the superconducting bulk material is produced by cooling in the furnace without sintering.

超電導膜を作製する場合にはスパッタ法が知られている
。Ba−Y−Cu−〇薄膜を例にとると、この超電導薄
膜は(Yo、4B0.6)3Cu307で構成されたタ
ーゲットにArイオンをボンバードし、スパッタされた
粒子をサファイヤやS、Tco3などの基板に堆積させ
た薄膜を形成する。この時、Ba及びYは酸素に対して
非常に活性であるため、Bao、Y2O3が直ちに生成
するため、これを900℃でアニール処理を施し、超電
導特性を示すBa2YCu3O7−ア を製造していた
A sputtering method is known for producing superconducting films. Taking Ba-Y-Cu-〇 thin film as an example, this superconducting thin film is made by bombarding a target made of (Yo, 4B0.6)3Cu307 with Ar ions, and sputtering the sputtered particles with materials such as sapphire, S, Tco3, etc. Forming a thin film deposited on a substrate. At this time, since Ba and Y are very active towards oxygen, Bao and Y2O3 are immediately generated, so this is annealed at 900° C. to produce Ba2YCu3O7-a which exhibits superconducting properties.

発明が解決しようとする問題点 上記したように、超電導材料作製方法には主として焼結
法とスパッタ法がある。そして、ジョセンフンン素子や
5QUID  などを作製しようとする場合には、薄膜
の形成が容易なスパッタ法が用いられる。
Problems to be Solved by the Invention As mentioned above, there are two main methods for producing superconducting materials: sintering and sputtering. Then, when attempting to fabricate a semiconductor device, a 5QUID, or the like, a sputtering method is used because it is easy to form a thin film.

しかし、スパッタ法においては、膜形成後、700℃以
上でアニール処理が必要である欠点や膜形成速度が数百
オングストローム7分と遅く、量産性に乏しい欠点があ
った。
However, the sputtering method has disadvantages in that an annealing treatment is required at 700° C. or higher after film formation, and the film formation speed is slow at several hundred angstroms in 7 minutes, making it difficult to mass-produce.

また、B −Y−Ca−0などにおいては、その特性異
方性が存在する。例えば臨界電流密度の場合、C軸方向
の臨界電流密度工。。は、a、b面内の臨界密度■。 
 に比べて小さく、Tcas”/I、’=s。
Furthermore, B-Y-Ca-0 and the like have anisotropy in their characteristics. For example, in the case of critical current density, the critical current density in the C-axis direction. . is the critical density in the a and b planes ■.
Tcas''/I,'=s.

a、b なる関係が実験的に知られている。a, b This relationship is experimentally known.

このため、薄膜面内の臨界電流密度を大きくとろうとす
ると、薄膜の結晶性を制御してC軸を膜面に垂直に配向
する必要があった。そして、これを実現するためには、
ヘテロエピタキシャル成長を利用する方法があるが、サ
ファイヤ基板のR面に薄膜を形成するなど、利用できる
基材材料が限定されるなどの欠点があった。
Therefore, in order to increase the critical current density in the plane of the thin film, it is necessary to control the crystallinity of the thin film and orient the C-axis perpendicular to the plane of the film. And in order to achieve this,
Although there is a method using heteroepitaxial growth, there are drawbacks such as the fact that the usable base materials are limited, such as forming a thin film on the R surface of the sapphire substrate.

本発明の目的は、上記述べた欠点に鑑み、量産性にすぐ
れ、膜形成後のアニール処理を必要とせず、又形成され
た薄膜の結晶性を制御できる、超電導薄膜の製造方歩を
提供しようとするものである。
In view of the above-mentioned drawbacks, an object of the present invention is to provide a method for manufacturing a superconducting thin film that is excellent in mass production, does not require an annealing treatment after film formation, and can control the crystallinity of the formed thin film. That is.

問題点を解決するための手段 上記目的を実現するために、本発明の超電導薄膜の製造
方法においては、蒸発源と、基板間に高周波コイルを設
置し、高周波プラズマを発生させ、蒸発物を基板に付着
させ酸素欠損型ペロプスカイト構造を有する超電導薄膜
を形成するものである。
Means for Solving the Problems In order to achieve the above object, in the method for manufacturing a superconducting thin film of the present invention, a high frequency coil is installed between an evaporation source and a substrate to generate high frequency plasma and transfer the evaporated matter to the substrate. This method forms a superconducting thin film having an oxygen-deficient perovskite structure.

作  用 本発明の製造方法は、薄膜蒸着時に、酸素を適当空槽内
に導入して、しかも、蒸発粒子をプラズマ状態とするこ
とによって、BaQやY2O3などの生成を抑制しBY
GOと示される酸 a2u37−7 素欠損型ペロブスカイト構造を有す超電導薄膜の形成を
促進するものである。また、この時1、基板に負の直流
電圧を印加することによる、逆スパツタ効果を利用しB
YGOの結晶性を制 a2u37−7 御し、膜面に垂直にそのC軸を配向させることもできる
Function: The manufacturing method of the present invention suppresses the production of BaQ, Y2O3, etc. by introducing oxygen into an empty tank during thin film deposition, and converting the evaporated particles into a plasma state.
The acid a2u37-7, denoted as GO, promotes the formation of a superconducting thin film having an element-deficient perovskite structure. In addition, at this time, 1. B
It is also possible to control the crystallinity of YGO and orient its C axis perpendicular to the film surface.

実施例 以下、本発明の一実施例について述べる。Example An embodiment of the present invention will be described below.

第1図は、本発明の超電導薄膜の製造方法において、使
用する真空蒸着装置を示している。
FIG. 1 shows a vacuum evaporation apparatus used in the method for producing a superconducting thin film of the present invention.

第1図において、蒸発源3,4.5と基板2間に高周波
コイル6が設置されている。高周波コイル6にはマツチ
ングボックス7を介して、高周波電源8が接続されてい
る。
In FIG. 1, a high frequency coil 6 is installed between the evaporation sources 3, 4.5 and the substrate 2. A high frequency power source 8 is connected to the high frequency coil 6 via a matching box 7.

蒸発源3,4.5は、水冷されたハース9,10゜11
に蒸着される物質を仕込み、電子ビームによって加熱、
溶解、蒸発させることによって、基板に薄膜を形成する
Evaporation sources 3, 4.5 are water-cooled hearths 9, 10° 11
The material to be deposited is placed in the evaporator, heated by an electron beam,
A thin film is formed on the substrate by dissolving and evaporating it.

また、基板2には、直流電源12が接続されている。ま
た基板2の裏面にはヒータ13が設置され蒸着時の基板
温度をコントロールできるようになっている。
Further, a DC power supply 12 is connected to the substrate 2 . Further, a heater 13 is installed on the back surface of the substrate 2, so that the temperature of the substrate during vapor deposition can be controlled.

次に、超電導薄膜の製造方法についてBa2YCu30
7−y薄膜を例にとって述べる。
Next, regarding the manufacturing method of superconducting thin film, Ba2YCu30
This will be explained using a 7-y thin film as an example.

まず、ハース9,10,11内に蒸発物であるBaQ、
Y2O3,Cuをそれぞれ別個に設置する。次いで、ベ
ルジャ1内を1o 〜10 To、rまで排気する。シ
ャッター14をクローズド状態にして、BaQ、Y2O
3,Cuに電子ビームを照射し、これらを予備的に溶解
する。蒸発が安定するとシャッター14をオープンにし
て、あらかじめ400℃に加熱したシリコン基板上に薄
膜を形成する。この生膜レートは毎秒100オングスト
ロームから毎秒10000オングストロームの範囲であ
る。この時、高周波コイル6には高周波電源8によって
、高周波プラズマを発生させる。高周波電力は500−
W〜1KWに調整されマツチングボックス7によって反
射波が最少に、進行波が最大になるように調節される。
First, inside the hearths 9, 10, and 11, BaQ, which is an evaporated substance,
Y2O3 and Cu are installed separately. Next, the inside of the bell jar 1 is evacuated to 1o to 10 To,r. With the shutter 14 closed, BaQ, Y2O
3. Irradiate Cu with an electron beam to preliminarily melt it. When the evaporation becomes stable, the shutter 14 is opened and a thin film is formed on the silicon substrate which has been heated to 400° C. in advance. This biofilm rate ranges from 100 angstroms per second to 10,000 angstroms per second. At this time, high frequency plasma is generated in the high frequency coil 6 by the high frequency power source 8. High frequency power is 500-
W to 1 KW, and the matching box 7 adjusts the reflected waves to a minimum and the forward waves to a maximum.

超電導薄膜の特性は、Ba2YCu3O7−アと示され
るようにその酸素の組成比yによって大きく変化する。
The characteristics of a superconducting thin film vary greatly depending on its oxygen composition ratio y, as shown in Ba2YCu3O7-A.

第3図に酸素組成比yと臨界温度T。の関係を示す。こ
のため、蒸着中に1o−”To、、程度酸素ガスがガス
導入弁15から導入される。導入ガス流量を適当に変化
させることによって、形成される薄膜の酸素組成比を制
御することが可能である。その他の組成は、電子ビーム
強度を各蒸発物ごとに変化させて蒸発量をコントロール
することによって可能である。
Figure 3 shows the oxygen composition ratio y and critical temperature T. shows the relationship between For this reason, oxygen gas of about 10-"To is introduced from the gas introduction valve 15 during vapor deposition. By appropriately changing the flow rate of the introduced gas, it is possible to control the oxygen composition ratio of the thin film to be formed. Other compositions are possible by controlling the amount of evaporation by changing the electron beam intensity for each evaporator.

また、プラズマを安定に発生させるため、A。In addition, in order to generate plasma stably, A.

のような不活性ガスを酸素との混合ガスとして、1o−
’T   程度、ガス導入弁16から真空槽内Orτ に導入してもよい。
When an inert gas such as is mixed with oxygen, 1o-
'T may be introduced into the vacuum chamber Orτ from the gas introduction valve 16.

以上のようにして形成した薄膜はX線回折によってその
構造を調べたところ、Ba2YCu3O□−アの多結晶
体であった。また、そのC軸が膜面に垂直に配向してい
ることが分った。得られた薄膜を、4端子法によって冷
却しながらその抵抗値を測定したところ、第2図のよう
な特性を示し、臨界温度90°にの超電導特性を示した
。マイスナー効果によってもその超電導特性を確認した
。また、基板に一10v〜−600vの負の直流電圧を
印加することによって、薄膜のC軸配向性が促進される
ことも分った。
When the structure of the thin film formed as described above was examined by X-ray diffraction, it was found to be a polycrystalline body of Ba2YCu3O□-a. It was also found that the C axis was oriented perpendicular to the film surface. When the resistance value of the obtained thin film was measured while being cooled by the four-terminal method, it exhibited the characteristics shown in FIG. 2, and exhibited superconducting characteristics at a critical temperature of 90°. Its superconducting properties were also confirmed by the Meissner effect. It has also been found that the C-axis orientation of the thin film is promoted by applying a negative DC voltage of -10V to -600V to the substrate.

発明の効果 以上のように、本発明における超電導薄膜の製造方法に
おいては、薄膜形成後の高温アニール処理を必要とせず
に超電導薄膜を形成することができる。また、用いる基
板材料も、形成される超電導薄膜の格子定数を、特に考
慮する必要がなく、シリコン基板上でも形成できる効果
を有するものである、 また、基板に負の直流電圧を印加することによって膜の
結晶性制御が可能で、膜面方向に大きな電流密度を流せ
るように、そのC軸を膜面に垂直に配向させることを促
進する効果をも有するものである。
Effects of the Invention As described above, in the method for manufacturing a superconducting thin film according to the present invention, a superconducting thin film can be formed without requiring high-temperature annealing treatment after forming the thin film. In addition, the substrate material used does not require particular consideration of the lattice constant of the superconducting thin film to be formed, and has the effect that it can be formed even on a silicon substrate. It is possible to control the crystallinity of the film, and it also has the effect of promoting orientation of the C axis perpendicular to the film surface so that a large current density can flow in the direction of the film surface.

さらに、膜形成速度も従来のスパッタ法に比べ10倍以
上に高速であるなど、産業上大きな効果を有するもので
ある。
Furthermore, the film formation speed is more than 10 times faster than the conventional sputtering method, so it has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における超電導薄膜の製造法
において使用する真空蒸着装置の概要図、第2図は本発
明の超電導薄膜の製造方法に従って作製したB  YC
O薄膜における比抵抗a2u37−7 の温度特性図、第3図はB  YC○  超電a2u3
7−y 体の酸素組成比と臨界温度との関係を示す特性図である
。 1・・・・・・ベルジャ、2・・・・・・基板、3,4
.5・・・・・・蒸発源、6・・・・・・高周波コイル
、7・・・・・・マツチングボックス、8・・・・・・
高周波電源、9,10.11・・・ハース、12・・・
・・・直流電源、13・・・・・・ヒータ、14・・・
・・・シャッター、15・・・・・・ガス導入弁、16
・・・・・・主パルプ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
−−ベルヅイ      q、tθ、11− ハース2
一基板      /Z−直5気電源支仝、S°°−蒸
発源     18−  ヒータ6− 高周波コイル 
    14−’/マツダ−7−マツチングボッゲス 
 !5−  力゛ス淳へ升8−高間瀝訛源    16
− 支パルプ第1図
FIG. 1 is a schematic diagram of a vacuum evaporation apparatus used in the method of manufacturing a superconducting thin film in one embodiment of the present invention, and FIG.
Temperature characteristic diagram of resistivity a2u37-7 in O thin film, Figure 3 is B YC○ Superelectric a2u3
FIG. 7 is a characteristic diagram showing the relationship between the oxygen composition ratio of the 7-y body and the critical temperature. 1...belljar, 2...board, 3,4
.. 5... Evaporation source, 6... High frequency coil, 7... Matching box, 8...
High frequency power supply, 9, 10. 11... Hearth, 12...
...DC power supply, 13...Heater, 14...
...Shutter, 15...Gas introduction valve, 16
...Main pulp. Name of agent: Patent attorney Toshio Nakao and 1 other person/-
--Berzui q, tθ, 11- Hearth 2
1 board /Z-direct 5 air power supply support, S°°-evaporation source 18- heater 6- high frequency coil
14-'/Mazda-7-Matsuchingbogges
! 5- Force Jun to square 8- Takama Rei accent source 16
- Support pulp Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)真空槽内において、蒸発源と前記蒸蒸源から距離
をへだてた基板間に高周波コイルを設け、前記高周波コ
イルに高周波電圧を印加して、前記高周波コイルの周り
に高周波プラズマを発生させて、前記蒸発源からの蒸発
物を前記基板に付着させ酸素欠損型ペロブスカイト構造
を有する超電導薄膜を形成したことを特徴とする超電導
薄膜の製造方法。
(1) In a vacuum chamber, a high-frequency coil is provided between an evaporation source and a substrate separated from the evaporation source, and a high-frequency voltage is applied to the high-frequency coil to generate high-frequency plasma around the high-frequency coil. A method for producing a superconducting thin film, characterized in that a superconducting thin film having an oxygen-deficient perovskite structure is formed by depositing evaporated material from the evaporation source onto the substrate.
(2)真空槽内に不活性ガスあるいは酸素ガスあるいは
不活性ガスと酸素の混合ガスを導入したことを特徴とす
る特許請求の範囲第1項記載の超電導薄膜の製造方法。
(2) The method for producing a superconducting thin film according to claim 1, characterized in that an inert gas, an oxygen gas, or a mixed gas of an inert gas and oxygen is introduced into the vacuum chamber.
(3)基板の負の直流電圧を印加したことを特徴とする
特許請求の範囲第1項または第2項記載の超電導薄膜の
製造方法。
(3) A method for producing a superconducting thin film according to claim 1 or 2, characterized in that a negative DC voltage is applied to the substrate.
JP62268583A 1987-10-23 1987-10-23 Manufacture of super conductive film Pending JPH01112614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62268583A JPH01112614A (en) 1987-10-23 1987-10-23 Manufacture of super conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62268583A JPH01112614A (en) 1987-10-23 1987-10-23 Manufacture of super conductive film

Publications (1)

Publication Number Publication Date
JPH01112614A true JPH01112614A (en) 1989-05-01

Family

ID=17460543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62268583A Pending JPH01112614A (en) 1987-10-23 1987-10-23 Manufacture of super conductive film

Country Status (1)

Country Link
JP (1) JPH01112614A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192725A (en) * 1988-01-28 1989-08-02 Sharp Corp Production of high-temperature oxide superconductor thin film
JPH03146418A (en) * 1989-10-31 1991-06-21 Res Dev Corp Of Japan Method and device for forming oxide hightemperature superconducting film by plasma-excitation vaporization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192725A (en) * 1988-01-28 1989-08-02 Sharp Corp Production of high-temperature oxide superconductor thin film
JPH03146418A (en) * 1989-10-31 1991-06-21 Res Dev Corp Of Japan Method and device for forming oxide hightemperature superconducting film by plasma-excitation vaporization

Similar Documents

Publication Publication Date Title
JPH01112614A (en) Manufacture of super conductive film
JPS63239742A (en) Manufacture for film superconductor
JPH0297427A (en) Production of oxide superconducting thin film
JPH01208327A (en) Production of thin film of superconductor
JPH02252697A (en) Production of superconducting ceramic thin film
JP2702711B2 (en) Manufacturing method of thin film superconductor
JPH02252618A (en) Production of bi-based superconducting thin film
JPH02175613A (en) Production of oxide superconducting thin film
JP2501615B2 (en) Preparation method of superconducting thin film
JP2525852B2 (en) Preparation method of superconducting thin film
JP2639510B2 (en) Preparation method of superconducting thin film
JPH02120229A (en) Production of superconducting thin film of oxide
JPH10259099A (en) Production of compound membrane
JP2501616B2 (en) Preparation method of superconducting thin film
JPS63299019A (en) Manufacture of thin film superconductive material
JPH01201008A (en) Production of thin film of oxide superconductor
JPH01239004A (en) Oxide high-temperature superconductor and thin film superconductor therefrom and sputtering target therefor
JPH01246142A (en) Production of thin film superconductor
JPH01294504A (en) Production of thin-film superconductor
JPS63310519A (en) Manufacture of membrane consisting of oxide superconductor material
JPS63298920A (en) Manufacture of membranous superconductor
JPH05194097A (en) Production of thin-film electric conductor
JPH01201009A (en) Production of oxide superconductor
JPH02120231A (en) Production of superconducting thin film of oxide
JPH03197304A (en) Production of oxide superconducting thin film