JP2704625B2 - Method for producing LnA lower 2 Cu lower 3 O-low 7-x single crystal thin film and LnA lower 2 Cu lower 3 O lower 7-x thin film having three-layer perovskite structure - Google Patents

Method for producing LnA lower 2 Cu lower 3 O-low 7-x single crystal thin film and LnA lower 2 Cu lower 3 O lower 7-x thin film having three-layer perovskite structure

Info

Publication number
JP2704625B2
JP2704625B2 JP63075486A JP7548688A JP2704625B2 JP 2704625 B2 JP2704625 B2 JP 2704625B2 JP 63075486 A JP63075486 A JP 63075486A JP 7548688 A JP7548688 A JP 7548688A JP 2704625 B2 JP2704625 B2 JP 2704625B2
Authority
JP
Japan
Prior art keywords
thin film
lna
single crystal
perovskite structure
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63075486A
Other languages
Japanese (ja)
Other versions
JPH029793A (en
Inventor
利夫 高田
孝仁 寺嶋
尚周 坂東
Original Assignee
財団法人生産開発科学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人生産開発科学研究所 filed Critical 財団法人生産開発科学研究所
Priority to CA000577966A priority Critical patent/CA1322514C/en
Priority to EP88115399A priority patent/EP0308869B1/en
Priority to DE3853905T priority patent/DE3853905T2/en
Publication of JPH029793A publication Critical patent/JPH029793A/en
Priority to US08/053,318 priority patent/US5362711A/en
Application granted granted Critical
Publication of JP2704625B2 publication Critical patent/JP2704625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、90K近傍で超伝導を示すものとして注目さ
れている三層ペロブスカイト構造をもつLnA2Cu3O7-x
関するものである(ここにおいてLnはY,Nd,Sm,Eu,Gd,D
y,Ho,Er,Tm及びYbから選ばれる希土類金属元素を意味
し、AはBa,Sr及びCaから選ばれるアルカリ土類金属元
素を意味する。)。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to LnA 2 Cu 3 O 7-x having a three-layer perovskite structure, which is attracting attention as exhibiting superconductivity near 90 K ( Where Ln is Y, Nd, Sm, Eu, Gd, D
A means a rare earth metal element selected from y, Ho, Er, Tm and Yb, and A means an alkaline earth metal element selected from Ba, Sr and Ca. ).

更に詳しくは、本発明は上記物質の単結晶薄膜及びそ
の製造に適切な方法に関するものである。
More specifically, the present invention relates to a single crystal thin film of the above substance and a method suitable for producing the same.

90K近傍で超伝導を示す三層ペロブスカイト構造をも
つLnA2Cu3O7-x膜は、LSIの配線,SQUID,ジョセフソント
ンネル型素子などとして、新しい応用が考えられてい
る。
LnA 2 Cu 3 O 7-x film having a three-layer perovskite structure showing superconductivity near 90K is considered for new applications as LSI wiring, SQUID, Josephson tunnel type device, etc.

この利用のためには、膜のTcは85K以上、Jcは105A/cm
2以上の電流密度で5000Å以下の薄膜で上記特性を有
し、さらにこれらの膜の形成温度は低温であることが必
要とされる。
For this use, the film has a Tc of 85K or more and a Jc of 10 5 A / cm
It is necessary that the thin film having a current density of 2 or more and having a thickness of 5000 ° or less have the above characteristics, and the formation temperature of these films be low.

LSIの配線材料としては、高い電流密度を必要とする
ので(001)面,(110)面,(103)面等に電流が流れ
るような特定の面を膜面に平行にした単結晶膜が必要で
ある。
As a material for LSI wiring, a high current density is required, so a single crystal film with a specific surface parallel to the film surface such that a current flows through the (001), (110), and (103) planes is required. is necessary.

一方、ジョセフソントンネル型素子は、トンネル接合
のための絶縁用超薄膜が30Å以下とされ、このような接
合を形成するためには、表面の平滑性の優れた超伝導膜
や接合のための超薄層の作製が必要である。接合に使用
する絶縁用超薄膜の厚さは超伝導体のコヒーレンスの長
さによって限界がある。(001)面に垂直な方向のコヒ
ーレンス長さは4〜7Å程度、平行な方向のそれは15〜
30Åといわれている。
On the other hand, the Josephson tunnel-type element has an ultra-thin insulating film for a tunnel junction of 30 mm or less, and in order to form such a junction, a superconductive film having excellent surface smoothness or a It is necessary to make an ultra-thin layer. The thickness of the insulating ultra-thin film used for bonding is limited by the length of coherence of the superconductor. The coherence length in the direction perpendicular to the (001) plane is about 4 to 7 mm, and that in the parallel direction is 15 to
It is said to be 30Å.

従って、接合に使用する絶縁用超薄膜の厚さは、被接
合体となる超伝導体としてどのようなものを使用するか
によって異なることとなり、超伝導体の(001)面に垂
直な方向が絶縁用超薄膜の厚み方向となる関係において
は、絶縁用超薄膜の厚さは10Å以下でなければならな
い。これに対し、超伝導体の(001)面に平行な方向が
絶縁用超薄膜の方向となる関係においては、絶縁用超薄
膜の厚さは数10Åでもよいこととなり、トンネル接合を
形成するには好都合である。
Therefore, the thickness of the ultra-thin insulating film used for bonding differs depending on the type of superconductor to be bonded, and the direction perpendicular to the (001) plane of the superconductor is In relation to the thickness direction of the ultra-thin insulating film, the thickness of the ultra-thin insulating film must be 10 mm or less. On the other hand, if the direction parallel to the (001) plane of the superconductor is the direction of the insulating ultrathin film, the thickness of the insulating ultrathin film may be several tens of millimeters. Is convenient.

それ故、トンネル型接合には(110)面で成長した単
結晶膜が都合がよいこととなる。
Therefore, a single crystal film grown on the (110) plane is advantageous for the tunnel junction.

以上のように(110)面が膜面に平行を成す単結晶膜
が応用上に必要であるが、これ以外の特定の面が膜面に
平行を成す単結晶膜も高い電流密度を達成できるため、
線状にして、超伝導磁石を作製する場合に都合がよい。
As described above, a single crystal film whose (110) plane is parallel to the film surface is required for application, but a single crystal film whose other specific surface is parallel to the film surface can also achieve a high current density. For,
It is convenient when making a superconducting magnet by making it linear.

〔従来の技術〕[Conventional technology]

LnA2Cu3O7-x単結晶膜は、スパッタリング法で製造さ
れている例が圧倒的に多い。このスパッタリング法は、
Ln-A-Cu系複合酸化物のターゲットを製造し、次にこの
ターゲットを真空槽内に設置し、このターゲットに、O2
または/およびArプラズマを照射し、同槽内に設置した
SrTiO単結晶などの基板上にターゲットからの射出金属
などをたい積させて、LnA2Cu3O7-xの生成をはかるもの
である。このLnA2Cu3O7-xを77K以上の高質超伝導を示す
膜にするには800℃以上の熱処理が必要である。
The LnA 2 Cu 3 O 7-x single crystal film is overwhelmingly produced by a sputtering method. This sputtering method
A target of an Ln-A-Cu-based composite oxide is manufactured, and then this target is set in a vacuum chamber, and O 2
Or / and irradiation with Ar plasma, placed in the same tank
LnA 2 Cu 3 O 7-x is produced by depositing an injection metal or the like from a target on a substrate such as a SrTiO single crystal. In order to make LnA 2 Cu 3 O 7-x a film exhibiting high quality superconductivity of 77K or more, heat treatment at 800 ° C. or more is required.

一方、米国のIBMワトソン研究所やスタンフォード大
学では、電子ビーム蒸着によって薄膜の合成を行ってい
るが、蒸着後の膜はアモルファスであり、そのままでは
超伝導特性を示さない。この蒸着膜は、その後800〜100
0℃の高温で熱処理し、三層構造のペロブスカイトに結
晶化してはじめて77K以上の超伝導特性を示すようにな
る。
On the other hand, at the IBM Watson Laboratory and Stanford University in the United States, thin films are synthesized by electron beam evaporation, but the film after evaporation is amorphous and does not show superconductivity as it is. This deposited film is then
Only after heat treatment at a high temperature of 0 ° C. and crystallization into a three-layered perovskite, superconductivity above 77K is exhibited.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

以上に掲げた従来のスパッタリング法及び電子ビーム
蒸着法では、未だ(001)面、(110)面又は(103)面
が膜面に平行を成す実質的に単結晶といえる膜は提供さ
れていず、またいずれも方法的に問題がある。
The conventional sputtering method and electron beam evaporation method described above do not yet provide a film that can be said to be a substantially single crystal in which the (001) plane, the (110) plane, or the (103) plane is parallel to the film plane. , And both have problems in method.

例えば、従来のスパッタリング法では、スパッタリン
グに使用するターゲットの製造が容易ではない。また、
目的物の製造のために専らプラズマによるターゲットの
攻撃という手段を採用している為、プラズマ雰囲気の条
件やターゲットの良・不良によって目的物の性状が微妙
に変化するだけでなく、プラズマによる基板や生成中の
目的物等の攻撃により、目的物に変化が起こり易く、製
法として再現性に問題がある。
For example, with a conventional sputtering method, it is not easy to manufacture a target used for sputtering. Also,
Because the method of attacking the target with plasma is exclusively used for manufacturing the target, not only the properties of the target change subtly depending on the conditions of the plasma atmosphere and the quality of the target, but also The target object is likely to change due to the attack of the target object or the like during generation, and there is a problem in reproducibility as a manufacturing method.

更に問題は、上記製法によりエピタキシャル成長した
LnA2Cu3O7-x酸化物膜の超伝導転移点を77K以上、望まし
くは85K以上にするためには、800℃以上の温度での熱処
理が必要である。この熱処理によって膜の表面が凸凹に
なり、平滑な面を有する膜が得られない。また高温熱処
理のため基板とLnA2Cu3O7-xとの間に反応が生じ、5000
Å以下の超薄膜では超伝導が得られない。
The further problem is that the epitaxial growth
In order to make the superconducting transition point of the LnA 2 Cu 3 O 7-x oxide film 77K or more, preferably 85K or more, heat treatment at a temperature of 800 ° C or more is necessary. Due to this heat treatment, the surface of the film becomes uneven, and a film having a smooth surface cannot be obtained. In addition, a reaction occurs between the substrate and LnA 2 Cu 3 O 7-x due to the high-temperature heat treatment, and 5000
超 Superconductivity cannot be obtained with the following ultrathin films.

従来スパッタリング法で最も低温で得られた例は550
〜650℃に加熱したサファイヤ基板の上に作製した2000
〜3000Åの薄膜のYBa2Cu3O7-xが(001)面に配向した単
結晶体の膜であり、これを550〜650℃で熱処理して80K
で電気抵抗が零になっている報告である。
The example obtained at the lowest temperature by the conventional sputtering method is 550
2000 fabricated on sapphire substrate heated to ~ 650 ° C
A thin film of YBa 2 Cu 3 O 7-x with a thickness of ~ 3000Å is oriented in the (001) plane and is heat-treated at 550-650 ° C to 80K
It is a report that the electrical resistance has become zero.

しかし、80Kではまだ不充分であり、X線や電気抵抗
の温度変化などからも膜は不均一であると考えられる。
However, 80 K is still insufficient, and it is considered that the film is non-uniform from the temperature change of X-rays and electric resistance.

一方、従来の電子ビーム蒸着法の場合も、蒸着膜に高
温の熱処理を必要とし、その為、使用できる基板の材料
が制限され、基板が不適当な場合には、これと蒸着物質
との間の化学変化により、蒸着膜の一部又は全部が目的
とは異なったものとなる等の問題が生ずる。
On the other hand, in the case of the conventional electron beam evaporation method, a high-temperature heat treatment is required for the deposited film, and therefore, the material of the substrate that can be used is limited. The chemical change causes a problem that a part or all of the deposited film becomes different from the intended purpose.

さらに膜の質にしても、表面の平滑性に劣っており、
また高温熱処理による基板との反応のため、膜厚を5000
Å以下にすることが困難である等の問題がある。
In addition, the quality of the film is poor in surface smoothness,
In addition, the film thickness is 5000
が あ る There is a problem that it is difficult to make it below.

本発明は、上記した事情に鑑み、層状プロブスカイト
構造をもつLnA2Cu3O7-xを、直接蒸着基板上へ再現性よ
く形成することのできる蒸着法につき研究を重ね、ここ
に画期的な本発明を完成するに到った。
In view of the above-described circumstances, the present invention has repeatedly studied a deposition method capable of directly forming LnA 2 Cu 3 O 7-x having a layered provskite structure on a deposition substrate with good reproducibility. The present invention has been completed.

〔課題を解決するための手段〕と〔作用〕 即ち、本発明は第1に、次の(1),(2),(3)
に示すLnA2Cu3O7-xの単結晶薄膜に係るものである。
[Means for Solving the Problems] and [Operation] That is, the present invention firstly provides the following (1), (2), and (3)
The present invention relates to a single-crystal LnA 2 Cu 3 O 7-x thin film shown in FIG.

(1) 三層ペロブスカイト構造をもつLnA2Cu3O7-x
膜であって、その結晶の(001)面が膜面に平行を成
し、薄膜が全体として単結晶を成していることを特徴と
する三層ペロブスカイト構造をもつLnA2Cu3O7-xの単結
晶薄膜。
(1) A LnA 2 Cu 3 O 7-x thin film having a three-layer perovskite structure, in which the (001) plane of the crystal is parallel to the film surface and the thin film is a single crystal as a whole A single-crystal LnA 2 Cu 3 O 7-x thin film having a three-layer perovskite structure, characterized by:

(2) 三層ペロブスカイト構造をもつLnA2Cu3O7-x
膜であって、その結晶の(110)面が膜面に平行を成
し、薄膜が全体として単結晶をなしていることを特徴と
する三層ペロブスカイト構造をもつLnA2Cu3O7-xの単結
晶薄膜。
(2) A LnA 2 Cu 3 O 7-x thin film having a three-layer perovskite structure, in which the (110) plane of the crystal is parallel to the film surface, and the thin film is a single crystal as a whole. LnA 2 Cu 3 O 7-x single crystal thin film with characteristic three-layer perovskite structure.

(3) 三層ペロブスカイト構造をもつLnA2Cu3O7-x
膜であって、その結晶の(103)面が膜面に平行を成
し、薄膜が全体として単結晶を成していることを特徴と
する三層ペロブスカイト構造をもつLnA2Cu3O7-xの単結
晶薄膜。
(3) A LnA 2 Cu 3 O 7-x thin film having a three-layer perovskite structure, in which the (103) plane of the crystal is parallel to the film plane and the thin film as a whole is a single crystal A single-crystal LnA 2 Cu 3 O 7-x thin film having a three-layer perovskite structure, characterized by:

また、本発明は第2に上記のLnA2Cu3O7-xの単結晶薄
膜の製造に適切な、次の(4),(5)に示す方法に係
るものである。
Secondly, the present invention relates to the following methods (4) and (5) which are suitable for producing the above-mentioned single crystal thin film of LnA 2 Cu 3 O 7-x .

(4) 真空蒸着槽内の蒸着基板の表面に、その近傍か
ら酸素ガスを噴射し、蒸着基板の表面近傍のみ酸素ガス
圧力を10-2〜10-1Torrにすると共に該基板の近傍を除く
真空蒸着槽内の酸素ガス圧力は10-5〜10-3Torrとして、
Ln,A,Cuの各金属を別々の蒸発源からLn:A:Cuの原子比が
およそ1:2:3となるように制御しつつ基板上へ同時に蒸
発させることを特徴とする三層ペロブスカイト構造をも
つLnA2Cu3O7-x薄膜の製造法。
(4) Oxygen gas is injected from the vicinity of the surface of the deposition substrate in the vacuum deposition tank from the vicinity thereof, and the oxygen gas pressure is set to 10 -2 to 10 -1 Torr only near the surface of the deposition substrate, and the vicinity of the substrate is removed. The oxygen gas pressure in the vacuum deposition tank is 10 -5 to 10 -3 Torr,
A three-layer perovskite characterized by simultaneous vaporization of Ln, A, and Cu metals from separate evaporation sources onto a substrate while controlling the Ln: A: Cu atomic ratio to approximately 1: 2: 3 Manufacturing method of LnA 2 Cu 3 O 7-x thin film with structure.

(5) 真空蒸着法槽内の蒸着基板の表面に、その近傍
から酸素ガスを噴射し、蒸着基板の表面近傍のみ酸素ガ
ス圧力を10-2〜10-1Torrにすると共に該基板の近傍を除
く真空蒸着槽内の酸素圧力は10-5〜10-3Torrとする一
方、真空蒸着槽内にプラズマを発生させ、Ln,A,Cuの各
金属を別々の蒸発源からLn:A:Cuの原子比がおよそ1:2:3
となるように制御しつつ基板上へ同時に蒸発させること
を特徴とする三層ペロブスカイト構造をもつLnA2Cu3O
7-x薄膜の製造法。
(5) Oxygen gas is sprayed from the vicinity of the surface of the deposition substrate in the vacuum deposition method tank, the oxygen gas pressure is set to 10 -2 to 10 -1 Torr only near the surface of the deposition substrate, and the vicinity of the substrate is reduced. Oxygen pressure in the vacuum evaporation tank was set to 10 -5 to 10 -3 Torr while plasma was generated in the vacuum evaporation tank, and Ln, A, and Cu were separated from separate evaporation sources by Ln: A: Cu. Atomic ratio of about 1: 2: 3
LnA 2 Cu 3 O with a three-layer perovskite structure characterized by simultaneous evaporation on the substrate while controlling
Manufacturing method of 7-x thin film.

上記した(4),(5)の製法で生成するLnA2Cu3O
7-x薄膜が、多結晶となるか単結晶となるか、更にはど
の様な単結晶となるかは、蒸着基板として使用する物質
が多結晶であるか、単結晶であるか、更にはどの様な単
結晶であるかによって決まる。
LnA 2 Cu 3 O produced by the above-mentioned processes (4) and (5)
Whether the 7-x thin film becomes polycrystalline or single crystal, or what kind of single crystal, whether the substance used as the deposition substrate is polycrystalline, single crystal, or even It depends on what kind of single crystal it is.

即ち、前述(1)の三層ペロブスカイト構造をもつLn
A2Cu3O7-xの単結晶薄膜を(4)又は(5)の製法によ
って得るには、蒸着基板として既知のSrTiO3,MgO,CoO,N
iO等の単結晶を用い、次の(6)の製法によればよい。
That is, Ln having the three-layer perovskite structure of (1) described above.
In order to obtain a single crystal thin film of A 2 Cu 3 O 7-x by the method (4) or (5), it is necessary to use SrTiO 3 , MgO, CoO, N
A single crystal such as iO may be used and the following method (6) may be used.

(6).(4)又は(5)記載の方法において、蒸着基
板として単結晶を用い、且つこの単結晶をその(001)
面が基板表面となるように用いることを特徴とする
(1)記載の三層ペロブスカイト構造をもつLnA2Cu3O
7-xの単結晶薄膜の製造法。
(6). In the method according to (4) or (5), a single crystal is used as a deposition substrate, and the single crystal is used as the (001)
LnA 2 Cu 3 O having a three-layer perovskite structure according to (1), wherein the surface is used so that the surface becomes the substrate surface.
Manufacturing method of 7-x single crystal thin film.

同様に、前述の(2)の単結晶薄膜を得るには、次の
(7)の製法によればよい。
Similarly, in order to obtain the single crystal thin film of the above (2), the following method (7) may be used.

(7).(4)又は(5)記載の方法において、蒸着基
板として単結晶を用い、且つこの単結晶をその(110)
面が基板表面となるように用いることを特徴とする
(2)記載の三層ペロブスカイト構造をもつLnA2Cu3O
7-xの単結晶薄膜の製造法。
(7). In the method according to (4) or (5), a single crystal is used as a deposition substrate, and the single crystal is used as the (110)
LnA 2 Cu 3 O having a three-layer perovskite structure according to (2), wherein the surface is used so that the surface becomes the substrate surface.
Manufacturing method of 7-x single crystal thin film.

更に、(4)又は(5)の製法は、三層ペロブスカイ
ト構造をもつLnA2Cu3O7-xの多結晶薄膜の製造にも利用
でき、その際には蒸着基板は、特に制限されない。
Furthermore, the production method (4) or (5) can also be used for producing a polycrystalline thin film of LnA 2 Cu 3 O 7-x having a three-layer perovskite structure, in which case the deposition substrate is not particularly limited.

前述の如く、LnA2Cu3O7-xの単結晶を、その特定の結
晶面が蒸着基板表面に平行を成すものとして得るには、
少なくとも蒸着基板として、その表面が特定の結晶面と
なっている単結晶を用いる必要がある。
As described above, in order to obtain a single crystal of LnA 2 Cu 3 O 7-x as having a specific crystal plane parallel to the surface of the deposition substrate,
It is necessary to use at least a single crystal whose surface is a specific crystal plane as a deposition substrate.

しかしながら、上記の蒸着基板として求められる条件
は、当然のこと乍らLnA2Cu3O7-xの単結晶を、その特定
の結晶面が蒸着基板表面に平行を成すものとして得るた
めの必要条件であるが、充分条件ではない。
However, the conditions required for the above-mentioned vapor deposition substrate are, of course, the necessary conditions for obtaining a single crystal of LnA 2 Cu 3 O 7-x as a crystal having a specific crystal plane parallel to the surface of the vapor deposition substrate. However, this is not a sufficient condition.

即ち、前述の(1)の目的物を製造する場合と、前述
(2)の目的物を製造する場合とで、適切な製造条件が
異なり、次の如くなる。
That is, appropriate manufacturing conditions are different between the case where the above-mentioned target (1) is manufactured and the case where the above-mentioned target (2) is manufactured.

(8).(6)記載の方法において、500℃以上に加熱
した蒸着基板上に金属を蒸発させることを特徴とする
(1)記載の三層ペロブスカイト構造をもつLnA2Cu3O
7-xの単結晶薄膜の製造法。
(8). (6) The method according to (1), wherein the metal is evaporated on a deposition substrate heated to 500 ° C. or higher, wherein LnA 2 Cu 3 O having a three-layer perovskite structure according to (1).
Manufacturing method of 7-x single crystal thin film.

(9).(7)記載の方法において、500℃以上550℃未
満に加熱した蒸着基板上に金属を蒸発させて、先ず表層
に(2)記載の三層ペロブスカイト構造をもつLnA2Cu3O
7-xの単結晶薄膜を生長させ、その後ここで得た物質を5
50℃以上に加熱した上で金属を蒸発させることを特徴と
する(2)記載の三層ペロブスカイト構造をもつLnA2Cu
3O7-xの単結晶薄膜の製造法。
(9). In the method described in (7), the metal is evaporated on a deposition substrate heated to 500 ° C. or more and less than 550 ° C., and LnA 2 Cu 3 O having a three-layer perovskite structure described in (2) on the surface layer first.
A 7-x single crystal thin film is grown, and then the material obtained here is
LnA 2 Cu having a three-layer perovskite structure according to (2), wherein the metal is evaporated after heating to 50 ° C. or more.
Manufacturing method of 3 O 7-x single crystal thin film.

即ち、(1)記載の目的物を得る場合には上記(8)
の如く、温度条件を500℃以上、更に望ましくは520℃以
上で蒸着基板に悪影響を及ぼさない温度以下と比較的ゆ
るやかな条件で足り、これによって極めて良質の結晶構
造を示す薄膜を形成することができる。しかしながら、
(2)記載の目的物を得る場合には、前述(9)の如く
第1段階で温度条件を500℃以上550℃未満、更に望まし
くは530℃前後として蒸着基板上に(2)記載の目的物
が生成し易い条件を作り、第2段階で更に高温の550℃
以上、好ましくは600℃以上の温度となさない限り、良
質の超伝導特性を示す薄膜を形成することができない。
That is, when the object described in (1) is obtained, the above (8)
As described above, a temperature condition of 500 ° C. or more, and more preferably 520 ° C. or more and a temperature that does not adversely affect the deposition substrate and a relatively moderate condition is sufficient, thereby forming a thin film having a very good crystal structure. it can. However,
In the case of obtaining the object described in (2), the temperature in the first step is set at 500 ° C. or higher and lower than 550 ° C., more preferably around 530 ° C., as described in (9) above, on the vapor deposition substrate. Create a condition under which products are easily formed, and in the second stage, further increase the temperature to 550 ° C.
As described above, unless the temperature is preferably set to 600 ° C. or higher, a thin film having good superconducting properties cannot be formed.

いいかえれば、第1段階で得られる薄膜も、第2段階
で得られる薄膜もいずれも前述(2)記載の目的物とは
なるが、第1段階で得られる薄膜は、第2段階で蒸着基
板表面として利用されるものであり、良質の超伝導特性
を示すのは、第2段階で得られる薄膜である。従って後
述実施例にも見られる通り、第1段階の操作と第2段階
の操作とは、必ずしも連続して行う必要もない。
In other words, both the thin film obtained in the first step and the thin film obtained in the second step are the objects described in the above (2), but the thin film obtained in the first step is a deposition substrate in the second step. It is the thin film obtained in the second stage that is used as a surface and exhibits good superconducting properties. Therefore, the first-stage operation and the second-stage operation do not always need to be performed continuously, as can be seen in the embodiments described later.

以上の如く、目的とするLnA2Cu3O7-xの単結晶をどの
様なものとして得るかによって、蒸着基板の表面の結晶
面を決め、同時にその温度条件を決定しなければならな
い。そして、この温度条件の決め方によっては、蒸着基
板の基板表面として、前述(9)の製法の場合と同じ結
晶面を用いるにもかかわらず、下記(10)に示す如く
(3)記載の目的物を製造することができる。
As described above, the crystal plane of the surface of the deposition substrate must be determined and the temperature condition must be determined at the same time, depending on what kind of desired single crystal of LnA 2 Cu 3 O 7-x is obtained. Depending on how to determine the temperature conditions, the target material described in (3) as shown in (10) below is used, although the same crystal plane as that in the above-mentioned manufacturing method (9) is used as the substrate surface of the deposition substrate. Can be manufactured.

(10).(7)記載の方法において、550℃以上、更に
好ましくは600℃以上に加熱した蒸着基板上に金属を蒸
発させることを特徴とする(3)記載の三層ペロブスカ
イト構造をもつLnA2Cu3O7-xの単結晶薄膜の製造法。
(Ten). (7) The method according to (3), wherein the metal is evaporated on a deposition substrate heated to 550 ° C. or higher, more preferably 600 ° C. or higher, wherein the LnA 2 Cu 3 O has a three-layer perovskite structure. Manufacturing method of 7-x single crystal thin film.

以下、本発明の製法を作用と共に更に具体的に説明す
る。
Hereinafter, the production method of the present invention will be described more specifically together with the operation.

第1に、真空蒸着槽は、当初、例えば10-6Torr程度の
高真空となし、次いで蒸着基板の近傍から同基板の表面
に向けて微量の酸素ガスを継続的に噴射させ、同基板の
表面近傍のみ酸素ガス圧力を10-2〜10-1Torrと高くする
一方、真空蒸着槽の適宜箇所から同槽内の気体を継続的
に排気し、蒸着基板の近傍を除く大部分の真空蒸着槽内
の酸素ガス圧力を10-5〜10-3Torrにする。
First, the vacuum deposition tank initially sets a high vacuum of, for example, about 10 -6 Torr, and then continuously injects a small amount of oxygen gas from the vicinity of the deposition substrate toward the surface of the substrate to form a vacuum. While increasing the oxygen gas pressure to 10 -2 to 10 -1 Torr only in the vicinity of the surface, the gas in the vacuum evaporation tank is continuously evacuated from an appropriate place in the vacuum evaporation tank, and most of the vacuum evaporation except for the vicinity of the evaporation substrate is performed. The oxygen gas pressure in the tank is set to 10 -5 to 10 -3 Torr.

この第1の手段で、真空蒸着槽内の蒸着基板近傍以外
の部分の酸素ガス圧力の上限を10-3Torrとしたのは、同
槽内にある蒸発源中のLn,A,Cuを劣化させることなく、
その蒸発をスムーズにおこなわせる為である。一方、下
限の10-5Torrは、プラズマを発生させる場合に必要なガ
ス圧力の下限であり、プラズマを利用しない場合には、
特に技術的な意味はない。
The reason why the upper limit of the oxygen gas pressure in the portion other than the vicinity of the deposition substrate in the vacuum deposition tank is set to 10 −3 Torr by the first means is that Ln, A, and Cu in the evaporation source in the same tank are deteriorated. Without letting
This is to make the evaporation smooth. On the other hand, the lower limit of 10 -5 Torr is the lower limit of the gas pressure required when generating plasma, and when plasma is not used,
There is no technical significance.

また、第1の手段で蒸着基板付近のみ酸素ガス圧力を
高くしたのは、10-3Torr以下の酸素ガス圧力では、Cuを
Cu2+〜Cu3+にまで酸化できないからである。
Further, the reason why the oxygen gas pressure was increased only in the vicinity of the deposition substrate by the first means is that Cu was reduced at an oxygen gas pressure of 10 −3 Torr or less.
This is because it cannot be oxidized to Cu 2+ to Cu 3+ .

尚、プラズマは、蒸発源と蒸着基板との間に高周波コ
イルを置き、真空蒸着槽の器壁との間で高周波発振させ
ることにより発生させることができるが、このプラズマ
の発生は、蒸気金属の反応活性を向上させる意味で望ま
しい反面、その発生が強いと、生成中の目的物を攻撃す
る等して弊害が生ずるので、プラズマ発生に使用する電
力は、50W〜500W、望ましくは100W前後とする。
The plasma can be generated by placing a high-frequency coil between the evaporation source and the deposition substrate and oscillating the high-frequency between the wall of the vacuum deposition tank. While desirable in the sense of improving the reaction activity, if its generation is strong, it will cause harm, such as attacking the target being generated, so the power used for plasma generation should be 50 W to 500 W, preferably around 100 W .

第2に、Ln,a,Cuの蒸発には、Ln及びAの場合は電子
ビーム、Cuの場合は電気抵抗加熱を採用すればよい。
Secondly, for the evaporation of Ln, a, and Cu, electron beams may be used for Ln and A, and electric resistance heating may be used for Cu.

そして、これら蒸発手段による金属の蒸発に際して
は、実施に先だっておこなう前記真空蒸着槽内での予備
実験によって決定した電力によって、Ln.A.Cuの蒸発量
を、およそ1:2:3となるように設定すればよい。
And at the time of metal evaporation by these evaporating means, by the power determined by preliminary experiments in the vacuum evaporation tank performed prior to the implementation, the evaporation amount of Ln.A.Cu, about 1: 2: 3 Should be set to.

即ち、実施に先だっておこなう予備実験により、Ln,
A,Cuの各金属が、蒸発源に加えた電力量条件下において
単位時間当たりにどの程度蒸発し、Ln2O3,AO,CuOの蒸着
膜を形成するかを、真空蒸着槽内の蒸着基板付近に設置
した膜厚計によって金属毎に測定し、電力量によるLn,
A,Cuの蒸発速度を把握し、Ln,A,Cuの実施時の蒸発量を
蒸発源に加える電力量によって決定すればよい。
In other words, Ln,
The amount of each metal, A and Cu, evaporating per unit time under the condition of the electric power applied to the evaporation source and forming a deposited film of Ln 2 O 3 , AO, CuO was determined by evaporation in a vacuum evaporation tank. Measured for each metal with a film thickness meter installed near the substrate, and Ln,
The evaporation rate of A, Cu may be grasped, and the evaporation amount of Ln, A, Cu at the time of execution may be determined by the amount of electric power applied to the evaporation source.

以上、製法の詳細を説明したが、この製法は、従来の
スパッタリング法との比較において特に明らかな如く、
不純物の介在の余地のない、しかも制御し易い操作条件
下で実施しうる為、再現性良く目的物を得るのに好適で
ある。
As described above, the details of the production method have been described, but this production method is particularly evident in comparison with the conventional sputtering method,
Since it can be carried out under operating conditions in which there is no room for impurities and which can be easily controlled, it is suitable for obtaining a target product with good reproducibility.

本発明は発明者らが長年にわたって研究して来た酸化
物単結晶薄膜および人工超格子薄膜の作製および構造上
の成果の上に立っている。本発明の酸化物薄膜の作製は
反応性蒸着によっているが、この方法は結晶構造におい
て完全性が求められる本発明の目的を得るためには最も
適切であることを見出した。
The present invention is based on the production and structural results of oxide single crystal thin films and artificial superlattice thin films that the inventors have studied for many years. Although the preparation of the oxide thin film of the present invention is based on reactive vapor deposition, it has been found that this method is most suitable for obtaining the object of the present invention in which perfection is required in the crystal structure.

酸化物を作製する場合の反応性蒸着とは、真空槽内に
酸素ガスを導入し、基板上に金属原子を照射して、基板
上で反応させながら酸化物膜を作製する方法という。
Reactive deposition in the case of forming an oxide refers to a method in which an oxygen gas is introduced into a vacuum chamber, metal atoms are irradiated on a substrate, and an oxide film is formed while reacting on the substrate.

この反応性蒸着が適切となる主な理由は(a)酸化物
の酸素量が制御できる。(b)良質の単結晶が生成する
ことである。(a)の酸素量を決定する因子は、酸素
圧,基板温度,金属の付着速度および基板材料であっ
て、それぞれを独立に変化させることができるので、酸
素量を自由に制御し得る。(b)については、蒸着基板
を単結晶にすると、非常に良質の単結晶が作製できるこ
とを見出した。例えば、サファイヤC面にNiOを、酸素
圧4×10-4Torr,蒸着速度1Å/S,基板温度200℃の条件
で作製すると、(111)面が蒸着基板に平行に成長したN
iO単結晶が生成してくるが、この結晶のX線によるロッ
キング曲線の半価幅は0.5°である。これにRF励起によ
る酸素プラズマを発生させると、ロッキング曲線の半価
幅は0.06°となり、結晶性は向上する。
The main reason why this reactive deposition is appropriate is that (a) the amount of oxygen in the oxide can be controlled. (B) A good quality single crystal is produced. The factors that determine the amount of oxygen in (a) are the oxygen pressure, the substrate temperature, the metal deposition rate, and the substrate material, and each can be independently changed, so that the amount of oxygen can be freely controlled. Regarding (b), it has been found that when the deposition substrate is a single crystal, a very good single crystal can be produced. For example, when NiO is formed on the sapphire C surface under the conditions of an oxygen pressure of 4 × 10 −4 Torr, a deposition rate of 1 ° / S, and a substrate temperature of 200 ° C., the (111) plane grows parallel to the deposition substrate.
An iO single crystal is produced, and the half-width of the rocking curve of this crystal by X-rays is 0.5 °. When the oxygen plasma is generated by RF excitation, the half width of the rocking curve becomes 0.06 °, and the crystallinity is improved.

NiOとCoOを交互に積層した人工超格子では、各層の厚
さを小さくするほど、ロッキング曲線はシャープにな
り、基板であるサファイヤとほとんど同じになる。
In an artificial superlattice in which NiO and CoO are alternately stacked, the rocking curve becomes sharper as the thickness of each layer is reduced, and becomes almost the same as that of the sapphire substrate.

このように反応性蒸着法は基本的に良質の単結晶を作
り得る条件を具えているが、これは次のように考えられ
る。
As described above, the reactive vapor deposition method basically has conditions capable of forming a high-quality single crystal, which is considered as follows.

結晶が平滑な面を作りながら成長する現象は単層成長
と呼ばれているが、このような成長を行う条件として (1) 熱力学的に平衡に近い条件での成長であること (2) 結晶化に伴う潜熱をLとすればL/RTが2より大
きいこと があげられる。
The phenomenon in which the crystal grows while forming a smooth surface is called monolayer growth. Conditions for such growth are (1) growth under thermodynamically close equilibrium conditions (2) Assuming that the latent heat associated with crystallization is L, L / RT is greater than 2.

(1)については、(i)結晶成長速度がおそいこと
(ii)表面の高いエネルギー位置,例えば空格子点,キ
ンク,ステップに優先して原子が吸着する条件であるこ
と、である。(2)は成長する温度が低ければ容易に達
せられる。
Regarding (1), (i) the crystal growth rate is slow, and (ii) the conditions are such that atoms are adsorbed in preference to high energy positions on the surface, for example, vacancies, kinks, and steps. (2) can be easily achieved if the growth temperature is low.

反応性蒸着法においては(1)を満足する条件は次の
通りである。
In the reactive evaporation method, the condition satisfying (1) is as follows.

酸素分子は、金属原子にしか吸着されないので、結晶
表面では常に吸着−脱着が行われ、平衡関係が成り立
つ。一方、一旦吸着した金属原子は一般に脱着しない。
しかし、蒸発源の高いエネルギーを持った金属原子は表
面で充分拡散することができ、結晶表面の高いエネルギ
ー位置に吸着することができる。この到達した金属原子
のエネルギーに分布が少なく、また到達原子同志が互い
に衝突しないくらい到達する金属原子数を少なくすれ
ば、(1)の条件は満足されていることになる。到達す
る金属原子のエネルギーが途中で変化しないよう、真空
(酸素圧)を10-4Torr台以下にして、平均自由行程を長
くする必要がある。また蒸発温度が低い金属、例えばZn
の場合には、ZnO単結晶の質はよくないので、RFによっ
て励起する必要がある。
Since oxygen molecules are adsorbed only on metal atoms, adsorption-desorption is always performed on the crystal surface, and an equilibrium relationship is established. On the other hand, once adsorbed metal atoms generally do not desorb.
However, the metal atoms having a high energy of the evaporation source can sufficiently diffuse on the surface and can be adsorbed at the high energy position on the crystal surface. The condition (1) is satisfied if the energy distribution of the reached metal atoms is small and the number of reached metal atoms is small enough that the reached atoms do not collide with each other. The vacuum (oxygen pressure) must be reduced to the order of 10 −4 Torr or less and the mean free path must be lengthened so that the energy of the metal atoms does not change halfway. Also, metals with low evaporation temperatures, such as Zn
In the case of, the quality of the ZnO single crystal is not good, and it is necessary to excite by RF.

このように反応性蒸着法は、酸化物の結晶成長の条件
を自由に制御できる最も優れた方法であることを、発明
者らは発見するに到ったものであり、このような基礎研
修の成果をLnA2Cu3O7-xなどの酸化物超伝導体の作製に
応用したものである。
The inventors have found that the reactive evaporation method is the most excellent method that can freely control the conditions of the crystal growth of the oxide, and thus the basic training for such basic training was conducted. The results were applied to the production of oxide superconductors such as LnA 2 Cu 3 O 7-x .

〔実施例〕〔Example〕

実施例1 真空槽(750φ×1000h)を10-6Torrまで油拡散ポンプ
によって排気する。蒸着基板としてサファイア(単結晶
α‐Al2O3)を、その表面が(0112)面(10mm×10mm
となるようにして用い、これをW線ヒーターにより650
℃まで加熱しこの温度に保持する。蒸着基板の両端2ケ
所に酸素ガスの噴出ノズルを配置し、酸素ガスを蒸着基
板に直接ふきつける。この際ガス圧は蒸着基板付近だけ
10-2〜10-1Torrにまで上昇するが、蒸着基板から離れた
蒸着源付近では10-4Torrまでにしかなっていない。金属
Y,Ba,Cuをそれぞれ独立した蒸発源から蒸着基板上で原
子比で1:2:3になるような蒸発速度(例えば、Y……1
Å/sec,Ba……2.3Å/sec,Cu……1.7Å/sec)で蒸発させ
る。さらに蒸発源と蒸着基板の間に高周波コイルを置い
て100Wで高周波発振させて酸素プラズマを発生させて蒸
発金属を活性化させ蒸着基板上での反応を促進させる。
Example 1 A vacuum chamber (750φ × 1000h) was evacuated to 10 −6 Torr by an oil diffusion pump. Sapphire deposition substrate (single crystal α-Al 2 O 3), its surface (0 1 12) surface (10 mm × 10 mm)
It is used in such a way that
Heat to and maintain at this temperature. Oxygen gas jet nozzles are arranged at two places at both ends of the deposition substrate, and the oxygen gas is directly blown onto the deposition substrate. At this time, the gas pressure is only near the deposition substrate
It rises to 10 -2 to 10 -1 Torr, but only up to 10 -4 Torr near the deposition source far from the deposition substrate. metal
Y, Ba, and Cu are evaporated from independent evaporation sources on an evaporation substrate at an atomic ratio of 1: 2: 3 on an evaporation substrate (for example, Y ... 1
(Å / sec, Ba: 2.3Å / sec, Cu: 1.7Å / sec). Furthermore, a high-frequency coil is placed between the evaporation source and the deposition substrate to oscillate at a high frequency of 100 W to generate oxygen plasma to activate the evaporated metal and promote a reaction on the deposition substrate.

この様な方法で合成した膜厚1000Åの薄膜について測
定したX線回折の結果を第1図に示すの。YBa2Cu3O7-x
構造に特徴的な(013)(103)(110)のピークが明瞭
に観測されており、結晶膜が得られていることがわか
る。
FIG. 1 shows the results of X-ray diffraction measurement of a thin film having a thickness of 1000 ° synthesized by such a method. YBa 2 Cu 3 O 7-x
The (013), (103), and (110) peaks characteristic of the structure are clearly observed, indicating that a crystalline film has been obtained.

尚、蒸発源としてはY,Baについては電子ビーム蒸発、
Cuについては抵抗加熱蒸発を用いた。次に各々について
蒸発方法を述べる。
The evaporation source was electron beam evaporation for Y and Ba,
For Cu, resistance heating evaporation was used. Next, the evaporation method will be described for each.

Y:50gの金属インゴット(99.9%)を用い、これを水
冷したルツボに入れ電子線を、加速電圧5KV,フィラメン
ト電流400mAとして、金属にあて蒸発させた。
Y: A 50 g metal ingot (99.9%) was used, placed in a water-cooled crucible, and an electron beam was evaporated on the metal at an acceleration voltage of 5 KV and a filament current of 400 mA.

Ba:Yと同様に50gの金属インゴット(99.9%)を用
い、加速電圧5KV,フィラメント電流100mAとして蒸発を
行った。
Evaporation was performed using a 50 g metal ingot (99.9%) as in the case of Ba: Y, with an acceleration voltage of 5 KV and a filament current of 100 mA.

Cu:抵抗加熱蒸発源としてアルミナルツボをタングス
テンフィラメントで巻いたものを用い、アルミナルツボ
の中に金属Cuの粒(2〜3mm)(99.9999%)を10g入れ
フィラメントに10V,30Aの電流を流して蒸発させた。
Cu: Alumina crucible wound with tungsten filament is used as a resistance heating evaporation source, and 10 g of metal Cu particles (2 to 3 mm) (99.9999%) are put in the alumina crucible and a current of 10 V, 30 A is passed through the filament. Evaporated.

実施例2 真空槽(750φ×1000h)を10-6Torrまで油拡散ポンプ
によって排気する。蒸着基板としてSrTiO3単結晶を、そ
の表面が(001)面(10mm×10mm)となるようにして用
い、これをW線ヒーターにより650°まで加熱しこの温
度に保持する。蒸着基板の両端2ケ所に酸素ガスの噴出
ノズルを配置し、酸素ガスを蒸着基板に直接ふきつけ
る。この際ガス圧は蒸着基板付近だけ10-2〜10-1Torrに
まで上昇するが、蒸着基板から離れた蒸発源付近では10
-4Torrまでにしかなっていない。金属Y,Ba,Cuをそれぞ
れ独立した蒸発源から蒸着基板上で原子比で1:2:3にな
るような蒸発速度(例えば、Y……1Å/sec,Ba……2.3
Å/sec,Cu……1.7Å/sec)で蒸発させる。さらに蒸発源
と蒸着基板の間に高周波コイルを置いて100Wで高周波発
振させて酸素プラズマを発生させて蒸発金属を活性化さ
せ蒸着基板上での反応を促進させる。
Example 2 The vacuum chamber (750φ × 1000h) was evacuated to 10 −6 Torr by an oil diffusion pump. A single crystal of SrTiO 3 is used as a deposition substrate so that its surface becomes a (001) plane (10 mm × 10 mm ), which is heated to 650 ° by a W-line heater and maintained at this temperature. Oxygen gas jet nozzles are arranged at two places at both ends of the deposition substrate, and the oxygen gas is directly blown onto the deposition substrate. At this time, the gas pressure rises to 10 -2 to 10 -1 Torr only in the vicinity of the deposition substrate.
Only up to -4 Torr. Metal Y, Ba, Cu are evaporated from independent evaporation sources on an evaporation substrate at an atomic ratio of 1: 2: 3 (for example, Y ... 1Å / sec, Ba ... 2.3
(Å / sec, Cu ... 1.7Å / sec). Furthermore, a high-frequency coil is placed between the evaporation source and the deposition substrate to oscillate at a high frequency of 100 W to generate oxygen plasma to activate the evaporated metal and promote a reaction on the deposition substrate.

この様な方法で合成した膜厚1000Åの薄膜について測
定したX線回折の結果を第2図に示す(尚、図中×2,×
1,×4,×30とあるのは、強度を何倍掛して図面に表した
かを示す倍率である。)。同図の通り(00n)以外のピ
ークは観測されておらず、該膜は単結晶であることが確
認できた。
FIG. 2 shows the result of X-ray diffraction measurement of a thin film having a thickness of 1000 ° synthesized by such a method.
1, × 4, × 30 are magnifications indicating how many times the strength is multiplied in the drawing. ). As shown in the figure, no peak other than (00n) was observed, and it was confirmed that the film was a single crystal.

また、以上で得た薄膜を、650℃で30分加熱した後、
その液体窒素温度77Kでの臨界電流密度を常法により測
定したところ、400万A/cm2の測定値を得た。この値は、
従来のYBa2Cu3O7-x超伝導物質の180万A/cm2に比較して
格段に優れたものといえる。
Also, after heating the thin film obtained above at 650 ° C. for 30 minutes,
When the critical current density at a liquid nitrogen temperature of 77 K was measured by a conventional method, a measured value of 4 million A / cm 2 was obtained. This value is
This can be said to be much better than 1.8 million A / cm 2 of the conventional YBa 2 Cu 3 O 7-x superconductor.

実施例3 実施例2と全く同様にして、膜厚3000Åの三層ペロブ
スカイト構造をもつYBa2Cu3O7-xの単結晶薄膜を得た。
この薄膜について製造後10日後に絶対温度と比抵抗の関
係を測定したところ第3図の結果を得た。
Example 3 In the same manner as in Example 2, a single crystal thin film of YBa 2 Cu 3 O 7-x having a three-layered perovskite structure having a thickness of 3000 mm was obtained.
The relationship between the absolute temperature and the specific resistance was measured 10 days after the production of the thin film, and the result shown in FIG. 3 was obtained.

第3図から明らかな如く、この薄膜は、50K弱で超伝
導を示したが、これは酸化度(X)が低い場合に現れる
特性であり、同薄膜が超伝導性を示す斜方晶になってい
ることは、第3図から明らかである。念の為、同薄膜を
酸素中500℃で30分加熱すると、90Kで電気抵抗零を示し
た。
As is apparent from FIG. 3, this thin film showed superconductivity at a little less than 50 K, which is a characteristic that appears when the degree of oxidation (X) is low. This is apparent from FIG. As a precautionary measure, when the thin film was heated in oxygen at 500 ° C for 30 minutes, it showed zero electrical resistance at 90K.

以上からも、本発明の単結晶薄膜は、従来のものと異
なり、作製した薄膜そのものが超伝導性をもつ特徴のあ
る物質であることがわかる。
From the above, it can be seen that the single crystal thin film of the present invention is different from the conventional single crystal thin film in that the prepared thin film itself is a material having a characteristic of superconductivity.

実施例4 実施例2と同様にしてYBa2Cu3O7-xの単結晶薄膜を製
造するに当り、下記の作業を行い、生成する薄膜の性状
をチェックした。
Example 4 In producing a single crystal thin film of YBa 2 Cu 3 O 7-x in the same manner as in Example 2, the following operation was performed to check the properties of the formed thin film.

薄膜を成長させる蒸着基板として、表面を研磨したSr
TiO3単結晶とこれをさらにフッ硝酸で化学エッチングし
た2種類のものを用いた。エッチングをしていない基板
そのものと膜を300Å、1000Å蒸着したものの3種類に
ついて走査型電子顕微鏡(SEM)によって調べた。その
結果SrTiO3研磨面は非常に平滑であり、この上に蒸着し
た膜も300Åという非常に薄い膜厚のときから連続性の
よい表面の平滑な膜になっていることが判明した。さら
に1000Åの膜厚になっても膜は同様に平滑であることが
判明した。
Sr with polished surface as a deposition substrate for growing thin films
Two types of TiO 3 single crystals and those obtained by chemically etching them with hydrofluoric nitric acid were used. Scanning electron microscope (SEM) was used to examine three types of the substrate itself, which had not been etched, and a film in which a film was deposited at 300 ° and 1000 °. As a result, it was found that the SrTiO 3 polished surface was very smooth, and the film deposited on the SrTiO 3 became a smooth film with good continuity from a very thin film thickness of 300 °. Further, it was found that the film was similarly smooth even when the film thickness reached 1000 mm.

更にエッチングをした基板とその上に1000Å蒸着した
ものの2種類についてSEMによって調べたところ、エッ
チングを行った基板の表面は数μmのエッチピットが現
れていた。この上に1000Å蒸着したものでもSEM像はほ
とんど同様であり、膜は忠実に基板表面を覆って成長し
ているのが判明した。このことは本発明によって合成し
た膜の表面が非常に平滑性に優れていることを表してい
ると言える。
Further, when two types of the etched substrate and the one deposited at 1000 ° on the substrate were examined by SEM, etch pits of several μm appeared on the surface of the etched substrate. The SEM image was almost the same even when the film was deposited at 1000 ° on this, and it was found that the film was grown faithfully covering the substrate surface. This indicates that the surface of the film synthesized according to the present invention has extremely excellent smoothness.

第4図に研磨面上に2000Å蒸着した試料について実施
例5の方法によって酸素処理を行ってから測定した電気
抵抗の温度変化の結果を示す。電気抵抗が零になる温度
は90.2Kであり抵抗変化の温度幅も1.7Kと非常に狭い値
になっており極めて良質な超伝導薄膜ができていること
がわかる。第5図に同じ試料について測定した交流帯磁
率の温度変化を示す。電気抵抗が零になった温度付近か
ら帯磁率の実部(−x')が急峻に増加し始め、それと同
様に帯磁率の虚部(x'')も現れてくる。この結果は電
気抵抗が零になるところで、マイナー効果が観測された
ことを示している。
FIG. 4 shows the result of the temperature change of the electric resistance measured after performing the oxygen treatment by the method of Example 5 on the sample deposited at 2000 ° on the polished surface. The temperature at which the electric resistance becomes zero is 90.2K, and the temperature range of the resistance change is also a very narrow value of 1.7K, which indicates that an extremely good-quality superconducting thin film is formed. FIG. 5 shows the temperature change of the AC susceptibility measured for the same sample. The real part (−x ′) of the magnetic susceptibility starts to increase sharply near the temperature where the electric resistance becomes zero, and an imaginary part (x ″) of the magnetic susceptibility also appears. This result indicates that a minor effect was observed where the electric resistance became zero.

以上の事実より膜を成長させる基板としてはその表面
が平坦な研磨面を用いることが望ましく、その場合には
その上に成長させた膜は表面の平滑性のよい極めて良質
な超伝導膜となるので、今後SQUID素子やジョセフソン
素子等の電子デバイスに使う場合には特に有効であると
言える。
From the above facts, it is desirable to use a polished surface with a flat surface as the substrate on which the film is grown, and in that case, the film grown thereon becomes a very good quality superconducting film with a smooth surface. Therefore, it can be said that it is particularly effective when used for electronic devices such as SQUID devices and Josephson devices in the future.

実施例5 蒸着後の薄膜は必ずしも良い超伝導特性を示さないの
で、酸素雰囲気での処理が必要である。そこで実施例2
と同様にしてYBa2Cu3O7-xの単結晶薄膜を製造し、蒸着
後酸素雰囲気での処理の効果を確認した。蒸着が終わっ
てから、蒸発源が冷えるのを待って(30分)、真空槽へ
酸素ガスを1気圧になるまで導入する。この際、蒸着基
板の温度は500℃まで下げておき、この温度で1気圧の
酸素中、1時間保持して膜の酸素量の調節を行った。こ
の酸素処理を行わない膜についてX線回折の測定から求
めた〔001〕方向の格子定数Coは11.749Åであり、酸素
処理を行った膜については11.686Åであった。この処理
後の格子定数の値は90K級の超伝導転移温度を持つバル
ク結晶の格子定数とほぼ一致するものである。この処理
を行った膜の超伝導特性は既に実施例4において示した
通りである。
Example 5 Since a thin film after vapor deposition does not always show good superconducting properties, treatment in an oxygen atmosphere is necessary. Therefore, Embodiment 2
A single crystal thin film of YBa 2 Cu 3 O 7-x was manufactured in the same manner as in Example 1 and the effect of the treatment in an oxygen atmosphere after the deposition was confirmed. After the vapor deposition is completed, wait for the evaporation source to cool down (30 minutes), and then introduce oxygen gas into the vacuum chamber until the pressure becomes 1 atm. At this time, the temperature of the deposition substrate was lowered to 500 ° C., and the film was held at this temperature in 1 atm of oxygen for 1 hour to adjust the oxygen amount of the film. The lattice constant Co in the [001] direction obtained from the X-ray diffraction measurement of the film not subjected to the oxygen treatment was 11.749 °, and that of the film subjected to the oxygen treatment was 11.686 °. The value of the lattice constant after this treatment is almost the same as the lattice constant of a bulk crystal having a superconducting transition temperature of 90K class. The superconducting properties of the film subjected to this treatment are as shown in Example 4.

実施例6 蒸着基板としてSrTiO3単結晶を、その表面が(110)
面となるようにして用い、蒸着基板温度を520℃とする
外は実施例2と同様にして膜厚2000ÅのYBa2Cu3O7-x
単結晶薄膜を作製した。
Example 6 SrTiO 3 single crystal was used as a deposition substrate, and the surface was (110).
A YBa 2 Cu 3 O 7-x single crystal thin film having a thickness of 2000 mm was prepared in the same manner as in Example 2 except that the deposition substrate temperature was set to 520 ° C.

上記実施に当り、基板そのものの反射電子回折像及び
膜厚2000ÅのYBa2Cu3O7-xの単結晶薄膜の反射電子回折
像をとり、基板の(110)面上に三層ペロブスカイト構
造をもつYBa2Cu3O7-xの(110)面がエピタキシャルに成
長していることを確認した。
In the above operation, a reflection electron diffraction image of the substrate itself and a reflection electron diffraction image of a single crystal thin film of YBa 2 Cu 3 O 7-x having a thickness of 2000 mm were taken, and a three-layer perovskite structure was formed on the (110) plane of the substrate. It was confirmed that the (110) plane of YBa 2 Cu 3 O 7-x was epitaxially grown.

また、単結晶薄膜については、更にSEM写真をとり、
その表面の平滑性を確認した。
In addition, for the single crystal thin film, take further SEM pictures,
The smoothness of the surface was confirmed.

実施例7 実施例1と同様の方法によって金属YとSrを電子ビー
ム加熱、金属Cuを抵抗加熱により蒸発させて640℃に保
ったSrTiO3(001)基板上へ薄膜を合成した。第6図は
膜厚1000Åの試料について測定したX線回折パターンで
あり、YBa2Cu3O7-xと同様の三層ペロブスカイト構造の
(005)ピークに相当する回折ピークが観測される。
Example 7 In the same manner as in Example 1, a thin film was synthesized on a SrTiO 3 (001) substrate kept at 640 ° C. by evaporating metal Y and Sr by electron beam heating and evaporating metal Cu by resistance heating. FIG. 6 is an X-ray diffraction pattern measured on a sample having a thickness of 1000 °, and a diffraction peak corresponding to the (005) peak of a three-layer perovskite structure similar to that of YBa 2 Cu 3 O 7-x is observed.

実施例8 実施例2と同様の方法によってLnをDy,Erにして合成
した膜について測定したX線回折パターンを第7図、第
8図に示す。同各図の通り(00n)以外のピークが観測
されないことから該膜は単結晶であることが確認でき
た。なお、LnがYの場合と比べて特徴的なことは、これ
らの系では(001)ピークが最も強度が強くなっている
ことである。これは(001)ピークに対応した面間隔は
希土類金属イオンの間隔であって、Dy,Erが原子番号が
大きいので、そのX線に対する散乱因子が大きくなり、
その繰り返しによる回折が強くなるためである。
Example 8 FIGS. 7 and 8 show X-ray diffraction patterns measured on a film synthesized by changing Ln to Dy and Er in the same manner as in Example 2. FIG. Since no peaks other than (00n) were observed as shown in each figure, it was confirmed that the film was a single crystal. What is characteristic in comparison with the case where Ln is Y is that the (001) peak has the highest intensity in these systems. This is because the plane spacing corresponding to the (001) peak is the spacing between rare earth metal ions, and since Dy and Er have large atomic numbers, the scattering factor for the X-ray becomes large.
This is because diffraction by the repetition becomes strong.

実施例9 蒸着基板の外周縁をとり囲むドーナツ状の酸素拡散室
に酸素ガスの噴出ノズルを差し込み、酸素ノズルからの
噴出酸素が、酸素拡散室で一旦拡散し、その後、酸素拡
散室の内周面に設けた間隙から蒸着基板表面に沿って薄
層状に噴出するようにした以外は、実施例2と同様にし
て、膜厚100Åの薄膜を得た。
Example 9 An oxygen gas ejection nozzle is inserted into a donut-shaped oxygen diffusion chamber surrounding an outer peripheral edge of a deposition substrate, and oxygen ejected from the oxygen nozzle is once diffused in the oxygen diffusion chamber. A thin film having a thickness of 100 mm was obtained in the same manner as in Example 2 except that a thin layer was ejected from the gap provided on the surface along the surface of the deposition substrate.

上記で得た膜厚100Åの薄膜について測定したX線回
析の結果は第9の通りであり、(00n)以外のピークが
観測されないことから該膜は単結晶であることが確認で
きた。
The result of X-ray diffraction measurement of the thin film having a thickness of 100 ° obtained as above is as shown in ninth, and since no peak other than (00n) was observed, it was confirmed that the film was a single crystal.

また、第10図に同薄膜を実施例5の方法によって酸素
処理を行ってから測定した電気抵抗の温度変化を、第11
図に同薄膜について測定した交流帯磁率の温度変化を示
す。
FIG. 10 shows the temperature change of the electrical resistance measured after the thin film was subjected to the oxygen treatment according to the method of the fifth embodiment.
The figure shows the temperature change of the AC susceptibility measured for the same thin film.

これらの結果から、膜厚100Åの超薄膜においても、8
2Kで電気抵抗が零を示す超伝導薄膜が得られていること
がわかる。
From these results, it is clear that even an ultrathin film
It can be seen that a superconducting thin film having zero electrical resistance at 2K was obtained.

実施例10 蒸着基板としてSrTiO3単結晶を、その表面が(110)
面となるようにして用い、その加熱温度を、530℃,550
℃,580℃又は630℃とした外は、実施例9と同様にし
て、前述各温度条件毎に膜厚500Åの薄膜を得た。
Example 10 SrTiO 3 single crystal was used as a deposition substrate, and the surface was (110)
530 ° C, 550 ° C
A temperature of 580 ° C. or 630 ° C. was obtained in the same manner as in Example 9 to obtain a thin film having a thickness of 500 ° for each of the above temperature conditions.

ここで得た薄膜4種類について、SrTiO3単結晶基板の
〔001〕方向又は〔110〕方向から電子ビームを照射し
て各薄膜の結晶構造を反射電子回折像により確認した。
The thin film 4 kinds obtained here was confirmed by SrTiO 3 single crystal substrate [001] direction or [1 1 0] reflects the crystal structure of the thin film by irradiating an electron beam from a direction electron diffraction image.

その結果は、第12a図〜第15a図(〔001〕方向より電
子ビーム照射)及び第12b図〜第15b図(〔110〕方向
より電子ビーム照射)に示す通りであり、530℃では第1
2a図、第12b図に見られる通り蒸着基板でるSrTiO3単結
晶の表面の(110)面に平行な(110)面を有するYBa2Cu
3O7-xの単結晶薄膜が生成し、また630℃では第15a図、
第15b図に見られる通りSrTiO3単結晶の表面である(11
0)面に平行な(103)面を有するYBa2Cu3O7-xの単結晶
薄膜が生成していることが判明した。
The results are as shown in 12a view, second 15a view ([001] direction from the electron beam irradiation) and the 12b view, second 15b Diagram ([1 1 0] direction from the electron beam irradiation), at 530 ° C. First
As shown in FIGS. 2a and 12b, YBa 2 Cu having a (110) plane parallel to the (110) plane of the surface of the SrTiO 3 single crystal as a deposition substrate
A single-crystal thin film of 3 O 7-x is formed, and at 630 ° C, FIG.
As shown in FIG. 15b, the surface of the SrTiO 3 single crystal (11
It was found that a single crystal thin film of YBa 2 Cu 3 O 7-x having a (103) plane parallel to the (0) plane was formed.

一方、530℃と630℃との間に位置する550℃及び580℃
では、第13a図、第13b図及び第14a図、第14b図に見られ
る通り、530℃で得られるYBa2Cu3O7-xの単結晶薄膜と63
0℃で得られるYBa2Cu3O7-xの単結晶薄膜の両結晶が混在
する薄膜が生成していることが判明した。
On the other hand, 550 ℃ and 580 ℃ located between 530 ℃ and 630 ℃
In FIG. 13a, FIG. 13b, FIG. 14a, and FIG. 14b, a single crystal thin film of YBa 2 Cu 3 O 7-x obtained at 530 ° C.
It was found that a single crystal thin film of YBa 2 Cu 3 O 7-x obtained at 0 ° C. was formed in which both crystals coexist.

次に、前述630℃で得た膜厚500ÅのYBa2Cu3O7-xの単
結晶薄膜について、実施例5の方法によって酸素処理を
行ってから電気抵抗の温度変化を測定した。その結果は
第16図の通りであり、80K付近で超伝導を示すことが判
明した。
Next, the single crystal thin film of YBa 2 Cu 3 O 7-x having a thickness of 500 ° obtained at 630 ° C. was subjected to oxygen treatment by the method of Example 5, and the temperature change of the electric resistance was measured. The results are as shown in FIG. 16, and it was found that the material exhibited superconductivity at around 80K.

実施例11 蒸発金属として、YにかえてErを用いることとした外
は、実施例10と同様にして蒸着基板温度530℃,580℃,63
0℃毎に、膜厚500Åの薄膜を得た。
Example 11 Except that Er was used instead of Y as the evaporation metal, the vapor deposition substrate temperature was 530 ° C., 580 ° C., 63 in the same manner as in Example 10.
At every 0 ° C., a thin film having a thickness of 500 ° was obtained.

ここで得た3種類について、実施例10と同様に2種の
方向から電子ビームを照射して、各薄膜の結晶構造を反
射電子回折像により確認した。
The three types obtained here were irradiated with electron beams from two directions in the same manner as in Example 10, and the crystal structure of each thin film was confirmed by a reflected electron diffraction image.

その結果は、第17a図〜第19a図(〔001〕方向より電
子ビーム照射)及び17b図〜第19b図(〔110〕方向よ
り電子ビーム照射)に示す通りであり、530℃では第17a
図、第17b図に見られる通り、蒸着基板であるSrTiO3
結晶の表面の(110)面に平行な(110)面を有するErBa
2Cu3O7-x単結晶薄膜が生成し、また630℃では第19a図、
第19b図に見られる通りSrTiO3単結晶の表面である(11
0)面に平行な(103)面を有するErBa2Cu3O7-xの単結晶
薄膜が生成していることが判明した。
The results are as shown in 17a view, second 19a view ([001] direction from the electron beam irradiation) and 17b view, second 19b Diagram ([1 1 0] direction from the electron beam irradiation), at 530 ° C. The 17a
As shown in FIG. 17B, ErBa having a (110) plane parallel to the (110) plane of the surface of the SrTiO 3 single crystal as a deposition substrate.
2 Cu 3 O 7-x single crystal thin film is formed, and at 630 ° C, FIG.
As shown in FIG. 19b, the surface of the SrTiO 3 single crystal (11
It was found that a single crystal thin film of ErBa 2 Cu 3 O 7-x having a (103) plane parallel to the (0) plane was formed.

一方、580℃では第18a図、第18b図に見られる通り、5
30℃で得られるErBa2Cu3O7-xの単結晶薄膜と630℃で得
られるErBa2Cu3O7-xの単結晶薄膜の両結晶が混在する薄
膜が生成していることが判明した。
On the other hand, at 580 ° C., as seen in FIGS. 18a and 18b, 5
It turns out that a single crystal thin film of ErBa 2 Cu 3 O 7-x obtained at 30 ° C and a single crystal thin film of ErBa 2 Cu 3 O 7-x obtained at 630 ° C are mixed. did.

実施例12 蒸着基板としてSrTiO3単結晶を、その表面が(110)
面となるようにして用い、蒸着基板の加熱温度を520℃
とした外は、実施例9と同様にして、先ず膜厚150Åの
薄膜を得た。
Example 12 SrTiO 3 single crystal was used as a deposition substrate, and the surface was (110)
520 ° C heating temperature of the deposition substrate
First, a thin film having a thickness of 150 ° was obtained in the same manner as in Example 9.

次いで、上記を得た表層に150Åの薄膜を有する蒸着
基板を、そのまま蒸着基板となし、この蒸着基板の加熱
温度を630℃とした外は再び実施例9と同様にして、新
たに膜厚850Åの薄膜を得た。
Next, a vapor deposition substrate having a thin film of 150 ° on the surface layer obtained above was directly used as a vapor deposition substrate, and a new film thickness of 850 μm was formed in the same manner as in Example 9 except that the heating temperature of the vapor deposition substrate was changed to 630 ° C. Was obtained.

上記で得た膜厚850Åの薄膜について、SrTiO3単結晶
をの〔001〕方向又は〔110〕方向から電子ビームを照
射して同薄膜の結晶構造を反射電子回折像により確認し
た。
The thin film having a thickness of 850Å obtained above was confirmed by SrTiO 3 single crystal of [001] direction or [1 1 0] by irradiating an electron beam from a reflecting direction of the crystal structure of the thin-film electron diffraction image.

その結果は、第20a図及び第20b図に示す通りであり、
SrTiO3単結晶の表面の(110)面に平行な(110)面を有
する良質のYBa2Cu3O7-xの単結晶薄膜が生成しているこ
とが判明した。
The results are as shown in FIGS. 20a and 20b,
It was found that a high-quality single crystal thin film of YBa 2 Cu 3 O 7-x having a (110) plane parallel to the (110) plane of the surface of the SrTiO 3 single crystal was formed.

次に、上記で得た膜厚850ÅのYBa2Cu3O7-xの単結晶薄
膜について、実施例5の方法によって酸素処理を行って
から、電気抵抗の温度変化を測定した。その結果は第21
図の通りであり、80K付近で超伝導を示すことが判明し
た。
Next, the single crystal thin film of YBa 2 Cu 3 O 7-x having a thickness of 850 mm obtained above was subjected to oxygen treatment according to the method of Example 5, and the temperature change of electric resistance was measured. The result is number 21
As shown in the figure, it was found that superconductivity was exhibited at around 80K.

〔発明の効果〕〔The invention's effect〕

本発明の(1),(2),(3)の三層ペロブスカイ
ト構造をもつLnA2Cu3O7-xの単結晶薄膜は、単結晶の(0
01)面、(110)面又は(103)面が、膜面に平行を成し
て結晶成長したものである。
The single-crystal thin film of LnA 2 Cu 3 O 7-x having a three-layer perovskite structure of (1), (2) and (3) of the present invention is a single-crystal (0
The (01) plane, the (110) plane, or the (103) plane are crystal growths parallel to the film plane.

その為、膜状の超伝導材料として利用する際に要望さ
れる高電流密度を得るのに最適の結晶構造を有するもの
である。
Therefore, it has an optimal crystal structure for obtaining a high current density required when used as a film-like superconducting material.

さらに、重要なことは、素子として構成する場合にLn
A2Cu3O7-xが単結晶であれば、その上にMgOなどの絶縁体
単結晶や酸化ケイ素などの半導体単結晶を積層すること
が可能になる。これはジョセフソン素子を構成する場合
や半導体素子の中に超伝導性LnA2Cu3O7-xを用いる場合
にも、LnA2Cu3O7-xが単結晶であれば、その上に構成す
る結晶をエピタキシャル成長によって単結晶化できると
いうことを意味する。特にジョセフソン素子の場合、絶
縁層は数10Å以下で均一であることが必要とされるが、
本発明に係る薄膜の如く超伝導体が平滑な表面をもつ単
結晶であれば、MgOなどの単結晶絶縁層を数10Å以下に
均一に積層することが可能となる。
More importantly, when configuring as an element, Ln
If A 2 Cu 3 O 7-x is a single crystal, an insulating single crystal such as MgO or a semiconductor single crystal such as silicon oxide can be stacked thereon. This is because when a Josephson device is formed or when superconducting LnA 2 Cu 3 O 7-x is used in a semiconductor device, if LnA 2 Cu 3 O 7-x is a single crystal, This means that the constituent crystals can be single-crystallized by epitaxial growth. In particular, in the case of a Josephson device, the insulating layer is required to be uniform to several tens of degrees or less.
If the superconductor is a single crystal having a smooth surface such as the thin film according to the present invention, a single crystal insulating layer of MgO or the like can be uniformly laminated to several tens of degrees or less.

また、本発明(4),(5)によれば、500〜800℃と
いう比較的低温下にある蒸着基板上に、不純物の介在の
余地のない、しかも制御し易い操作条件下で、直接ペロ
ブスカイト構造をもつLnA2Cu3O7-x薄膜を形成すること
ができる。
Further, according to the present inventions (4) and (5), the perovskite is directly deposited on a vapor deposition substrate at a relatively low temperature of 500 to 800 ° C. under operating conditions in which there is no room for impurities and which is easily controlled. An LnA 2 Cu 3 O 7-x thin film having a structure can be formed.

しかも、本発明では100Åといった、従来提案をみな
い薄い膜厚の薄膜の形成も可能である。
Moreover, in the present invention, it is possible to form a thin film having a small thickness such as 100 ° which is not seen in the conventional proposal.

特に発明(5)は、蒸着基板の温度が500℃付近であ
っても、再現性よく、目的物を提供しうる方法として利
用性の高いものである。
In particular, the invention (5) has high reproducibility and high utility as a method capable of providing an object even when the temperature of the deposition substrate is around 500 ° C.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、実施例1で得たYBa2Cu3O7-x薄膜のX線回折
図であり、第2図は、実施例2で得たYBa2Cu3O7-xの薄
膜のX線回折図であり、第3図は、実施例3で得たYBa2
Cu3O7-xの薄膜の電気抵抗−温度相関図である。 更に第4図は、実施例4でエッチングしないSrTiO3単結
晶基板上に形成した膜厚2000ÅのYBa2Cu3O7-x薄膜の電
気抵抗−温度相関図であり、第5図は同薄膜の交流帯磁
率−温度相関図である。 第6図は、実施例7で得たYSr2Cu3O7-x薄膜のX線回折
図である。 第7図は、実施例8で得たDyBa2Cu3O7-x薄膜のX線回折
図であり、第8図は同実施例で得たErBa2Cu3O7-x薄膜の
X線回折図である。 第9図は、実施例9で得たYBa2Cu3O7-x薄膜のX線回折
図であり、第10図は同薄膜の電気抵抗−温度相関図であ
り、第11図は同薄膜の交流帯磁率−温度相関図である。 第12a図、第13a図、第14a図、第15a図及び第12b図、第1
3b図、第14b図、第15b図は、実施例10で得たYBa2Cu3O
7-x薄膜の結晶構造を示す反射電子回折像の写真であ
り、第16図は実施例10得た薄膜の電気抵抗−温度相関図
である。 第17a図、第18a図、第19a図及び第17b図、第18b図、第1
9b図は、実施例11で得たErBa2Cu3O7-x薄膜の結晶構造を
示す反射電子回折像の写真である。 第20a図及び第2b図は、実施例12で得たYBa2Cu3O7-x薄膜
の結晶構造を示す反射電子回折像の写真であり、第21図
は実施例12で得た薄膜の電気抵抗−温度相関図である。
FIG. 1 is an X-ray diffraction diagram of the thin film of YBa 2 Cu 3 O 7-x obtained in Example 1, and FIG. 2 is a diagram of the thin film of YBa 2 Cu 3 O 7-x obtained in Example 2. FIG. 3 is an X-ray diffraction pattern. FIG. 3 shows the YBa 2 obtained in Example 3.
FIG. 4 is a graph showing the electrical resistance-temperature relationship of a thin film of Cu 3 O 7-x . Further, FIG. 4 is an electric resistance-temperature correlation diagram of a 2000-Å-thick YBa 2 Cu 3 O 7-x thin film formed on an unetched SrTiO 3 single crystal substrate in Example 4, and FIG. FIG. 3 is a graph showing an AC magnetic susceptibility-temperature relationship of the present invention. FIG. 6 is an X-ray diffraction diagram of the YSr 2 Cu 3 O 7-x thin film obtained in Example 7. FIG. 7 is an X-ray diffraction diagram of the DyBa 2 Cu 3 O 7-x thin film obtained in Example 8, and FIG. 8 is an X-ray diffraction of the ErBa 2 Cu 3 O 7-x thin film obtained in Example 8. It is a diffraction diagram. FIG. 9 is an X-ray diffraction diagram of the YBa 2 Cu 3 O 7-x thin film obtained in Example 9, FIG. 10 is an electric resistance-temperature correlation diagram of the thin film, and FIG. FIG. 3 is a graph showing an AC magnetic susceptibility-temperature relationship of the present invention. 12a, 13a, 14a, 15a and 12b, 1
3b, 14b and 15b show the YBa 2 Cu 3 O obtained in Example 10.
FIG. 16 is a photograph of a backscattered electron diffraction image showing the crystal structure of the 7-x thin film, and FIG. 16 is an electric resistance-temperature correlation diagram of the thin film obtained in Example 10. 17a, 18a, 19a and 17b, 18b, 1
FIG. 9b is a photograph of a backscattered electron diffraction image showing the crystal structure of the ErBa 2 Cu 3 O 7-x thin film obtained in Example 11. 20a and 2b are photographs of a reflection electron diffraction image showing the crystal structure of the YBa 2 Cu 3 O 7-x thin film obtained in Example 12, and FIG. 21 is a photograph of the thin film obtained in Example 12. It is an electric resistance-temperature correlation diagram.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/24 ZAA H01L 39/24 ZAAB (31)優先権主張番号 特願昭63−33630 (32)優先日 昭63(1988)2月15日 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願昭63−57207 (32)優先日 昭63(1988)3月10日 (33)優先権主張国 日本(JP) (56)参考文献 特開 昭63−307614(JP,A) 特開 平1−100021(JP,A) 特開 昭63−248018(JP,A) 特開 昭64−74775(JP,A) 特開 昭63−274697(JP,A) 特開 昭63−315572(JP,A)──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication H01L 39/24 ZAA H01L 39/24 ZAAB (31) Claimed priority number Japanese Patent Application No. 63-33630 (32) ) Priority date February 15, 1988 (1988) February 33 (33) Priority claiming country Japan (JP) (31) Priority claim number Japanese Patent Application No. 63-57207 (32) Priority date March 10, 1988 (1988) (33) Priority claiming country Japan (JP) (56) References JP-A-63-307614 (JP, A) JP-A-1-100021 (JP, A) JP-A-63-248018 (JP, A) JP-A-64-74775 (JP, A) JP-A-63-274697 (JP, A) JP-A-63-315572 (JP, A)

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】三層ペロブスカイト構造をもつLnA2Cu3O
7-x薄膜であって、その結晶の(001)面が膜面に平行を
成し、薄膜が全体として単結晶を成していることを特徴
とする三層ペロブスカイト構造をもつLnA2Cu3O7-xの単
結晶薄膜。ここにおいてLnはY,Nd,Sm,Eu,Gd,Dy,Ho,Er,T
m及びYbから選ばれる希土類金属元素を意味し、AはBa,
Sr及びCaから選ばれるアルカリ土類金属元素を意味す
る。
1. LnA 2 Cu 3 O having a three-layer perovskite structure
7-x thin film at a, LnA 2 Cu 3 having a three-layer perovskite structure, characterized in that (001) planes of the crystal forms a parallel to the film surface, and has a single crystal as a whole thin film O 7-x single crystal thin film. Where Ln is Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, T
m means a rare earth metal element selected from Yb, A is Ba,
It means an alkaline earth metal element selected from Sr and Ca.
【請求項2】三層ペロブスカイト構造をもつLnA2Cu3O
7-x薄膜であって、その結晶の(110)面が膜面に平行を
成し、薄膜が全体として単結晶を成していることを特徴
とする三層ペロブスカイト構造をもつLnA2Cu3O7-xの単
結晶薄膜。ここにおいてLnはY,Nd,Sm,Eu,Gd,Dy,Ho,Er,T
m及びYbから選ばれる希土類金属元素を意味し、AはBa,
Sr及びCaから選ばれるアルカリ土類金属元素を意味す
る。
2. LnA 2 Cu 3 O having a three-layer perovskite structure
7-x thin film at a, LnA 2 Cu 3 having a three-layer perovskite structure, characterized in that (110) planes of the crystal forms a parallel to the film surface, and has a single crystal as a whole thin film O 7-x single crystal thin film. Where Ln is Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, T
m means a rare earth metal element selected from Yb, A is Ba,
It means an alkaline earth metal element selected from Sr and Ca.
【請求項3】三層ペロブスカイト構造をもつLnA2Cu3O
7-x薄膜であって、その結晶の(103)面が膜面に平行を
成し、薄膜が全体として単結晶を成していることを特徴
とする三層ペロブスカイト構造をもつLnA2Cu3O7-xの単
結晶薄膜。ここにおいてLnはY,Nd,Sm,Eu,Gd,Dy,Ho,Er,T
m及びYbから選ばれる希土類金属元素を意味し、AはBa,
Sr及びCaから選ばれるアルカリ土類金属元素を意味す
る。
3. LnA 2 Cu 3 O having a three-layer perovskite structure
LnA 2 Cu 3 having a three-layer perovskite structure, wherein the (103) plane of the 7-x thin film is parallel to the film surface, and the thin film is a single crystal as a whole. O 7-x single crystal thin film. Where Ln is Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, T
m means a rare earth metal element selected from Yb, A is Ba,
It means an alkaline earth metal element selected from Sr and Ca.
【請求項4】真空蒸着槽内の蒸着基板の表面に、その近
傍から酸素ガスを噴射し、蒸着基板の表面近傍のみ酸素
ガス圧力を10-2〜10-1Torrにすると共に該基板の近傍を
除く真空蒸着槽内の酸素ガス圧力は10-5〜10-3Torrとし
て、Ln,A,Cuの各金属を別々の蒸発源からLn:A:Cuの原子
比がおよそ1:2:3となるように制御しつつ基板上へ同時
に蒸発させることを特徴とする三層ペロブスカイト構造
をもつLnA2Cu3O7-x薄膜の製造法。ここにおいてLnはY,N
d,Sm,Eu,Gd,Dy,Ho,Er,Tm及びYbから選ばれる希土類金属
元素を意味し、AはBa,Sr及びCaから選ばれるアルカリ
土類金属元素を意味する。
4. An oxygen gas is injected from the vicinity of the surface of a deposition substrate in a vacuum deposition tank from the vicinity thereof, and the oxygen gas pressure is set to 10 -2 to 10 -1 Torr only in the vicinity of the surface of the deposition substrate. The oxygen gas pressure in the vacuum evaporation tank excluding 10 -5 ~ 10 -3 Torr, Ln, A, each metal of Cu from a separate evaporation source Ln: A: Cu atomic ratio of about 1: 2: 3 A method for producing an LnA 2 Cu 3 O 7-x thin film having a three-layer perovskite structure, characterized in that the thin film is simultaneously evaporated on a substrate while controlling such that Where Ln is Y, N
d means a rare earth metal element selected from Sm, Eu, Gd, Dy, Ho, Er, Tm and Yb, and A means an alkaline earth metal element selected from Ba, Sr and Ca.
【請求項5】真空蒸着槽内の蒸着基板の表面に、その近
傍から酸素ガスを噴射し、蒸着基板の表面近傍のみ酸素
ガス圧力を10-2〜10-1Torrにすると共に該基板の近傍を
除く真空蒸着槽内の酸素圧力は10-5〜10-3Torrとする一
方、真空蒸着槽内にプラズマを発生させ、Ln,A,Cuの各
金属を別々の蒸発源からLn:A:Cuの原子比がおよそ1:2:3
となるように制御しつつ基板上へ同時に蒸発させること
を特徴とする三層ペロブスカイト構造をもつLnA2Cu3O
7-x薄膜の製造法。ここにおいてLnはY,Nd,Sm,Eu,Gd,Dy,
Ho,Er,Tm及びYbから選ばれる希土類金属元素を意味し、
AはBa,Sr及びCaから選ばれるアルカリ土類金属元素を
意味する。
5. An oxygen gas is injected from the vicinity of the surface of a deposition substrate in a vacuum deposition tank from the vicinity thereof, and the oxygen gas pressure is set to 10 -2 to 10 -1 Torr only in the vicinity of the surface of the deposition substrate. The oxygen pressure in the vacuum evaporation tank except for the above was set to 10 -5 to 10 -3 Torr, while plasma was generated in the vacuum evaporation tank, and each metal of Ln, A, and Cu was separated from a separate evaporation source by Ln: A: The atomic ratio of Cu is about 1: 2: 3
LnA 2 Cu 3 O with a three-layer perovskite structure characterized by simultaneous evaporation on the substrate while controlling
Manufacturing method of 7-x thin film. Where Ln is Y, Nd, Sm, Eu, Gd, Dy,
Ho, Er, means a rare earth metal element selected from Tm and Yb,
A means an alkaline earth metal element selected from Ba, Sr and Ca.
【請求項6】請求項(4)又は(5)記載の方法におい
て、蒸着基板として単結晶を用い、且つこの単結晶をそ
の(001)面が基板表面となるように用いることを特徴
とする請求項(1)記載の三層ペロブスカイト構造をも
つLnA2Cu3O7-xの単結晶薄膜の製造法。
6. The method according to claim 4, wherein a single crystal is used as the deposition substrate, and the single crystal is used so that its (001) plane is the substrate surface. The method for producing a single-crystal thin film of LnA 2 Cu 3 O 7-x having a three-layer perovskite structure according to claim (1).
【請求項7】請求項(4)又は(5)記載の方法におい
て、蒸着基板として単結晶を用い、且つこの単結晶をそ
の(110)面が基板表面となるように用いることを特徴
とする請求項(2)記載の三層ペロブスカイト構造をも
つLnA2Cu3O7-xの単結晶薄膜の製造法。
7. The method according to claim 4, wherein a single crystal is used as the deposition substrate, and the single crystal is used so that the (110) plane becomes the substrate surface. The method for producing a single-crystal thin film of LnA 2 Cu 3 O 7-x having a three-layer perovskite structure according to claim (2).
【請求項8】請求項(6)記載の方法において、500℃
以上に加熱した蒸着基板上に金属を蒸発させることを特
徴とする請求項(1)記載の三層ペロブスカイト構造を
もつLnA2Cu3O7-xの単結晶薄膜の製造法。
8. The method according to claim 6, wherein the temperature is 500 ° C.
LnA 2 Cu 3 O 7-x preparation of single crystal thin film having a three-layered perovskite structure as claimed in claim 1, wherein the evaporating metal on the deposition substrate heated to above.
【請求項9】請求項(7)記載の方法において、500℃
以上550℃未満に加熱した蒸着基板上に金属を蒸発させ
て、先ず表層に請求項(2)記載の三層ペロブスカイト
構造をもつLnA2Cu3O7-xの単結晶薄膜を生長させ、その
後ここで得た物質を550℃以上に加熱した上で金属を蒸
発させることを特徴とする請求項(2)記載の三層ペロ
ブスカイト構造をもつLnA2Cu3O7-xの単結晶薄膜の製造
法。
9. The method according to claim 7, wherein the temperature is 500 ° C.
The metal is evaporated on a deposition substrate heated to a temperature of less than 550 ° C. to grow a single-crystal thin film of LnA 2 Cu 3 O 7-x having a three-layer perovskite structure according to claim (2) on the surface layer. producing a single-crystal thin film of an LnA 2 Cu 3 O 7-x having a three-layer perovskite structure according to claim (2), wherein the evaporating metal on heating the obtained here material above 550 ° C. Law.
【請求項10】請求項(7)記載の方法において、550
℃以上に加熱した蒸着基板上に金属を蒸発させることを
特徴とする請求項(3)記載の三層ペロブスカイト構造
をもつLnA2Cu3O7-xの単結晶薄膜の製造法。
10. The method according to claim 7, wherein 550
The method for producing a single-crystal thin film of LnA 2 Cu 3 O 7-x having a three-layer perovskite structure according to claim 3, wherein the metal is evaporated on a deposition substrate heated to a temperature of not less than ° C.
JP63075486A 1987-09-21 1988-03-28 Method for producing LnA lower 2 Cu lower 3 O-low 7-x single crystal thin film and LnA lower 2 Cu lower 3 O lower 7-x thin film having three-layer perovskite structure Expired - Fee Related JP2704625B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA000577966A CA1322514C (en) 1987-09-21 1988-09-20 Thin film of single crystal of lna_cu_o___ having three-layered perovskite structure and process for producing the same
EP88115399A EP0308869B1 (en) 1987-09-21 1988-09-20 Process of producing single crystalline LnA2Cu3O7-x thin films having three-layered perovskite structure
DE3853905T DE3853905T2 (en) 1987-09-21 1988-09-20 Process for the production of monocrystalline thin layers of LnA2Cu307-x with a perovskite structure with 3 levels.
US08/053,318 US5362711A (en) 1987-09-21 1993-04-27 Method for producing single crystal superconducting LnA2 Cu3 O7-x films

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP23679387 1987-09-21
JP23679287 1987-09-21
JP62-236792 1987-09-21
JP62-314670 1987-12-11
JP31467087 1987-12-11
JP31807487 1987-12-15
JP62-318074 1987-12-15
JP3363088 1988-02-15
JP63-33630 1988-02-15
JP63-57207 1988-03-10
JP5720788 1988-03-10
JP62-236793 1988-03-10

Publications (2)

Publication Number Publication Date
JPH029793A JPH029793A (en) 1990-01-12
JP2704625B2 true JP2704625B2 (en) 1998-01-26

Family

ID=27549697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63075486A Expired - Fee Related JP2704625B2 (en) 1987-09-21 1988-03-28 Method for producing LnA lower 2 Cu lower 3 O-low 7-x single crystal thin film and LnA lower 2 Cu lower 3 O lower 7-x thin film having three-layer perovskite structure

Country Status (1)

Country Link
JP (1) JP2704625B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6359328B2 (en) * 2014-04-28 2018-07-18 国立大学法人島根大学 RE123 crystal film production method.
CN105968002B (en) * 2016-05-06 2019-02-26 中国环境科学研究院 A kind of acrylate production method that pollutant discharge amount is low

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248018A (en) * 1987-04-03 1988-10-14 Hitachi Ltd Manufacture of superconductive thin film
JPS63307614A (en) * 1987-06-08 1988-12-15 Hitachi Ltd High-temperature oxide superconductor thin film
JPS6474775A (en) * 1987-09-17 1989-03-20 Fujitsu Ltd Growth method of superconductive thin-film

Also Published As

Publication number Publication date
JPH029793A (en) 1990-01-12

Similar Documents

Publication Publication Date Title
JP5630941B2 (en) Biaxially oriented film deposition for superconductor coated tapes
US6226858B1 (en) Method of manufacturing an oxide superconductor wire
US6159610A (en) Buffer layers on metal surfaces having biaxial texture as superconductor substrates
US20040026118A1 (en) Oxide superconducting wire
JP2007307904A (en) Coated conductor and polycrystal line film useful for manufacture of high-temperature superconductor layer
US6794339B2 (en) Synthesis of YBa2CU3O7 using sub-atmospheric processing
CA1322514C (en) Thin film of single crystal of lna_cu_o___ having three-layered perovskite structure and process for producing the same
JP2013524434A (en) Thick oxide film with single layer coating
JP2704625B2 (en) Method for producing LnA lower 2 Cu lower 3 O-low 7-x single crystal thin film and LnA lower 2 Cu lower 3 O lower 7-x thin film having three-layer perovskite structure
US5362711A (en) Method for producing single crystal superconducting LnA2 Cu3 O7-x films
US7025826B2 (en) Methods for surface-biaxially-texturing amorphous films
JP2001114594A (en) Polycrystal thin film and method for producing the same and oxide superconductive conductor and method for producing the same
JPH0297427A (en) Production of oxide superconducting thin film
Leca Heteroepitaxial growth of copper oxide superconductors by pulsed laser deposition
JP2639544B2 (en) Single crystal thin film of LaA Lower 2 Cu 3 Lower O 7 Lower 3 x with three-layer perovskite structure and LaA Lower 2 Cu Lower 3 O Lower 7 Lower 7 x thin film manufacturing method
US8003571B2 (en) Buffer layers for coated conductors
US20090036313A1 (en) Coated superconducting materials
KR970009739B1 (en) Method of manufacture for superconductor thin film
JP2005294240A (en) Oriented polycrystalline intermediate thin film, its manufacturing method, oxide superconductive conductor and its manufacturing method
JPH02120229A (en) Production of superconducting thin film of oxide
JPH03275504A (en) Oxide superconductor thin film and its production
JP2011249162A (en) Method for manufacturing superconducting wire rod
JPH02120231A (en) Production of superconducting thin film of oxide
JPH02120232A (en) Production of superconducting thin film of oxide
JPH06115935A (en) Superconductor and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees