JPH02120229A - Production of superconducting thin film of oxide - Google Patents

Production of superconducting thin film of oxide

Info

Publication number
JPH02120229A
JPH02120229A JP27220788A JP27220788A JPH02120229A JP H02120229 A JPH02120229 A JP H02120229A JP 27220788 A JP27220788 A JP 27220788A JP 27220788 A JP27220788 A JP 27220788A JP H02120229 A JPH02120229 A JP H02120229A
Authority
JP
Japan
Prior art keywords
layer
film
cuo
thin film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27220788A
Other languages
Japanese (ja)
Inventor
Junichi Fujita
淳一 藤田
Tsutomu Yoshitake
務 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27220788A priority Critical patent/JPH02120229A/en
Publication of JPH02120229A publication Critical patent/JPH02120229A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To periodically synthesize superconducting thin films of Bi-based oxide as single crystal film on a substrate at low temperature by sputtering ionic beam against four kinds of targets in the order of Bi2O3, SrO, CuO, CaO, CuO, CaO, CuO, SrO and Bi2O3. CONSTITUTION:In the above-mentioned method, periodic structure of (Bi.O)2 atomic layer/(Sr.Ca.Cu.O) perovskite type structure 1 (Bi.O)2 atomic layer ...is artificially laminated and grown in a specific direction of axis c in a crystal structure of Bi-based oxide superconductor. Then four kinds of targets are successively and periodically sputtered in the order of (Bi.O) layer, (Sr) layer, (Cu.O) layer, (Ca) layer, (Cu.O) layer, (Ca) layer. (Cu.O) layer, (Sr) layer and (Bi.O) layer. Consequently, a thin film of Bi-based superconductor single crystal is laminated and grown. Thickness of laminated film of each layer is 5Angstrom (Bi.O) layer, 10Angstrom (Sr.Ca.Cu.O) layer in total in the case of 80K phase of Bi base and 13Angstrom in the case of 110K phase. The substrate temperature in the lamination is 500-800 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化物超伝導薄膜の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing an oxide superconducting thin film.

(従来の技術) 超伝導性薄膜は、ジョセフソン接合による量子磁気干渉
素子や、超伝導LSI配線、さらに超伝導能動素子等へ
の応用上欠かせないものである。近年、1982年2月
米国ヒユーストン大学のチュー(Chu)らにより発見
された臨界温度90に級のY系酸化物超伝導体を始めと
し、無機材料研究所の前出らによる臨界温度uox、a
のBi系酸化物超伝導体、さらに米国アーカンサス大学
のチェ2(Z、 Z、 Cheng)らによる臨界温度
12Oに級のTI系酸化物超伝導体と液体窒素温度を越
える臨界温度を持つ酸化物超伝導体が相次いで発見され
た。このことにより、従来液体Heを用いなければなら
なかった超伝導応用デバイスが液体窒素で実現できるこ
とになり、特にこれら酸化物超伝導体の薄膜化は液体窒
素温度以上で動くジョセフソン接合による量子磁気干渉
素子や、超伝導LSI配線、さらに超伝導能動素子等を
実現し、その応用は広く利用され得る。さて、Bi系超
伝導体薄膜は、従来基本的に次の3つの方法において製
造されてきた。
(Prior Art) Superconducting thin films are indispensable for applications such as quantum magnetic interference devices using Josephson junctions, superconducting LSI wiring, and superconducting active devices. In recent years, starting with the Y-based oxide superconductor with a critical temperature of 90 degrees discovered by Chu et al. of Hughston University in the United States in February 1982, the critical temperature uox,
Bi-based oxide superconductors, as well as TI-based oxide superconductors with critical temperatures of 12O and oxides with critical temperatures exceeding liquid nitrogen temperatures, were developed by Cheng et al. of the University of Arkansas in the United States. Superconductors were discovered one after another. As a result, superconducting application devices that conventionally had to use liquid He can now be realized using liquid nitrogen, and in particular, the thinning of these oxide superconductors is due to quantum magnetism due to Josephson junctions that operate above the liquid nitrogen temperature. Interference elements, superconducting LSI wiring, superconducting active elements, etc. have been realized, and their applications can be widely used. Now, Bi-based superconductor thin films have conventionally been produced basically by the following three methods.

第一の方法は、例えばアプライドフィジックスレター(
Appl、 Phys、 Lett、)巻53.427
頁のようにマグネトロンスパッタ法を用い、Bi、 S
r、 Ca、 Cuの組成からなる単一ターゲットを用
いて成膜を行い、この膜を後から酸素中880°C熱処
理を加えることにより83にでゼロ抵抗を示すC軸配向
膜が得られている。
The first method is, for example, Applied Physics Letter (
Appl, Phys, Lett,) Volume 53.427
Using the magnetron sputtering method as shown in
By forming a film using a single target consisting of R, Ca, and Cu, and then heat-treating this film at 880°C in oxygen, a C-axis oriented film exhibiting zero resistance was obtained in 83. There is.

また第二の方法としては例えばアプライドフィジックス
レター(Appl、 Phys、 Lett、)巻53
.337頁のようにパルスレーザ−を用い、第一の方法
と同様単一ターゲットを用いて成膜を行い、後に875
°Cの酸素中熱処理を行うことで80にの超伝導薄膜を
得ている。
The second method is, for example, Applied Physics Letters (Appl, Phys, Lett,) Vol. 53.
.. As shown on page 337, film formation was performed using a pulsed laser and a single target as in the first method, and later on 875
A superconducting thin film of 80 °C was obtained by heat treatment in oxygen at 80 °C.

さらに第三の方法としては、例えば、アプライドフィジ
ックスレター(Appl、 Phys、 Lett、)
巻53.624頁のようにBi、 Sr、 Ca、 C
uをそれぞれ独立した蒸着源から同時に蒸発させ、成膜
後860°Cの酸素中熱処理をおこなうことで、35に
でゼロ抵抗超伝導膜を得ている。
Furthermore, as a third method, for example, Applied Physics Letter (Appl, Phys, Lett,)
Bi, Sr, Ca, C as in Volume 53, page 624
A zero-resistance superconducting film was obtained in 35 by simultaneously evaporating u from independent vapor deposition sources and performing heat treatment in oxygen at 860°C after film formation.

(発明が解決しようとした課題) しかし、いずれの場合も従来の超伝導膜製造法では超伝
導膜を作るために850°C以上の高温熱処理が必要な
こと、また、膜はC軸配向しているものの表面が荒れて
いること、及び超伝導のオンセットは110Kに見えて
いるものの、最終的なゼロ抵抗温度が低いこと等の理由
により、デバイス応用を困難にしている。また、ジョセ
フソンジャンクションの均質性を高めるためには単結晶
膜であることが望ましい。
(Problem that the invention sought to solve) However, in both cases, the conventional superconducting film manufacturing method requires high-temperature heat treatment of 850°C or higher to create a superconducting film, and the film is C-axis oriented. The surface of the material is rough, and although the onset of superconductivity appears to be 110 K, the final zero resistance temperature is low, making device application difficult. Further, in order to improve the homogeneity of the Josephson junction, it is desirable to use a single crystal film.

本発明の目的は、このBi系酸化物超伝導薄膜を、基板
上に単結晶膜として低温で合成する方法を提供すること
にある。
An object of the present invention is to provide a method for synthesizing this Bi-based oxide superconducting thin film as a single crystal film on a substrate at a low temperature.

(課題を解決するための手段) 本発明は、ターゲットとしてBi2O3,SrO+ C
a0pCuOの4種類のターゲットをもちい、イオンビ
ームスパッタ法により酸化物超伝導薄膜の製造する方法
であって、前記ターゲットをB12O31 SrO,C
ub。
(Means for solving the problem) The present invention uses Bi2O3, SrO+ C as a target.
A method for manufacturing an oxide superconducting thin film by ion beam sputtering using four types of targets of a0pCuO, the targets being B12O31 SrO, C
ub.

Cab、 Cub、 Cab、 Cub、 SrO,B
i2O3の順に用い、イオンビームスパッタすることに
より周期的に層状成長させることを特徴とした酸化物超
伝導薄膜の製造方法と成膜プロセス中に真空中容器内に
高周波(RF)を導入する前記酸化物超伝導薄膜の製造
方法と、ターゲットとして酸化ビスマスの代りに(Bi
2O3)1−x(Pbo)x(ただし0<x≦0.1)
の組成を用いる前記酸化物超伝導薄膜の製造方法である
Cab, Cub, Cab, Cub, SrO,B
A method for producing an oxide superconducting thin film characterized by using i2O3 in this order and periodically growing it in layers by ion beam sputtering; A method for producing a superconducting thin film and using (Bi) instead of bismuth oxide as a target.
2O3)1-x(Pbo)x (0<x≦0.1)
This is a method for manufacturing the oxide superconducting thin film using the following composition.

本方法では、Bi系酸化物超伝導体の結晶構造に特有の
C軸方向に(Bi−0)2原子層/(Sr−CaCu−
0)ペロブスカイト型層/(Bi−0)2原子層・・・
の周期構造を人工的に積層成長させるもので、(Bi・
O)層、 (Sr)層、 (Cu・O)層、 (Ca)
層、 (Cu−0)層、 (Ca)層、(Cu−0)層
、 (Sr)層、 (Bi・O)層の順に4種類のター
ゲットを順次周期的にスパッタすることでBi系超超伝
導体単結晶薄膜積層成長させる方法である。さらに(B
i−0)層、 (Sr)層、 (Cu−0)層、 (C
a)層、 (Cu−0)層、 (Sr)層、 (Bi−
0)層のj頃にスパッタしてもよい。
In this method, two atomic layers of (Bi-0)/(Sr-CaCu-
0) Perovskite type layer/(Bi-0) two atomic layer...
The periodic structure of (Bi・
O) layer, (Sr) layer, (Cu・O) layer, (Ca)
Bi-based super This is a method of growing superconductor single crystal thin films in layers. Furthermore (B
i-0) layer, (Sr) layer, (Cu-0) layer, (C
a) layer, (Cu-0) layer, (Sr) layer, (Bi-
0) Sputtering may be performed around layer j.

各層の積層膜圧は(Bi、O)層5人、(Sr−Ca−
Cu−0)層は総計でBi系の80に相の場合で10人
、110に相の場合には13人積層する。望ましくは基
板温度を500°C〜800°C1基板上の酸素ガス分
圧を2×10’Torr以上に保つと、エピタキシャル
成長したBi系酸化物超伝導薄膜が合成される。この時
各積層プロセスの間に10秒以上の緩和時間を設けるこ
とが望ましく、この間に表面のスパッタ粒子のマイグレ
ーションと積層膜の結晶性の改質が起こる。さらに、酸
化ビスマス、またはストロンチウム、カルシウム・銅酸
化物は基板上にヘテロエピタキシャル成長させることが
でき、エピタキシャル層を初期に約10〜100人程度
成長させることによりその後の膜成長プロセスにより単
結晶のBi系酸化物超伝導薄膜が成長する。さらに真空
チャンバー内にRFを導入することでスパッタ粒子を活
性化し膜の結晶化温度を下げることができると共に酸素
もイオン化されることにより各構成元素の酸化が促進さ
れる。さらにRFもしくは酸素イオン源より生成された
酸素イオンをIOV〜80Vに加速して膜成長面に照射
することにより膜成長面での酸化とマイグレーションが
促進され膜の結晶性の改善と膜表面の平脂性化がよくな
る。さらにBiの一部をpbで置換することにより超伝
導特性が改善され転移がシャープになる。これらのエピ
タキシャル膜は酸化マグネシウム(MgO)単結晶、チ
タン酸ストロンチウム(SrTtO3)単結晶、イツト
リウム安定化ジルコニア(ysz)単結晶、ジルコニア
(Zr02)単結晶いずれの基板上にも合成することが
できる。
The laminated film thickness of each layer is (Bi, O) 5 layers, (Sr-Ca-
The Cu-0) layer is laminated by a total of 10 people in the case of Bi-based 80 phase, and 13 people in the case of 110 phase. Preferably, the substrate temperature is maintained at 500 DEG C. to 800 DEG C., and the partial pressure of oxygen gas on the substrate is maintained at 2.times.10' Torr or more to synthesize an epitaxially grown Bi-based oxide superconducting thin film. At this time, it is desirable to provide a relaxation time of 10 seconds or more between each lamination process, during which time migration of sputtered particles on the surface and modification of the crystallinity of the laminated film occur. Furthermore, bismuth oxide, strontium, calcium, and copper oxides can be grown heteroepitaxially on a substrate, and by growing an epitaxial layer of approximately 10 to 100 layers at the initial stage, a single crystal Bi-based oxide can be formed by the subsequent film growth process. An oxide superconducting thin film is grown. Furthermore, by introducing RF into the vacuum chamber, sputtered particles can be activated and the crystallization temperature of the film can be lowered, and oxygen is also ionized, thereby promoting oxidation of each constituent element. Furthermore, by accelerating oxygen ions generated from RF or an oxygen ion source to IOV~80V and irradiating the film growth surface, oxidation and migration on the film growth surface are promoted, improving the crystallinity of the film and flattening the film surface. Improves oiliness. Furthermore, by substituting part of Bi with Pb, the superconducting properties are improved and the transition becomes sharper. These epitaxial films can be synthesized on any substrate of magnesium oxide (MgO) single crystal, strontium titanate (SrTtO3) single crystal, yttrium stabilized zirconia (ysz) single crystal, or zirconia (Zr02) single crystal.

(実施例) 多層周期構造薄膜を製造するために用いたイオンビーム
スパッタ装置を第1図に示す。第1図(a)は装置の正
面図であり(b)は上面図である。真空チャンバー12
には4基のカウフマン型イオン源1.2.16゜17を
装備し、それぞれB12o3ターゲツト3、SrOター
ゲット4、CaOターゲット18、CuOターゲット1
9をスパッタする。スパッタされた粒子3′、4”は天
板5で発散視野が制限され、4基の水晶振動子膜厚計(
第1図(a)では15)により膜厚をモニターしながら
、真空チャンバー外部から駆動される4基のシャッター
(第1図(a)では6,7)の交互開閉により多層周期
構造が形成される。
(Example) FIG. 1 shows an ion beam sputtering apparatus used to manufacture a multilayer periodic structure thin film. FIG. 1(a) is a front view of the device, and FIG. 1(b) is a top view. Vacuum chamber 12
is equipped with four Kaufmann type ion sources 1.2.16°17, each with 3 B12O3 targets, 4 SrO targets, 18 CaO targets, and 1 CuO target.
Sputter 9. The divergent field of view of the sputtered particles 3' and 4'' is limited by the top plate 5, and four crystal oscillator film thickness gauges (
While monitoring the film thickness using 15) in Figure 1(a), a multilayer periodic structure is formed by alternately opening and closing four shutters (6 and 7 in Figure 1(a)) driven from outside the vacuum chamber. Ru.

9はヒータ、13はRHEED用電子銃、14はRHE
EDスクリーンである。チャンバー内の真空度ハ4X1
0  torr、基板付近は酸化促進のために酸素ガス
を吹き付は局部的に2X10  torrの酸素分圧で
ある。また基板面内の膜厚分布を極力避けるように60
rppmの回転を与えている。チャンバー内は、ニュー
トラライザでイオン源がらでるArを中和している。イ
オン源1の出力を600v、30mAとした時にB12
o3の成膜速度は0.2人/seeであり、イオン源2
゜16の出力を600■、40mAとした時のSrO,
CaOの成膜速度は0.18A/secであり、イオン
源17の出力を600v、30mAとした時にCuOの
成膜速度は0.2人/seeであった。
9 is a heater, 13 is an electron gun for RHEED, 14 is RHE
This is the ED screen. Vacuum degree inside the chamber: 4X1
0 torr, and oxygen gas is blown around the substrate to promote oxidation at a local oxygen partial pressure of 2×10 torr. Also, in order to avoid the film thickness distribution within the substrate plane as much as possible,
It gives rpm rotation. Inside the chamber, a neutralizer neutralizes Ar emitted by the ion source. B12 when the output of ion source 1 is 600v and 30mA.
The film formation rate of o3 is 0.2 people/see, and the ion source 2
SrO when the output of ゜16 is 600■, 40mA,
The deposition rate of CaO was 0.18 A/sec, and when the output of the ion source 17 was 600 V and 30 mA, the deposition rate of CuO was 0.2 people/see.

次にMg0(100)基板を用いたBi系110に超伝
導相の成膜例を示す。基板温度62O°C1基板付近の
酸素ガス分圧I X 10  Torrの条件で周期長
36人の膜を、成膜中RHEEDパターンを確認しなが
ら形成した。
Next, an example of film formation of a superconducting phase in Bi-based 110 using an Mg0 (100) substrate will be shown. A film with a periodic length of 36 was formed under the conditions of a substrate temperature of 620° C. and an oxygen gas partial pressure of I×10 Torr near one substrate, while checking the RHEED pattern during film formation.

MgO基板上に例えば5uCuOxe成長させるとMg
Oの基板方位を一致させてバッファー層としての5uC
uOがヘテロエピタキシャルする。この場合の5rCu
O層は10人である。ヘテロエピタキシャル層成膜後4
分間の緩衛時間の後、BiOを6人エピタキシャル成長
させる。
For example, when 5uCuOxe is grown on an MgO substrate, Mg
5uC as a buffer layer by matching the substrate orientation of O
uO becomes heteroepitaxial. 5rCu in this case
There are 10 people in the O layer. After heteroepitaxial layer deposition 4
After a slow period of minutes, BiO is grown epitaxially by 6 people.

さらに1分間の緩衝時間を経て、SrOを2人、緩衝時
間1分、CuOを2人、CaOを2人、緩衝時間1分、
CuOを2人、緩衝時間1分、CaOを2人、緩衝時間
1分、CuOを2人、緩衝時間1分、SrOを2人、緩
衝時間1分、BiOを6人、緩衝時間1分、の設定で周
期的積層成膜を繰り返す。
After another 1 minute buffer time, 2 people applied SrO, 1 minute buffer time, 2 people applied CuO, 2 people applied CaO, 1 minute buffer time,
2 people for CuO, 1 minute buffer time, 2 people for CaO, 1 minute buffer time, 2 people for CuO, 1 minute buffer time, 2 people for SrO, 1 minute buffer time, 6 people for BiO, 1 minute buffer time, Repeat periodic layered film deposition using the settings.

ここで、設定値をBi系110に超伝導相の周期長より
も長くしているのはスパッタ粒子の膜面への付着確率を
考慮しているがらである。RHEEDの回折スポットは
ストリーク状になり膜表面の平坦性が良好であること、
さらにエピタキシャル成長が持続していることがわがる
。この人工的周期長18人を15回繰り返し総膜厚30
0人の時の膜のX線回折パターンを第2図に示す。この
X線回折パターンより、設計値通りに36人(18人×
2)のBi系超伝導体の110KiがきれいにC軸配向
してできていることが分かる。この膜の電気抵抗は、1
10Kにオンセットを持ち107にで超伝導となること
が確認された。以上はBi系110に相の極薄エピタキ
シャル超伝導性薄膜の合成方法の例であるが、第1表に
これ以外の成膜結果を示す。同様の手段において、(B
i−0)層を6人、(Sr−Ca−Cu・0)層を10
人と設定することによりBi系80に超伝導相の膜も容
易に作製できた。また、バッファー層としてBiOを持
ちいることも可能であり、前述のプロセスを行うことで
単結晶膜を合成する第1表 これらのプロセスにおいて、膜特性と基板温度及び基板
付近の酸素ガス分圧は基板温度は500〜800°Cが
適当であり、500°C以下では結晶性が悪く超伝導特
性が得られなくなり、8006C以上では膜の組成ずれ
及び銅が還元されて非超伝導相が成長してしまう。酸素
分圧は結晶成長させるためには最低でも2X10  t
orr必要である。また真空チャンバー内にRFを導入
することにより、RFコイル内でスパッタ粒子が活性化
され同時に酸素プラズマが発生する。この環境での上記
同様の成長をおこなうことにより膜の超伝導臨界温度の
向上が確認され、さらにRFプラズマにバイアス電位を
かけて酸素イオンをIOV〜80■に加速して基板に照
射することにより膜表面の平坦性の改善が見られた。ま
た加速酸素イオンの発生源として別に酸素イオンガンを
真空チャンバー内に設置することによっても同様の平坦
性の改善効果がみられた。
Here, the reason why the set value is set longer than the periodic length of the superconducting phase of the Bi system 110 is to take into account the probability of adhesion of sputtered particles to the film surface. RHEED diffraction spots are streak-like and the film surface has good flatness;
Furthermore, it can be seen that epitaxial growth continues. This artificial period length of 18 people is repeated 15 times for a total film thickness of 30
Figure 2 shows the X-ray diffraction pattern of the membrane when 0 people were present. From this X-ray diffraction pattern, 36 people (18 people x
It can be seen that 110Ki of the Bi-based superconductor (2) is formed with a neat C-axis orientation. The electrical resistance of this film is 1
It was confirmed that it has an onset at 10K and becomes superconducting at 107K. The above is an example of a method for synthesizing an ultra-thin epitaxial superconducting thin film having a Bi-based 110 phase, but Table 1 shows other film formation results. In similar means, (B
6 people for i-0) layer, 10 people for (Sr-Ca-Cu・0) layer
By setting it as human, we were able to easily create a superconducting phase film in Bi-based 80. It is also possible to have BiO as a buffer layer, and a single crystal film is synthesized by performing the above-mentioned process.In these processes, the film characteristics, substrate temperature, and oxygen gas partial pressure near the substrate are The appropriate substrate temperature is 500 to 800°C; below 500°C, crystallinity is poor and superconducting properties cannot be obtained; above 8006°C, a non-superconducting phase grows due to film composition deviation and copper reduction. It ends up. Oxygen partial pressure should be at least 2X10 t for crystal growth.
orr is required. Furthermore, by introducing RF into the vacuum chamber, sputtered particles are activated within the RF coil and at the same time oxygen plasma is generated. By performing the same growth as above in this environment, it was confirmed that the superconducting critical temperature of the film was improved, and by applying a bias potential to the RF plasma to accelerate oxygen ions to IOV ~ 80cm and irradiating the substrate with the oxygen ions. An improvement in the flatness of the film surface was observed. A similar flatness improvement effect was also observed by separately installing an oxygen ion gun in the vacuum chamber as a source of accelerated oxygen ions.

次にターゲットとして酸化ビスマスの代りにTorrと
固定しである。x = 0.1程度まで超伝導特性は改
善される(Tcが5〜15にの上昇した)が、これ以上
では膜中に異相が発生することにより単結晶膜としての
品質が落ちるのであまり実用的でなくなる。
Next, instead of bismuth oxide, Torr was fixed as the target. The superconducting properties are improved up to x = 0.1 (Tc increases to 5 to 15), but above this the quality of the single crystal film deteriorates due to the generation of different phases in the film, so it is not practical. It becomes irrelevant.

以上は酸化マグネシウム(MgO)単結晶基板上に合成
されたエピタキシャル膜について述べたが、チタン酸ス
トロンチウム(SrTiO3)単結晶、イツトリウム安
定化ジルコニア(YSZ)単結晶、ジルコニア(Zr0
2)単結晶いずれの基板上にも同様に合成することがで
きた。
The above has described an epitaxial film synthesized on a magnesium oxide (MgO) single crystal substrate, but strontium titanate (SrTiO3) single crystal, yttrium stabilized zirconia (YSZ) single crystal, zirconia (Zr0
2) Single crystals could be similarly synthesized on any substrate.

(発明の効果) 以上のように本発明を適応することにより、約107に
での超伝導を示し、かつ単一相のエピタキシャル膜を低
温で容易に合成され、デバイス等への応用上非常に有効
である。
(Effects of the Invention) As described above, by applying the present invention, it is possible to easily synthesize a single-phase epitaxial film that exhibits superconductivity at about 107°C at a low temperature, which is extremely useful for applications to devices, etc. It is valid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (b)は、本発明を実施したイオンビ
ームスパッタ装置の構造概略図である。第2図はX線回
折図である。 図において、1.2.16.17はイオン源、3はBi
2O3ターゲット、4は5rCaCuO酸化物ターゲツ
ト、5は天板、6,7はシャッター、8は基板ホルダー
、9はヒーター、10はゲートバルブ、11は真空排気
ポンプ、12は真空チャンバー、13は反射高エネルギ
ー電子線回折(RHEED)用電子銃、14はRHEE
Dスクリーン、15は水晶振動子膜厚モニタ、18はC
aOターゲット、19はCuOターゲットである。
FIGS. 1(a) and 1(b) are schematic structural diagrams of an ion beam sputtering apparatus in which the present invention is implemented. FIG. 2 is an X-ray diffraction diagram. In the figure, 1.2.16.17 is an ion source, 3 is a Bi
2O3 target, 4 is 5rCaCuO oxide target, 5 is top plate, 6 and 7 are shutters, 8 is substrate holder, 9 is heater, 10 is gate valve, 11 is vacuum pump, 12 is vacuum chamber, 13 is reflection height Electron gun for energy electron diffraction (RHEED), 14 is RHEE
D screen, 15 is crystal resonator film thickness monitor, 18 is C
The aO target and 19 are CuO targets.

Claims (3)

【特許請求の範囲】[Claims] (1)ターゲットとしてBi_2O_3、SrO、Ca
O、CuOの4種類のターゲットを所定の順にもちいて
イオンビームスパッタを行なう酸化物超伝導薄膜の製造
方法であって、前記ターゲットをBi_2O_3、Sr
O、CuO、CaO、CuO、CaO、CuO、SrO
、Bi_2O_3の順に用いてイオンビームスパッタす
ることにより基板上に周期的に層状成長させることを特
徴とした酸化物超伝導薄膜の製造方法。
(1) Bi_2O_3, SrO, Ca as targets
A method for producing an oxide superconducting thin film in which ion beam sputtering is performed using four types of targets, O and CuO, in a predetermined order, the targets being Bi_2O_3 and Sr.
O, CuO, CaO, CuO, CaO, CuO, SrO
, Bi_2O_3 in the order of ion beam sputtering to periodically grow layers on a substrate.
(2)ターゲットとして酸化ビスマスの代わりに(Bi
_2O_3)_1_−_x(PbO)_x(ただし0<
x≦0.1)を用いることを特徴とした特許請求の範囲
第1項記載の酸化物超伝導薄膜の製造方法。
(2) Instead of bismuth oxide as a target (Bi
_2O_3)_1_-_x(PbO)_x (0<
The method for producing an oxide superconducting thin film according to claim 1, characterized in that x≦0.1).
(3)成膜プロセス中に真空中容器内に高周波(RF)
を導入することを特徴とした特許請求の範囲第1項又は
第2項記載の酸化物超伝導薄膜の製造方法。
(3) Radio frequency (RF) is applied inside the vacuum container during the film formation process.
3. A method for producing an oxide superconducting thin film according to claim 1 or 2, characterized in that:
JP27220788A 1988-10-27 1988-10-27 Production of superconducting thin film of oxide Pending JPH02120229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27220788A JPH02120229A (en) 1988-10-27 1988-10-27 Production of superconducting thin film of oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27220788A JPH02120229A (en) 1988-10-27 1988-10-27 Production of superconducting thin film of oxide

Publications (1)

Publication Number Publication Date
JPH02120229A true JPH02120229A (en) 1990-05-08

Family

ID=17510601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27220788A Pending JPH02120229A (en) 1988-10-27 1988-10-27 Production of superconducting thin film of oxide

Country Status (1)

Country Link
JP (1) JPH02120229A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296730A (en) * 1989-05-12 1990-12-07 Matsushita Electric Ind Co Ltd Manufacture of thin film superconductor
JPH02296731A (en) * 1989-05-12 1990-12-07 Matsushita Electric Ind Co Ltd Manufacture of thin film superconductor
US5434126A (en) * 1992-09-29 1995-07-18 Matsushita Electric Industrial Co., Ltd. Thin-film high Tc superconductor comprising a ferroelectric buffer layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296730A (en) * 1989-05-12 1990-12-07 Matsushita Electric Ind Co Ltd Manufacture of thin film superconductor
JPH02296731A (en) * 1989-05-12 1990-12-07 Matsushita Electric Ind Co Ltd Manufacture of thin film superconductor
US5434126A (en) * 1992-09-29 1995-07-18 Matsushita Electric Industrial Co., Ltd. Thin-film high Tc superconductor comprising a ferroelectric buffer layer

Similar Documents

Publication Publication Date Title
US6156376A (en) Buffer layers on metal surfaces having biaxial texture as superconductor substrates
US5968877A (en) High Tc YBCO superconductor deposited on biaxially textured Ni substrate
JP2004071359A (en) Oxide superconductor wire material
US4874741A (en) Non-enhanced laser evaporation of oxide superconductors
JPH0297427A (en) Production of oxide superconducting thin film
JPH02120229A (en) Production of superconducting thin film of oxide
JPH02120231A (en) Production of superconducting thin film of oxide
JPH02120232A (en) Production of superconducting thin film of oxide
JPH02120230A (en) Production of superconducting thin film of oxide
US20090036313A1 (en) Coated superconducting materials
JP2561303B2 (en) Method for producing single crystal oxide superconducting thin film
JPH02175613A (en) Production of oxide superconducting thin film
JP2704625B2 (en) Method for producing LnA lower 2 Cu lower 3 O-low 7-x single crystal thin film and LnA lower 2 Cu lower 3 O lower 7-x thin film having three-layer perovskite structure
KR970009739B1 (en) Method of manufacture for superconductor thin film
JPH03275504A (en) Oxide superconductor thin film and its production
JPH02170311A (en) Manufacture of oxide superconductor thin film
JPH0244029A (en) Production of thin oxide superconducting film
JPH05170448A (en) Production of thin ceramic film
JP2835235B2 (en) Method of forming oxide superconductor thin film
JPH0244024A (en) Production of thin oxide superconducting film
JPH01115899A (en) Production of oxide superconductor film
JPH01112614A (en) Manufacture of super conductive film
JPH01282122A (en) Production of thin film superconductor
Lathrop et al. In-Situ Production of Superconducting YBa2Cu3O7-y Thin Films by High Pressure Reactive Evaporation with Rapid Thermal Annealing
JPH03197303A (en) Production of oxide superconducting thin film