JP6359328B2 - RE123 crystal film production method. - Google Patents

RE123 crystal film production method. Download PDF

Info

Publication number
JP6359328B2
JP6359328B2 JP2014092661A JP2014092661A JP6359328B2 JP 6359328 B2 JP6359328 B2 JP 6359328B2 JP 2014092661 A JP2014092661 A JP 2014092661A JP 2014092661 A JP2014092661 A JP 2014092661A JP 6359328 B2 JP6359328 B2 JP 6359328B2
Authority
JP
Japan
Prior art keywords
substrate
temperature
crystal film
film
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014092661A
Other languages
Japanese (ja)
Other versions
JP2015209363A (en
Inventor
修平 舩木
修平 舩木
容士 山田
容士 山田
文也 中山
文也 中山
亮太 奥西
亮太 奥西
優悟 宮地
優悟 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University Corp Shimane University
Original Assignee
National University Corp Shimane University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corp Shimane University filed Critical National University Corp Shimane University
Priority to JP2014092661A priority Critical patent/JP6359328B2/en
Publication of JP2015209363A publication Critical patent/JP2015209363A/en
Application granted granted Critical
Publication of JP6359328B2 publication Critical patent/JP6359328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、RE123結晶膜作成方法および作成用基板に関し、特に、低温かつ高速成膜可能なRE123結晶膜作成方法および作成用基板に関する。   The present invention relates to a RE123 crystal film production method and a production substrate, and more particularly to a RE123 crystal film production method and a production substrate capable of forming a film at a low temperature and at a high speed.

液体窒素より高い温度で超伝導性を示すものとして、希土類系銅酸化物高温超伝導体が知られている。そのうち、REBaCu(以降において、適宜RE123と表記する。なお、REは希土類元素を、yは6〜7を示す)は、他の高温超伝導体と比して、磁場中における臨界電流密度が高いという特徴をもつ。従って、超伝導ケーブルや超伝導フィルタ等への応用が期待でき盛んに研究されている。従来は、主としてRE123は気相成長法により膜成長させて得ていた。 A rare earth-based copper oxide high-temperature superconductor is known as one that exhibits superconductivity at a temperature higher than that of liquid nitrogen. Among them, REBa 2 Cu 3 O y (hereinafter referred to as RE123 as appropriate. RE represents a rare earth element and y represents 6 to 7) in a magnetic field as compared with other high-temperature superconductors. It is characterized by high critical current density. Therefore, application to a superconducting cable, a superconducting filter, etc. can be expected and it is actively researched. Conventionally, RE123 has been mainly obtained by growing a film by vapor deposition.

しかしながら、従来の技術では以下の問題点があった。
気相成長法は、高真空かつ900℃程度の高温環境を要する。さらに、成膜速度が約0.1μm/minと非常に遅い。従って成膜コストの低減化が困難であるという問題点があった。また、超伝導ケーブルを作製する場合、高い温度に起因し、基材である金属テープからRE123膜へ金属元素が拡散し、超伝導特性を劣化させてしまうという問題点があった。
However, the conventional technique has the following problems.
The vapor phase growth method requires a high vacuum and a high temperature environment of about 900 ° C. Furthermore, the film formation rate is very slow at about 0.1 μm / min. Therefore, there is a problem that it is difficult to reduce the film formation cost. Further, when a superconducting cable is manufactured, there is a problem that due to the high temperature, the metal element diffuses from the metal tape as the base material to the RE123 film, thereby deteriorating the superconducting characteristics.

中山文也ら「溶融水酸化物法を用いた低温・低酸素雰囲気下におけるYBCOの合成」第60回応用物理学会春季学術講演会講演予稿集11−031(2013年)Fumiya Nakayama et al. "Synthesis of YBCO in low-temperature and low-oxygen atmosphere using molten hydroxide method" Proceedings of the 60th JSAP Spring Meeting, 2013-11-03

本発明は上記に鑑みてなされたものであって、従来の気相成長法に比して低温かつ高速成膜可能であって真空環境を必要としないRE123結晶膜作成方法を提供することを目的とする。また、RE123をエピタキシャル成長させるのに好適な基板を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a RE123 crystal film forming method capable of forming a film at a lower temperature and higher speed than the conventional vapor phase growth method and does not require a vacuum environment. And It is another object of the present invention to provide a substrate suitable for epitaxial growth of RE123.

請求項1に記載の発明は、希土類系銅酸化物高温超伝導体REBaCu(ただし、REは希土類元素を表し、yは6〜7を表す。)を基板上に膜成長させる方法であって、RE:Ba:Cuの組成比が1:2〜3:2〜7の間となる様に調整した原料を、500℃を越え700℃未満の還元雰囲気下において、溶融した水酸化物に溶解させ(溶融水酸化物法を用い)、基板上にREBaCuを膜成長させることを特徴とする結晶膜作成方法である。
なお、好ましくは550℃以上650度以下である。基板は、必ずしも板状である必要はなく、広く、RE123と格子定数が近似した、エピタキシャル成長させる種となりうるものであれば特に限定されない。組成比については、この範囲内にあれば好適にRE123を得ることができる。
According to the first aspect of the present invention, a rare earth-based copper oxide high-temperature superconductor REBa 2 Cu 3 O y (where RE represents a rare earth element and y represents 6 to 7) is grown on a substrate. A raw material prepared by adjusting the composition ratio of RE: Ba: Cu to 1: 2 to 3: 2 to 7 in a reducing atmosphere of more than 500 ° C. and less than 700 ° C. It is a crystal film forming method characterized by dissolving in an oxide (using a molten hydroxide method) and growing a film of REBa 2 Cu 3 O y on a substrate.
In addition, Preferably it is 550 degreeC or more and 650 degrees or less. The substrate is not necessarily plate-shaped, and is not particularly limited as long as it can be a seed for epitaxial growth having a lattice constant close to RE123. If the composition ratio is within this range, RE123 can be suitably obtained.

請求項2に記載の発明は、前記基板は、エッチピット様の凹凸が表面に存在する基板であることを特徴とする請求項1に記載の結晶膜作成方法である。   The invention according to claim 2 is the crystal film forming method according to claim 1, wherein the substrate is a substrate having etch pit-like irregularities on the surface thereof.

請求項3に記載の発明は、基板に、NdGaO、LaAlO、MgO、または、SrTiOを用いることを特徴とする請求項1または2に記載の結晶膜作成方法である。 The invention according to claim 3 is the crystal film forming method according to claim 1 or 2, wherein NdGaO 3 , LaAlO 3 , MgO, or SrTiO 3 is used for the substrate.

請求項4に記載の発明は、水酸化物としてKOH、NaOH、LiOH、Ba(OH)、または、これらの混合物を用いることを特徴とする請求項1、2または3に記載の結晶膜作成方法である。 The invention described in claim 4 is characterized in that KOH, NaOH, LiOH, Ba (OH) 2 , or a mixture thereof is used as a hydroxide. Is the method.

本発明によれば、従来の気相成長法に比して低温かつ高速成膜可能であって真空環境を必要としないRE123結晶膜作成方法を提供することができる。また、RE123をエピタキシャル成長させるのに好適な基板を提供することができる。   According to the present invention, it is possible to provide a RE123 crystal film forming method capable of forming a film at a lower temperature and higher speed than the conventional vapor phase growth method and does not require a vacuum environment. In addition, a substrate suitable for epitaxial growth of RE123 can be provided.

RE123結晶膜作成し一部膜を剥離させた試料の表面写真である。It is the surface photograph of the sample which made RE123 crystal film and peeled off one part film. 熱処理温度の違いによる結晶膜のXRDパタンの測定結果を示した図である。It is the figure which showed the measurement result of the XRD pattern of the crystal film by the difference in heat processing temperature. 熱処理温度の違いによる結晶膜のφスキャンの測定結果を示した図である。It is the figure which showed the measurement result of (phi) scan of the crystal film by the difference in heat processing temperature. 熱処理温度の違いによる電気抵抗率の温度依存性を測定した結果を示した図である。It is the figure which showed the result of having measured the temperature dependence of the electrical resistivity by the difference in heat processing temperature. 超伝導に向けての抵抗率低下開始点T onsetおよび抵抗0となる温度T zeroの関係を示した図である。It is a diagram showing the relationship between the resistivity decreases starting point T c onset and resistance becomes zero temperature T c zero towards superconductivity.

以下、本発明の実施の形態を図面を参照しながら詳細に説明する。
ここでは、REとしてYを、基板としてNdGaO(001)を、溶融剤としてKOHを採用してY123結晶膜の作成をおこなった。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Here, a Y123 crystal film was formed by adopting Y as RE, NdGaO 3 (001) as a substrate, and KOH as a melting agent.

まず、原料としてY,BaCO,CuOを、組成比がY:Ba:Cu=1:2:3になる様に10g秤量した。これを、2mm×5mmの(001)面をもつNdGaO結晶、および、KOH10gととともに、アルミナるつぼに入れ、還元雰囲気にするためNフローとして加熱処理した。 First, 10 g of Y 2 O 3 , BaCO 3 , and CuO as raw materials was weighed so that the composition ratio was Y: Ba: Cu = 1: 2: 3. This was put into an alumina crucible together with NdGaO 3 crystal having a (001) plane of 2 mm × 5 mm and 10 g of KOH, and heat-treated as an N 2 flow for making a reducing atmosphere.

加熱は、常温から、設定した熱処理温度まで3時間かけて昇温し、設定温度にて12時間保持し、その後加熱を終了した(3時間程度で常温となる)。ここで、設定した熱処理温度は、500℃、550℃、600℃、650℃、700℃とした。   In heating, the temperature was raised from room temperature to the set heat treatment temperature over 3 hours, held at the set temperature for 12 hours, and then the heating was finished (the room temperature was reached in about 3 hours). Here, the set heat processing temperature was 500 degreeC, 550 degreeC, 600 degreeC, 650 degreeC, and 700 degreeC.

その後、KOHおよびKCO除去のため、水およびエタノールを加え超音波洗浄し、基板を取り出した。 Thereafter, water and ethanol were added and ultrasonic cleaning was performed to remove KOH and K 2 CO 3 , and the substrate was taken out.

最後に、試料に酸素を導入するためアニール処理した。これは、常温から450℃まで1時間かけて昇温し、450℃にて5時間保持し、その後12時間かけて450℃から350度へ降温させておこなった。   Finally, annealing was performed to introduce oxygen into the sample. This was performed by raising the temperature from room temperature to 450 ° C. over 1 hour, holding at 450 ° C. for 5 hours, and then lowering the temperature from 450 ° C. to 350 ° C. over 12 hours.

図1は、試料の表面写真である(設定温度は650℃である)。写真から明らかな様に、基板表面には正方形の多数のエッチピットが形成され、これを充填しかつ覆う様に表面全体にわたり膜が形成されていることを確認した。結晶成長の観点から、凹凸はエッチピット様であれば良いといえる。すなわち、化学的手法に限定されず、基板表面に、物理的または機械的にエッチピット様凹凸を形成させることよっても結晶膜を成長させることができる。図示は省略するが、粗い材料により基板表面に傷をつけても実際に結晶成長することを確認した。   FIG. 1 is a photograph of the surface of the sample (set temperature is 650 ° C.). As is clear from the photograph, it was confirmed that a large number of square etch pits were formed on the substrate surface, and a film was formed over the entire surface so as to fill and cover this. From the viewpoint of crystal growth, it can be said that the unevenness may be an etch pit-like shape. That is, the present invention is not limited to a chemical method, and a crystal film can be grown by physically or mechanically forming etch pit-like irregularities on the substrate surface. Although illustration is omitted, it was confirmed that crystal growth actually occurred even when the surface of the substrate was damaged by a rough material.

次に、表面の膜の配向性を特定するためXRDパタンを測定した。結果を図2に示す。図から明らかな様に、熱処理温度が500℃である場合は原料が残存するが、500℃を越えるとY123、しかもc軸配向したもののみが形成されることが確認できた。ただし、熱処理温度が700℃以上であるとY211(YBaCuO)も形成されることも確認された。 Next, an XRD pattern was measured in order to specify the orientation of the film on the surface. The results are shown in FIG. As is apparent from the figure, when the heat treatment temperature is 500 ° C., the raw material remains, but when it exceeds 500 ° C., it can be confirmed that only Y123 and c-axis oriented materials are formed. However, it was also confirmed that Y211 (Y 2 BaCuO 5 ) was also formed when the heat treatment temperature was 700 ° C. or higher.

また、φスキャンをおこなった結果を図3に示す。図から、熱処理温度が500℃を越えると基板に対して45℃ずれた結晶しか存在せず、Y123が面内配向していることを確認した。   Further, FIG. 3 shows the result of the φ scan. From the figure, it was confirmed that when the heat treatment temperature exceeded 500 ° C., only crystals shifted by 45 ° C. from the substrate existed, and Y123 was in-plane oriented.

従来では、Y123結晶膜を作成するためには、900℃程度まで温度を上げる必要があったが、本方法によれば350℃以上低い温度にて成膜でき、しかも、基板に対してc軸配向し、かつ、面内配向した結晶が得られる。また、真空とする必要もない。従って、高い導電性を有する超伝導体材料として利用でき、製造コストも低減することができる。   Conventionally, in order to produce a Y123 crystal film, it was necessary to increase the temperature to about 900 ° C. However, according to this method, the film can be formed at a temperature lower than 350 ° C. An oriented and in-plane oriented crystal is obtained. Moreover, it is not necessary to use a vacuum. Therefore, it can be used as a superconductor material having high conductivity, and the manufacturing cost can be reduced.

なお、各熱処理温度における、電気抵抗率の温度依存性を測定した結果、および、超伝導に向けての抵抗率低下開始点T onsetおよび抵抗0となる温度T zeroの関係を、それぞれ図4および図5に示した。図から、超伝導転移点は概ね液体窒素温度77K以上であるが、熱処理温度が550℃を越え700℃以下であれば、T onsetとT zeroはいずれも77K超となる。特に熱処理温度が650℃では、T onset≒T zeroであり最も良好な結晶性であることが確認できた。 The results of measuring the temperature dependence of the electrical resistivity at each heat treatment temperature, and the relationship between the resistivity decrease start point T c onset for superconductivity and the temperature T c zero at which the resistance becomes 0 are shown in the figure. 4 and FIG. From the figure, the superconducting transition point is approximately the liquid nitrogen temperature of 77K or higher, but if the heat treatment temperature exceeds 550 ° C. and is 700 ° C. or lower, both T c onset and T c zero exceed 77K. In particular, at a heat treatment temperature of 650 ° C., it was confirmed that T c onset ≈T c zero and the best crystallinity.

なお、設定温度における熱処理時間を20分として別途膜成長させ、膜厚を測定したところ、約20μmであり、従来の気相成長法と比して高速な成膜を可能とする方法であるといえる。   In addition, when the film was grown separately with the heat treatment time at the set temperature of 20 minutes and the film thickness was measured, it was about 20 μm, and this is a method that enables high-speed film formation as compared with the conventional vapor phase growth method. I can say that.

以上の例以外にも、RE123の結晶膜を同様な方法により得ることができる。
まず、化学的な手法にて表面にエッチピット様の凹凸を形成させるのは、溶融剤KOH以外にも、NaOH、LiOH、Ba(OH)、または、これらの混合物などの強アルカリを用いることができる。
In addition to the above examples, a crystal film of RE123 can be obtained by a similar method.
First, to form etch pit-like irregularities on the surface using a chemical method, in addition to the melting agent KOH, a strong alkali such as NaOH, LiOH, Ba (OH) 2 , or a mixture thereof is used. Can do.

また、表面に物理的な手法にて凹凸を形成させるのには、レーザーアブレーション、スパッタリング、イオン照射などを用いることができる。また、傷をつけるなどの機械的な手法にて表面に凹凸を形成させてもよい。   Further, laser ablation, sputtering, ion irradiation, or the like can be used to form irregularities on the surface by a physical method. Further, irregularities may be formed on the surface by a mechanical method such as scratching.

また、基板には、RE123と格子整合性の良い、LaAlO、MgO、または、SrTiOなどを用いてもよい。これらにエッチピット様の凹凸を形成させたものはRE123の結晶膜成長用基板として用いることができる(液相成長法に限定されず、気相成長法用の基板として用いてもよい)。また、基板の上に、RE123、REBaCu、または、RE123と格子整合性の良い酸化物膜、をエピタキシャル成長させたものも、RE123の結晶成長用基板として用いてもよい。 Further, for the substrate, LaAlO 3 , MgO, SrTiO 3 or the like having good lattice matching with RE123 may be used. Those having etch-pit-like irregularities formed thereon can be used as a substrate for crystal film growth of RE123 (not limited to the liquid phase growth method, and may be used as a substrate for a vapor phase growth method). Further, RE123, REBa 2 Cu 4 O 8 , or an oxide film having good lattice matching with RE123 may be used as a substrate for crystal growth of RE123.

REは、Yのほか、La,Pr,Nd、Pm,Sm、Eu,Gd、Tb,Dy、Ho,Er,Tm、Yb,Luがあるので、これらを用いてもよい。   Since RE includes Y, La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, these may be used.

本発明によれば、平面的または一方向に長い結晶膜を形成できるので、送電ロスを極限まで低減できる超伝導ケーブルや、周波数選択性を高め損失を極めて低減できる超伝導フィルタ、また、物性評価装置などに利用できる。   According to the present invention, it is possible to form a crystal film that is long in one plane or in one direction, so that a superconducting cable that can reduce power transmission loss to the limit, a superconducting filter that can enhance frequency selectivity and extremely reduce loss, and physical property evaluation It can be used for devices.

超伝導ケーブルの場合は、従来は、コーテッドコンダクター方式のケーブル作製が試みられてきたものの、気相成長法に由来する高温成膜が影響し、金属テープからの金属拡散が品質に影響を与えるが、本発明では低温成膜(かつ高速成膜)できるので、品質の高いケーブルを提供できる。   In the case of a superconducting cable, the production of a coated conductor type cable has been attempted in the past, but the high temperature film formation derived from the vapor phase growth method has an effect, and the metal diffusion from the metal tape affects the quality. In the present invention, low-temperature film formation (and high-speed film formation) can be performed, so that a high-quality cable can be provided.

また、超伝導ケーブルの長尺化のための接合にRE123を用いてもよい。これにより、接触部分の電気抵抗をゼロにできると共に接合部分も含めた系全体が超伝導からなるRE123系超伝導ケーブルの実現も期待できる。   Moreover, RE123 may be used for joining for lengthening the superconducting cable. As a result, the electrical resistance of the contact portion can be reduced to zero, and an RE123-based superconducting cable in which the entire system including the joint portion is made of superconductivity can be expected.

また、電気抵抗ゼロ、ジョセフソン効果などを利用した物性評価装置(SQUID等)が開発されているが、液体ヘリウムによる冷却を必要とし、稼働コストが高くなってしまうという課題があった。本発明では、液体窒素温度下において稼働可能であり、系全体を銅酸化物高温超伝導体から成る装置とすることも可能となる。   In addition, a physical property evaluation apparatus (SQUID or the like) using zero electrical resistance, Josephson effect, or the like has been developed, but there is a problem in that cooling with liquid helium is required and the operation cost is increased. In the present invention, the system can be operated at a liquid nitrogen temperature, and the entire system can be an apparatus composed of a copper oxide high-temperature superconductor.

なお、本方法を基礎とする引上げ法を確立することにより、気相成長法(0.1μm/min)の100倍の速さの成膜も可能となる。
By establishing a pulling method based on this method, it is possible to form a film at a speed 100 times that of the vapor phase growth method (0.1 μm / min).

Claims (4)

希土類系銅酸化物高温超伝導体REBaCu(ただし、REは希土類元素を表し、yは6〜7を表す。)を基板上に膜成長させる方法であって、
RE:Ba:Cuの組成比が1:2〜3:2〜7の間となる様に調整した原料を、500℃を越え700℃未満の還元雰囲気下において、溶融した水酸化物に溶解させ、基板上にREBaCuを膜成長させることを特徴とする結晶膜作成方法。
A method of growing a rare earth-based copper oxide high-temperature superconductor REBa 2 Cu 3 O y (where RE represents a rare earth element and y represents 6 to 7) on a substrate,
The raw material adjusted so that the composition ratio of RE: Ba: Cu is between 1: 2 to 3: 2 to 7 is dissolved in the molten hydroxide in a reducing atmosphere of more than 500 ° C. and less than 700 ° C. A method for producing a crystal film, comprising growing REBa 2 Cu 3 O y on a substrate.
前記基板は、エッチピット様の凹凸が表面に存在する基板であることを特徴とする請求項1に記載の結晶膜作成方法。   2. The crystal film forming method according to claim 1, wherein the substrate is a substrate having etch pit-like irregularities on the surface. 基板に、NdGaO、LaAlO、MgO、または、SrTiOを用いることを特徴とする請求項1または2に記載の結晶膜作成方法。 3. The crystal film forming method according to claim 1, wherein NdGaO 3 , LaAlO 3 , MgO, or SrTiO 3 is used for the substrate. 水酸化物としてKOH、NaOH、LiOH、Ba(OH)、または、これらの混合物を用いることを特徴とする請求項1、2または3に記載の結晶膜作成方法。

4. The method for producing a crystalline film according to claim 1, wherein KOH, NaOH, LiOH, Ba (OH) 2 or a mixture thereof is used as the hydroxide.

JP2014092661A 2014-04-28 2014-04-28 RE123 crystal film production method. Active JP6359328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014092661A JP6359328B2 (en) 2014-04-28 2014-04-28 RE123 crystal film production method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014092661A JP6359328B2 (en) 2014-04-28 2014-04-28 RE123 crystal film production method.

Publications (2)

Publication Number Publication Date
JP2015209363A JP2015209363A (en) 2015-11-24
JP6359328B2 true JP6359328B2 (en) 2018-07-18

Family

ID=54611854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014092661A Active JP6359328B2 (en) 2014-04-28 2014-04-28 RE123 crystal film production method.

Country Status (1)

Country Link
JP (1) JP6359328B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222124A (en) * 1987-07-31 1990-01-25 Ube Ind Ltd Preparation of raw material powder for readily sinterable high-temperature superconducting ceramic
AU589068B2 (en) * 1987-08-10 1989-09-28 Furukawa Electric Co. Ltd., The Method of manufacturing oxide superconductor, and method of manufacturing composite oxide powder which is the precursor of the oxide superconductor
JP2704625B2 (en) * 1987-09-21 1998-01-26 財団法人生産開発科学研究所 Method for producing LnA lower 2 Cu lower 3 O-low 7-x single crystal thin film and LnA lower 2 Cu lower 3 O lower 7-x thin film having three-layer perovskite structure
JPH0465305A (en) * 1990-07-02 1992-03-02 Sumitomo Heavy Ind Ltd Formation of high-temperature superconducting oxide thin film
JPH05283759A (en) * 1992-03-31 1993-10-29 Fuji Electric Co Ltd Manufacture of single electron tunnel transistor element
JPH05320882A (en) * 1992-05-20 1993-12-07 Mitsubishi Kasei Corp Formation of vapor-deposited thin film
JP3944963B2 (en) * 1997-08-27 2007-07-18 住友電気工業株式会社 Manufacturing method and manufacturing apparatus for oxide superconducting thin film
WO2000049665A1 (en) * 1999-02-17 2000-08-24 Solvay Barium Strontium Gmbh Superconductive bodies made of zinc-doped copper oxide material
JP2011253766A (en) * 2010-06-03 2011-12-15 National Institute Of Advanced Industrial & Technology Method of manufacturing oxide superconductor thin film
JP5881107B2 (en) * 2011-03-08 2016-03-09 国立研究開発法人産業技術総合研究所 Method for introducing nanoscale crystal defects into high temperature superconducting oxide thin films

Also Published As

Publication number Publication date
JP2015209363A (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP2009507358A (en) High temperature superconducting wire and coil
Jergel Synthesis of high-Tc superconducting films by deposition from an aerosol
JP2007532775A (en) Biaxially oriented film deposition for superconductor coated tapes
JP2007165153A (en) Manufacturing method of thick-film tape-like re-based (123) superconductor
JP5513154B2 (en) Oxide superconducting wire and manufacturing method of oxide superconducting wire
US20110105336A1 (en) Rare earth element oxide superconductive wire material and method of producing the same
JPH04305016A (en) Alligned superconductive film and epitaxial method of growing said film
JP2006117505A (en) Bismuth-based oxide superconductor thin film and method of manufacturing the same
WO2006071542A2 (en) Architecture for coated conductors
He et al. Growth of biaxially oriented conductive LaNiO3 buffer layers on textured Ni tapes for high-Tc-coated conductors
JP2003034527A (en) Thick film of tape-like oxide superconductor and method for manufacturing it
JP2004171841A (en) Tape-shaped rare earth group oxide superconductor and manufacturing method of the same
JPH10502326A (en) Epitaxial thallium high temperature superconducting film formed via nucleation layer
JP2013235766A (en) Oxide superconducting thin film and method for manufacturing the same
JP6359328B2 (en) RE123 crystal film production method.
JP5415824B2 (en) Method for manufacturing a substrate with altered shape for coated conductor and coated conductor using said substrate
KR100721901B1 (en) Superconducting article and its manufacturing method
Chen et al. Growth of biaxially textured CeO2/YSZ/CeO2 and SrTiO3 buffer layers on textured Ni substrates by pulsed laser deposition
Guo et al. Epitaxial superconducting thin films Tl0. 78Bi0. 22Sr1. 6Ba0. 4Ca2O9− δ on (001) YSZ synthesized by laser ablation and post-annealing in pure argon
US20090036313A1 (en) Coated superconducting materials
Opata et al. Superconducting $\text {Dy} _ {1-x}(\text {Gd},\text {Yb}) _ {x}\text {Ba} _ {2}\text {Cu} _ {3}\text {O} _ {7-\delta} $ Thin Films Made by Chemical Solution Deposition
JP2011253768A (en) Method of manufacturing oxide superconductor thin film
JP4448934B2 (en) Preparation method of Bi-based oxide superconducting thin film
Mancini et al. MgO/TiN buffer layer structures for coated conductor development on Cu-based substrates
JP4741787B2 (en) Method for producing high-temperature superconducting film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180620

R150 Certificate of patent or registration of utility model

Ref document number: 6359328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250