JPS63307614A - High-temperature oxide superconductor thin film - Google Patents

High-temperature oxide superconductor thin film

Info

Publication number
JPS63307614A
JPS63307614A JP62141462A JP14146287A JPS63307614A JP S63307614 A JPS63307614 A JP S63307614A JP 62141462 A JP62141462 A JP 62141462A JP 14146287 A JP14146287 A JP 14146287A JP S63307614 A JPS63307614 A JP S63307614A
Authority
JP
Japan
Prior art keywords
axis
substrate
film
thin film
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62141462A
Other languages
Japanese (ja)
Inventor
Toshiyuki Aida
会田 敏之
Tokumi Fukazawa
深沢 徳海
Kazumasa Takagi
高木 一正
Masahiko Hiratani
正彦 平谷
Katsumi Miyauchi
宮内 克己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62141462A priority Critical patent/JPS63307614A/en
Publication of JPS63307614A publication Critical patent/JPS63307614A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To aim at improvement of the critical current by arranging the crystal orientation of both the (a) axis and the (b) axis of crystal grains constituting a film so that they are parallel to a substrate. CONSTITUTION:In an Re1Me2Cu3O7-x thin film of the perovskite structure (Re; Y, Sc, rare earth element, Me; alkaline earth metal element), the (c) axis of the rhombic system structure is arranged to be perpendicular to a substrate, and both the (a) axis and the (b) axis thereof are arranged to be parallel to the substrate. When a film formed by a sputtering method or a deposition method is gradually heated in an atmosphere of oxidizing gas with a rate ranging from 10 deg.C/h to 300 deg.C/h, an oxide superconductor becomes highly c-axis oriented to the substrate. By thus forming a film having a high degree of the c-axis orientation, a high-quality film with a large critical current can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高出力のマグネット、ジョセフソン素子、5Q
UID等に用いられている超電導材料に係り、特に液体
窒素温度以上で動作するセラミックス系高温電導体の薄
膜の構造及びその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention applies to high-output magnets, Josephson elements, 5Q
The present invention relates to superconducting materials used in UIDs and the like, and particularly to the structure of a thin film of a ceramic-based high-temperature conductor that operates at temperatures above liquid nitrogen temperature and its manufacturing method.

1986年にBednorgとMullerによって発
見されたに、N1F4型構造の(La、S r)2Cu
04超電導体は30にの高い臨界温度を示す、その後。
Discovered by Bednorg and Muller in 1986, (La, S r)2Cu with N1F4 type structure
04 superconductors exhibit a high critical temperature of 30°C, then.

1987年に入り、米国と日本からペロブスカイト型構
造のYIBarcu307−xは更に高い臨界温度T、
= 90 Kを有し、液体窒素温度(77K)以上でも
超電導状態になることが知られている。
In 1987, YIBarcu307-x, which has a perovskite structure, was introduced from the United States and Japan with an even higher critical temperature T,
= 90 K, and is known to become superconducting even at liquid nitrogen temperature (77 K) or higher.

(1987年5月11日号の日経ニューマテリアル参照
) 〔発明カマ解決しようとする問題点〕 しかしエレクトロニクスデバイスには薄膜の作製が不可
欠であるが、これらの酸化物系の超電導体の結晶構造は
複雑であるため1品質の良い膜は得にくいという問題が
あった。
(Refer to the May 11, 1987 issue of Nikkei New Materials) [Problems that inventors are trying to solve] However, the production of thin films is essential for electronic devices, but the crystal structure of these oxide-based superconductors is Because of the complexity, there was a problem in that it was difficult to obtain a film of good quality.

本発明の目的は酸素欠損型で、短範囲の周期性をもつY
1Ba2Cu3O7−g系高温酸化物超電導体の品質に
関し、特に臨界電流の大きい高品質膜を提供することに
ある。
The object of the present invention is to provide oxygen-deficient Y with short-range periodicity.
Regarding the quality of the 1Ba2Cu3O7-g-based high-temperature oxide superconductor, the object of the present invention is to provide a high-quality film with a particularly large critical current.

〔問題点を解決するための手段〕[Means for solving problems]

YlBarcus07−X系高温酸化物超電導体は斜方
晶系に属し、格子定数はa=3.88人、b=3.83
人、c=11.69人である。電子伝導はa軸とb軸で
形成する平面で2次元伝導する0本発明の目的は、膜を
構成する結晶粒のa軸とb軸の結晶方位を基板に平行に
揃えることで、効率の良い2次元伝導を与え、かつ臨界
電流の大巾な向上を与えたことにより達成される。また
、スパッター法あるいは蒸着法で形成した膜を酸化性雰
囲気ガス中で10℃/hから300℃/hの範囲で昇温
し、800℃から1000℃の間で反応させることによ
り臨界電流の大きな酸化物の超電導体膜が得られる。
YlBarcus07-X-based high-temperature oxide superconductor belongs to the orthorhombic system, and the lattice constants are a = 3.88 and b = 3.83.
person, c=11.69 people. Electron conduction is two-dimensional conduction in a plane formed by the a-axis and b-axis.The purpose of the present invention is to improve efficiency by aligning the crystal orientations of the a-axis and b-axis of the crystal grains that make up the film parallel to the substrate. This is achieved by providing good two-dimensional conduction and greatly improving the critical current. In addition, by raising the temperature of a film formed by sputtering or vapor deposition in an oxidizing atmosphere gas in the range of 10°C/h to 300°C/h and causing a reaction between 800°C and 1000°C, a large critical current can be generated. An oxide superconductor film is obtained.

このときに、基板面の格子定数が超電導体薄膜のa軸と
b軸の格子定数と整数比で一致するものを選択すること
によって、C軸配向性の高い酸化物超電導体膜が得られ
る。
At this time, by selecting a substrate in which the lattice constant of the substrate surface matches the lattice constants of the a-axis and b-axis of the superconductor thin film in an integral ratio, an oxide superconductor film with high C-axis orientation can be obtained.

〔作用〕[Effect]

ペロブス型構造のRe I M e 2 Cu 307
−Xの電気伝導に寄与するa軸とb軸からなる面を基板
面に平行に揃えることで臨界電流の大きい超電導膜が得
られる。スパッタ法又は蒸着法で形成した膜を酸化性雰
囲気ガス中で10℃/hから300℃/hの範囲で徐々
に昇温すると、酸化物超電導体は基板に強くc軸配向す
るようになる。なお、このときに基板に基板面の格子定
数が超電導体薄膜のa軸とb軸の格子定数と整数で一致
するものを選択すると、より一層C軸配向の傾向が強ま
る。
Re I M e 2 Cu 307 with Perobus type structure
A superconducting film with a large critical current can be obtained by aligning the plane consisting of the a-axis and b-axis, which contribute to the electrical conduction of -X, parallel to the substrate surface. When a film formed by a sputtering method or a vapor deposition method is gradually heated in an oxidizing atmosphere gas in a range of 10° C./h to 300° C./h, the oxide superconductor becomes strongly c-axis oriented with respect to the substrate. At this time, if a substrate is selected in which the lattice constant of the substrate surface matches the lattice constants of the a-axis and b-axis of the superconductor thin film by an integer, the tendency for C-axis orientation will be further strengthened.

(実施例〕 以下、本発明の効果を実施例で詳述する。(Example〕 Hereinafter, the effects of the present invention will be explained in detail in Examples.

実施例I Y1Ba2Cu3O7,4薄膜の作製はターゲットにY
1Ba2Cu30フ、焼結体を用い、マグネトロンスパ
ッタリング装置で行った。ガスはAr+10%0□の混
合ガスとし、導入ガス圧は4×10Paとした。基板は
Y1Ba2Cu30g4と格子定数の近い5rTr03
結品を用いた。基板の面方位は(100)である、基板
温度は室温とした。作製した膜は1.0μmの膜厚で、
X@回折によると非晶質体である。結晶化温度は900
℃X2hとした。昇温速度は50℃/h、100℃/h
、200c/h、300℃/hとした0作製した膜のX
線回折パターンを第2@に示す、X線回折はCuKの線
で行った。ここで、a)は粉末X線回折の標準パターン
、b)は50℃/h〜300℃/hの場合、C)は30
0℃/h以上の場合である。50℃/hから300℃/
hの昇温速度では(OOx)面が強く配向している。一
方、昇温速度300℃以上ではYIBa2Cu30−1
−X粉末の標準回折パターンと同様な回折パターンとな
る。従って、300℃/h以下での低速な昇温速度では
Y1Ba2Cu3O7−×薄膜は基板に強くc軸配向す
る性質がある。
Example I Preparation of Y1Ba2Cu3O7,4 thin film using Y as a target
The process was carried out using a magnetron sputtering device using a sintered body of 1Ba2Cu30. The gas was a mixed gas of Ar+10%0□, and the introduced gas pressure was 4×10 Pa. The substrate is 5rTr03, which has a lattice constant similar to Y1Ba2Cu30g4.
The fruit was used. The plane orientation of the substrate was (100), and the substrate temperature was room temperature. The prepared film had a thickness of 1.0 μm,
According to X@ diffraction, it is amorphous. Crystallization temperature is 900
℃×2h. Temperature increase rate is 50℃/h, 100℃/h
, 200c/h, 300℃/h
X-ray diffraction was performed on the CuK line, the line diffraction pattern is shown in 2nd@. Here, a) is the standard pattern of powder X-ray diffraction, b) is 50℃/h to 300℃/h, C) is 30℃/h
This is the case when the temperature is 0°C/h or more. 50℃/h to 300℃/
At a heating rate of h, the (OOx) plane is strongly oriented. On the other hand, when the heating rate is 300℃ or higher, YIBa2Cu30-1
The diffraction pattern is similar to the standard diffraction pattern of -X powder. Therefore, at a slow temperature increase rate of 300° C./h or less, the Y1Ba2Cu3O7-x thin film has a property of being strongly c-axis oriented on the substrate.

第2図は液体窒素温度における臨界電流密度Joに及ぼ
す昇温速度の影響を示す、臨界電流密度は昇温速度が小
さいほど大きいのが分る。したがって、第1図と第2図
の結果から、基板に垂直に配向している膜はど臨界電流
が高いのが分る。
FIG. 2 shows the influence of the heating rate on the critical current density Jo at the liquid nitrogen temperature. It can be seen that the smaller the heating rate is, the larger the critical current density is. Therefore, from the results shown in FIGS. 1 and 2, it can be seen that the film oriented perpendicularly to the substrate has a higher critical current.

これより、昇温速度は300℃/h以下にするのが望ま
しい、しかし、10℃/hでは昇温に時間がかかりすぎ
現実的でない。
From this, it is desirable that the temperature increase rate be 300° C./h or less, but 10° C./h takes too much time to raise the temperature and is not practical.

実施例2 YiBa2cu307−x薄膜を用いて、ReにY以外
のSc、希土類元素、MeにBa以外のアルカリ土類金
属元素を用いて、実施例1に記載の内容で同一実験を行
った。その結果、基板に対して強い配向性を有する薄膜
が得られ、高い臨界電流値も得られた。
Example 2 The same experiment as described in Example 1 was conducted using a YiBa2cu307-x thin film, using Sc and a rare earth element other than Y for Re, and using an alkaline earth metal element other than Ba for Me. As a result, a thin film with strong orientation toward the substrate was obtained, and a high critical current value was also obtained.

実施例3 実施例1の効果はRAM cs2Cu3o、−、薄膜の
作製をスパッター法の替り、Re、Me、Cuの各金属
を抵抗加熱法で蒸着して、そののち配化性ガス中で酸化
させる工程でも確認された。
Example 3 The effect of Example 1 is that RAM cs2Cu3o, -, instead of sputtering, each metal of Re, Me, and Cu is vapor deposited by resistance heating method and then oxidized in coordination gas. It was also confirmed during the process.

実施例4 実施例1〜3記載の薄膜の熱処理は900℃の外に、8
00℃と1000℃でも行ったが、実施例1と同様な結
果が得られた。しかし、800℃より低温では斜方晶系
の超電相が形成せず。
Example 4 The thin films described in Examples 1 to 3 were heat-treated at temperatures other than 900°C and 8°C.
The experiment was also carried out at 00°C and 1000°C, and the same results as in Example 1 were obtained. However, at temperatures lower than 800°C, an orthorhombic superelectric phase is not formed.

1000℃より高温では基板と反応してしまう問題があ
った。
At temperatures higher than 1000° C., there was a problem that it would react with the substrate.

実施例5 実施例1の効果は基板に、SrTiO3結晶の替り、超
電導体膜の格子定数とほぼ等しいa=b=3.90人、
c=4.15人の格子間距離をもつPbTi0aの(1
00)面ウェハー、超電導体膜の約3倍のa=b=c=
12人の格子定数をもつY3AlaOx*の(100)
面ウェハーでも確認された。したがって、基板には超電
導体物質と反応せず、かつ超電導体物質のa軸とb軸と
整合をとれるもを選択すれば、強いC軸配向の膜が得ら
れる。
Example 5 The effect of Example 1 is that the substrate is replaced with SrTiO3 crystal, a = b = 3.90, which is almost equal to the lattice constant of the superconductor film,
(1
00) surface wafer, a = b = c = about 3 times that of the superconductor film
(100) of Y3AlaOx* with 12 lattice constants
It was also confirmed on surface wafers. Therefore, if a substrate is selected that does not react with the superconductor material and can be aligned with the a- and b-axes of the superconductor material, a film with strong C-axis orientation can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明のC軸配向性の強い膜を形成させることで、臨界
電流1000 A/am”以上の高い値が得られる。
By forming a film with strong C-axis orientation according to the present invention, a high value of critical current of 1000 A/am'' or more can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は作製した膜のX線回折パターンを示す図、第2
図は液体窒素温度における臨界電流密度J0に及ぼす昇
温速度の影響を示す図である。 第7目 21          11          4
11           II第2目 署点速農(ζυ
Figure 1 shows the X-ray diffraction pattern of the fabricated film, Figure 2
The figure shows the influence of temperature increase rate on critical current density J0 at liquid nitrogen temperature. 7th 21 11 4
11 II 2nd station quick farming (ζυ

Claims (1)

【特許請求の範囲】 1、高い臨界温度をもつRe_1Me_2Cu_3O_
7_−_x薄膜(Re;Y、Sc、希土類元素、Me;
アルカリ土類金属元素)において、斜方晶系構造のc軸
が基板に垂直で、かつ、a軸とb軸が基板に平行に配置
している、配向性をもつことを特徴とする高温酸化物超
電導体薄膜。 2、特許請求の範囲第1項記載において、スパッター法
あるいは蒸着法で形成された膜は、10℃/hから30
0℃/hで昇温し、800℃から1000℃の間で反応
させて形成したc軸配向の膜であることを特徴とする高
温酸化物超電導体薄膜。 3、特許請求の範囲第1項記載において、基板面の格子
定数が超電導体薄膜のa軸とb軸の格子定数と整数比で
一致する材料を選択し、c軸配向の膜を形成させる高温
酸化物超電導体薄膜。
[Claims] 1. Re_1Me_2Cu_3O_ with high critical temperature
7_-_x thin film (Re; Y, Sc, rare earth element, Me;
High-temperature oxidation of alkaline earth metal elements) characterized by an orientation in which the c-axis of the orthorhombic structure is perpendicular to the substrate, and the a-axis and b-axis are parallel to the substrate. Physical superconductor thin film. 2. In claim 1, the film formed by sputtering or vapor deposition is
A high-temperature oxide superconductor thin film characterized in that it is a c-axis oriented film formed by heating at a rate of 0°C/h and reacting between 800°C and 1000°C. 3. In claim 1, a material whose lattice constant on the substrate surface matches the lattice constants of the a-axis and b-axis of the superconductor thin film in an integer ratio is selected, and the high temperature is used to form a c-axis oriented film. Oxide superconductor thin film.
JP62141462A 1987-06-08 1987-06-08 High-temperature oxide superconductor thin film Pending JPS63307614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62141462A JPS63307614A (en) 1987-06-08 1987-06-08 High-temperature oxide superconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62141462A JPS63307614A (en) 1987-06-08 1987-06-08 High-temperature oxide superconductor thin film

Publications (1)

Publication Number Publication Date
JPS63307614A true JPS63307614A (en) 1988-12-15

Family

ID=15292446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62141462A Pending JPS63307614A (en) 1987-06-08 1987-06-08 High-temperature oxide superconductor thin film

Country Status (1)

Country Link
JP (1) JPS63307614A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029793A (en) * 1987-09-21 1990-01-12 Res Inst For Prod Dev Thin single crystal film of lna2cu3o7-x having three-layered perovskite structure and production of thin lna2cu3o7-x film
US5856275A (en) * 1990-11-01 1999-01-05 Sumitomo Electric Industries, Ltd. Superconducting wiring lines and process for fabricating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029793A (en) * 1987-09-21 1990-01-12 Res Inst For Prod Dev Thin single crystal film of lna2cu3o7-x having three-layered perovskite structure and production of thin lna2cu3o7-x film
US5856275A (en) * 1990-11-01 1999-01-05 Sumitomo Electric Industries, Ltd. Superconducting wiring lines and process for fabricating the same

Similar Documents

Publication Publication Date Title
JP3587956B2 (en) Oxide superconducting wire and its manufacturing method
WO2002055435A1 (en) Intermetallic compound superconductor and alloy superconductor, and method for their preparation
JP3089294B2 (en) Manufacturing method of superconducting tape material
JPH07267791A (en) Production of oxide superconductor thin film and oxide superconductor thin film laminate
JPS63307614A (en) High-temperature oxide superconductor thin film
JPS63288944A (en) Production of high temperature superconductor
JPS63301424A (en) Manufacture of oxide superconductor membrane
JP2832002B2 (en) Method for producing Bi-Sr-Ca-Ci-O-based superconducting thin film
JP3787572B2 (en) Selective reduction type high temperature superconductor and method for producing the same
JPH0388716A (en) Production of oxide superconducting thin film
JP2616986B2 (en) Manufacturing method of Tl based superconductor laminated film
JPH02162616A (en) Manufacture of oxide high-temperature superconducting film
JPH02311396A (en) Thin-film superconductor and its production
JPH0310083A (en) Production of superconducting film
JPH03275504A (en) Oxide superconductor thin film and its production
JPH05194095A (en) Production of thin-film electric conductor
JPH0848520A (en) Oxide superconductor and its production
JPH02216712A (en) Oxide high temperature superconductor and manufacture thereof
JPH01105416A (en) Manufacture of thin film superconductor
JPH0393664A (en) Production of oxide superconductor
JPS63276824A (en) Manufacturing of high-temperature superconducting film
JPH03215319A (en) Preparation of thin filmy superconductor
JPH05319828A (en) Production of thin film superconductor
JPH01170060A (en) Semiconductor substrate having superconductor layer
JPH038702A (en) Preparation process for thin film of oxide high-temperature superconductor