JPH01105416A - Manufacture of thin film superconductor - Google Patents

Manufacture of thin film superconductor

Info

Publication number
JPH01105416A
JPH01105416A JP62262060A JP26206087A JPH01105416A JP H01105416 A JPH01105416 A JP H01105416A JP 62262060 A JP62262060 A JP 62262060A JP 26206087 A JP26206087 A JP 26206087A JP H01105416 A JPH01105416 A JP H01105416A
Authority
JP
Japan
Prior art keywords
temperature
thin film
substrate
superconductor
composite compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62262060A
Other languages
Japanese (ja)
Other versions
JPH07100609B2 (en
Inventor
Kiyotaka Wasa
清孝 和佐
Kentaro Setsune
瀬恒 謙太郎
Hideaki Adachi
秀明 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62262060A priority Critical patent/JPH07100609B2/en
Publication of JPH01105416A publication Critical patent/JPH01105416A/en
Publication of JPH07100609B2 publication Critical patent/JPH07100609B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a thin film superconductor not requiring the high- temperature annealing process by radiating oxygen ions on the surface of a substrate at the time of sputter-depositing a specific composite compound film. CONSTITUTION:When a composite compound film with the mol ratio of elements as expressed by the equation and made of an oxide containing at least A, B and Cu is to be sputter-deposited on the surface of a substrate, the substrate surface is radiated with oxygen ions, where A indicates at least one kind of Sc, Y and lanthanoids elements (atomic number 57-71) and B indicates at least one kind of the group IIa elements such as Ba, Sr, Ca, Be, Mg. The temperature Ts on the substrate surface is preferably made Tt approx.>Ts approx.>Tc, where Tt and Tc are the tetragonal/rhombic transition temperature and crystallization temperature of the composite compound respectively. A superconductor can be thereby made into a thin film at a low temperature.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超電導体の製造方法に関するものである。特に
化合物薄膜超電導体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing superconductors. In particular, it relates to a method for manufacturing compound thin film superconductors.

従来の技術 高温超電導体として、A15型2元系化合物として窒化
ニオブ(NbN)やゲルマニウムニオブ(N b s 
G e )などが知られていたが、これらの材料の超電
導転移温度はたかだか24°にであった。一方、ペロブ
スカイト系3元化合物は、さらに高い転移温度が期待さ
れ、Ba−La−Cu−0系の高温超電導体が提案され
た[ J、 G、 Bend。
Conventional technology As high-temperature superconductors, niobium nitride (NbN) and germanium niobium (N b s ) are used as A15 type binary compounds.
G e ), etc. were known, but the superconducting transition temperature of these materials was at most 24°. On the other hand, perovskite-based ternary compounds are expected to have even higher transition temperatures, and Ba-La-Cu-0-based high-temperature superconductors have been proposed [J, G, Bend.

rz and K、A、Muller、 ツアイト シ
コリフト フェアフィジーク(Ze tshrift 
f li rphysik B)−Condensed
 Matter 64.189−193 (1986)
 ]。さらに、]Y−Ba−Cu−0がより高温の超電
導材料であることが、最近提案された。(文献)  [
M、 K、 Wu等。
rz and K, A, Muller, Zetshrift Fair Physique
f li rphysik B)-Condensed
Matter 64.189-193 (1986)
]. Additionally, ]Y-Ba-Cu-0 was recently proposed to be a higher temperature superconducting material. (Reference) [
M., K., Wu et al.

フィジカルレビュー レターズ(Physical R
eview Letters) Vol、58 No9
.908−910 (1987) ]]Y−Ba−Cu
−0の材料の超電導機構の詳細は明らかではないが、転
移温度が液体窒素温度以上に高くなる可能性があり、高
温超電導体として従来の2元系化合物より、より有望な
特性が期待される。
Physical Review Letters (Physical R
(view Letters) Vol, 58 No9
.. 908-910 (1987) ]]Y-Ba-Cu
The details of the superconducting mechanism of -0 materials are not clear, but the transition temperature may be higher than liquid nitrogen temperature, and it is expected to have more promising properties as a high-temperature superconductor than conventional binary compounds. .

発明が解決しようとする問題点 しかしながら、Y−Ba−Cu−0系の材料は、現在の
技術では焼結という過程でしか形成できないため、セラ
ミックの粉末あるいはブロックの形状でしか得られない
。一方、この種の材料を実用化する場合、薄膜状に加工
することが強く要望されている。従来の技術では、スパ
ッタ法で蒸着し、形成された薄膜をさらに900〜10
00℃で酸素中の熱処理を施して超電導特性を実現して
いた。一方、薄膜をエレクトロニクス素子で実用化する
には、さらに500〜600℃以下の低温で形成するこ
とが要請されているが、低温に困難とされていた。
Problems to be Solved by the Invention However, Y-Ba-Cu-0 based materials can only be formed through the process of sintering using current technology, and therefore can only be obtained in the form of ceramic powder or blocks. On the other hand, when this type of material is put to practical use, there is a strong demand for processing it into a thin film. In the conventional technique, the thin film is deposited by sputtering, and the formed thin film is further heated to 900 to 10
Superconducting properties were achieved by heat treatment in oxygen at 00°C. On the other hand, in order to put the thin film into practical use in electronic devices, it is required to form the film at a lower temperature of 500 to 600° C., but it has been difficult to achieve such a low temperature.

本発明者らは、この種の材料の薄膜をイオンプロセスに
より付着させると、薄膜状の高温超電導体が形成される
ことを発見するとともに、高温アニール処理が不安な薄
膜超電導体の製造方法を発明した。
The present inventors discovered that a thin film-like high temperature superconductor is formed when a thin film of this type of material is deposited by an ion process, and also invented a method for manufacturing a thin film superconductor that is not susceptible to high-temperature annealing. did.

問題点を解決するための手段 本発明の薄膜超電導体の製造方法は、基体表面に少(と
もA、B、Cuを含む酸化物で、元素のモル比率が の複合化合物被膜をスパッタ蒸着する際!こ、基体表面
を酸素イオンで照射するものである。ここにAはSc、
Yおよびランタン系列元素(原子番号57−71)のう
ちすくな(とも一種、BはBa。
Means for Solving the Problems The method for producing a thin film superconductor of the present invention involves sputter-depositing a composite compound film on the surface of a substrate, which is an oxide containing A, B, and Cu, and has a molar ratio of the elements. !This is to irradiate the substrate surface with oxygen ions. Here, A is Sc,
Among Y and lanthanum series elements (atomic number 57-71), B is Ba.

Sr、Ca、Be、MgなどIIa族元素のうちの少な
くとも一種の元素を示す。
Indicates at least one element from group IIa elements such as Sr, Ca, Be, and Mg.

さらに、望ましくは、本発明において、基体表面の温度
TsをTc≧Ts≧Tcとするものである。ここにTt
、Tcはそれぞれ複合化合物の正方晶/斜方晶転移温度
、結晶化温度を示す。
Furthermore, in the present invention, preferably, the temperature Ts of the substrate surface satisfies Tc≧Ts≧Tc. Tt here
, Tc indicate the tetragonal/orthorhombic transition temperature and crystallization temperature of the composite compound, respectively.

作用 本発明にかかる薄膜超電導体の製造方法は、超電導体を
低温度で薄膜化することが可能となる。
Function: The method for producing a thin film superconductor according to the present invention enables the superconductor to be made into a thin film at a low temperature.

すなわち、薄膜化は超電導体の素材を原子状態という極
微粒子に分解してから基体上に堆積させるから、形成さ
れた超電導体の組成は本質的に均質であるとともに、蒸
着時に基板表面が酸素イオンで照射されると高温熱処理
なしに超電導特性が得られる。したがって本発明により
非常に高精度の超電導体が本発明の方法を用いて実現さ
れる。
In other words, in thin film formation, the superconductor material is decomposed into ultrafine particles in the atomic state and then deposited on the substrate, so the composition of the formed superconductor is essentially homogeneous, and the substrate surface is exposed to oxygen ions during deposition. Superconducting properties can be obtained without high-temperature heat treatment. According to the invention, therefore, superconductors of very high precision are realized using the method of the invention.

実施例 本発明の実施例を図面とともに説明する。Example Embodiments of the present invention will be described with reference to the drawings.

第1図において、複合化合物被膜12は、スパッタガン
13で素材の原子状14に分解し、これを基板11上に
蒸着する。この場合、超電導体A−B−Cu−0は結晶
構造や組成式がまだ明確には決定されていないが、酸素
欠損ペロブスカイトA I B 2 Cu 307− 
xともいわれている。本発明者等は、作製された被膜に
おいて元素比率かの範囲にあれば、臨界温度に多少の差
があっても超電導現象が見出されることを確認した。
In FIG. 1, a composite compound film 12 is decomposed into atomic parts 14 of the material using a sputter gun 13, and these are vapor-deposited onto a substrate 11. In this case, the crystal structure and composition formula of the superconductor A-B-Cu-0 have not yet been clearly determined, but the superconductor A-B-Cu-0 is an oxygen-deficient perovskite A I B 2 Cu 307-
It is also called x. The present inventors have confirmed that superconducting phenomena can be observed even if there is a slight difference in critical temperature, provided that the element ratio is within a certain range in the produced film.

このようなスパッタ被膜において超電導特性を得るには
、通常200〜700℃の基板温度で成膜した後、さら
に空気中あるいは酸素雰囲気中で900〜1000℃高
温熱処理を施す必要があった。ところが本発明者らは、
スパッタ蒸着時に基板表面が酸素イオン15に照射され
ていれば、意外にも高温熱処理なしに超電導特性が得ら
れることを発見した。
In order to obtain superconducting properties in such a sputtered film, it is usually necessary to form the film at a substrate temperature of 200 to 700°C, and then further perform high-temperature heat treatment at 900 to 1000°C in air or an oxygen atmosphere. However, the inventors
It has been surprisingly discovered that superconducting properties can be obtained without high-temperature heat treatment if the substrate surface is irradiated with oxygen ions 15 during sputter deposition.

すなわち、酸化マグネシウム単結晶(100)面を基体
11として用い、スパッタガン13により、焼結したY
 I B a 2 Cu s Oxターゲット17をA
rガスでスパッタリング蒸発させるとともに、上記スパ
ッタガン13とは別に設けた酸素イオンガン16により
、酸素イオン15を基体11に照射し、上記基体11上
に結晶性のY I B a 2Cu307− s被膜1
2を形成した。スパッタガス圧力は0.5Pa、スパッ
タリング電力150W、スパッタリング時間1時間、基
板温度650℃とした。また、酸素イオンビームは、加
速電圧1000v、電流100μAであった。成膜後の
複合化合物被膜の超電導特性を第2図に示す。ゼロ抵抗
臨界温度は80に以上を示し、良好な特性が得られたこ
とを本発明者等は確認した。さらに液体窒素温度(77
K)での臨界電流密度が20万A / cn?に達し、
実用上非常に有効であることも合わせて確認した。
That is, using a magnesium oxide single crystal (100) plane as the substrate 11, sintered Y
I B a 2 Cu s Ox target 17
While sputtering and evaporating with r gas, the substrate 11 is irradiated with oxygen ions 15 using an oxygen ion gun 16 provided separately from the sputter gun 13 to form a crystalline YIBa 2Cu307-s coating 1 on the substrate 11.
2 was formed. The sputtering gas pressure was 0.5 Pa, the sputtering power was 150 W, the sputtering time was 1 hour, and the substrate temperature was 650°C. Further, the oxygen ion beam had an acceleration voltage of 1000 V and a current of 100 μA. Figure 2 shows the superconducting properties of the composite compound film after film formation. The zero resistance critical temperature was 80 or higher, and the inventors confirmed that good characteristics were obtained. In addition, liquid nitrogen temperature (77
K) is the critical current density 200,000 A/cn? reached,
It was also confirmed that it is very effective in practice.

この場合、なぜ基板表面を酸素イオンビーム中にさらす
と高温熱処理なしに良好な超電導特性が得られるかは明
らかではないが、成膜中のアルゴンあるいは酸素イオン
の照射が被膜の結晶性や酸素濃度に好影響を与えるため
と考えられる。
In this case, it is not clear why good superconducting properties can be obtained by exposing the substrate surface to an oxygen ion beam without high-temperature heat treatment. This is thought to be because it has a positive effect on

この場合、さらに本発明者らは蒸着中の基板温度が結晶
学的に見て最適範囲であることを発見した。すなわち、
基板温度をTsとすると、Tc≦Ts≦Ttが、超電導
薄膜を形成するための最適基板温度範囲であることを本
発明者らは確認した。ここに、Tcは複合化合物薄膜の
結晶化温度、Ttは複合化合物性膜の結晶構造の正方晶
/斜方晶転移温度を示す。
In this case, the inventors further discovered that the substrate temperature during deposition is in the crystallographically optimal range. That is,
The present inventors have confirmed that, where Ts is the substrate temperature, Tc≦Ts≦Tt is the optimum substrate temperature range for forming a superconducting thin film. Here, Tc represents the crystallization temperature of the composite compound thin film, and Tt represents the tetragonal/orthorhombic transition temperature of the crystal structure of the composite compound film.

すなわち、第3図に示すごと(、基板温度TsをTt以
上にして蒸着すると、形成された薄膜の構造は立方晶に
なり、半導体的な特性を示した。
That is, as shown in FIG. 3, when the deposition was carried out at a substrate temperature Ts equal to or higher than Tt, the structure of the formed thin film became a cubic crystal structure and exhibited semiconductor-like characteristics.

一方、基板温度Tsf!:Tc以下にすると、形成され
た薄膜の構造は非晶質で、高抵抗の電気絶縁性を示した
。超電導特性は、基板温度Tsが、TcとTtの間にお
いて得られ、この場合結晶構造は斜方晶であった。この
場合本発明者らは酸素イオンビームを用いないで蒸着す
ると、Tc<Ts<Ttの範囲においても、形成された
薄膜は、半導体的で、超電導は示さなかった。なおY−
Ba−Cu−0系材料では、T c :600℃、Tt
N−700〜800℃にあることを本発明者らは確認し
た。ちなみに上記第1図の特性例は、Ts=650℃、
Tc≦Ts≦Ttの条件を満足している。
On the other hand, the substrate temperature Tsf! : When the temperature was lower than Tc, the structure of the formed thin film was amorphous and exhibited high resistance electrical insulation. Superconducting properties were obtained when the substrate temperature Ts was between Tc and Tt, and in this case the crystal structure was orthorhombic. In this case, when the present inventors performed vapor deposition without using an oxygen ion beam, the formed thin film was semiconductor-like and did not exhibit superconductivity even in the range of Tc<Ts<Tt. Furthermore, Y-
For Ba-Cu-0 based materials, Tc: 600°C, Tt
The present inventors confirmed that the temperature is N-700 to 800°C. By the way, in the characteristic example shown in Figure 1 above, Ts=650℃,
The condition of Tc≦Ts≦Tt is satisfied.

従来の蒸着では、本発明者らの確立した基板温度条件T
c≦Ts≦Ttと、酸素イオン照射プロセスを用いてい
ないため、必ず蒸着後酸化雰囲気中で900 ℃程度の
温度アニール処理を行い超電導特性を実現している。こ
れに対し、本発明の製造方法では上記高温アニール処理
が不要であることが大きな特徴である。
In conventional vapor deposition, the substrate temperature condition T established by the present inventors is
Since c≦Ts≦Tt and no oxygen ion irradiation process is used, annealing treatment at a temperature of about 900° C. in an oxidizing atmosphere is always performed after vapor deposition to achieve superconducting properties. In contrast, a major feature of the manufacturing method of the present invention is that the above-mentioned high-temperature annealing treatment is unnecessary.

この種の3元化合物超電導体A I B 2 Cu 3
07−Xの構成元素AおよびBの変化による超電導特性
の変化の詳細は明らかではない。ただAは、3価、Bは
2価を示しているのは事実ではある。
This type of ternary compound superconductor A I B 2 Cu 3
Details of changes in superconducting properties due to changes in constituent elements A and B of 07-X are not clear. However, it is true that A indicates trivalence and B indicates divalence.

A元素としてYについて例をあげて説明したが、Scや
La、さらにランタン系列の元素(原子番号57〜71
)でも、超電導転移温度が変化する程度で本質的な発明
の特性を変えるものではない。
Although Y was explained as an example of element A, Sc, La, and even lanthanum series elements (atomic numbers 57 to 71)
) However, the extent to which the superconducting transition temperature changes does not change the essential characteristics of the invention.

また、B元素においても、Sr、Ca5Ba等Ila族
元素の変化は超電導転移温度を10’に程度変化させる
が、本質的に本発明の特性を変えるものではない。
Also, in the B element, changes in Ila group elements such as Sr and Ca5Ba change the superconducting transition temperature by about 10', but this does not essentially change the characteristics of the present invention.

また、本発明における蒸着プロセスは、スパッタガンに
ついて具体例を示したが、蒸着された薄膜Y、Ba、C
uの化学組成が所望の比率になっておりさえすればよく
、スパッタ以外にMBE、CVDなど熱的、化学的蒸着
法も実用される。さらに、基板の温度は被覆したい基体
の表面さえ温度が所望の値になっておりさえすればよい
ことはいうまでもなく、基体の表面のみ照射などで昇温
させてもよい。
Moreover, although the vapor deposition process in the present invention has shown a specific example using a sputter gun, the thin film Y, Ba, C
It is only necessary that the chemical composition of u be in a desired ratio, and in addition to sputtering, thermal and chemical vapor deposition methods such as MBE and CVD are also practical. Furthermore, it goes without saying that the temperature of the substrate only needs to be such that the temperature of the surface of the substrate to be coated reaches a desired value, and only the surface of the substrate may be heated by irradiation or the like.

発明の効果 とりわけ、本発明にかかる超電導体は、超電導体を低温
で薄膜化できる所に大きな特色がある。
Effects of the Invention Particularly, the superconductor according to the present invention has a great feature in that the superconductor can be made into a thin film at a low temperature.

すなわち、作製された薄膜においてA + B * C
u元素の組成比、結晶構造、酸素濃度の制御を容易に再
現性良く行うことができる。したがって、非常に高精度
の超電導体が本発明で実現される。
That is, in the produced thin film A + B * C
The composition ratio, crystal structure, and oxygen concentration of the u element can be easily controlled with good reproducibility. Therefore, a superconductor with very high precision is realized with the present invention.

以上の説明のごとく本発明の薄膜超電導体の製造方法に
よると、例えば結晶性基体上に超電導薄膜が低温で形成
されるので焼結体より本質的により精度が高い上Stあ
るいはGaAsなどのデバイスとの集積化が可能である
とともに、ジョセフソン素子など各種の超電導デバイス
の製造に実用= 10− される。特にこの種の化合物超電導体の転移温度が室温
になる可能性もあり、従来の実用の範囲は広(、本発明
の工業的価値は高い。
As explained above, according to the method of manufacturing a thin film superconductor of the present invention, a superconducting thin film is formed on a crystalline substrate at a low temperature, so that it can be used with devices such as St or GaAs, which has essentially higher precision than a sintered body. It is possible to integrate the devices, and it is also put into practical use in the production of various superconducting devices such as Josephson elements. In particular, the transition temperature of this type of compound superconductor may be room temperature, so the range of conventional practical use is wide (and the industrial value of the present invention is high).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の薄膜超電導体の製造方法の
概略基本構成断面図、第2図は本発明の方法における薄
膜超電導体の基本特性図、第3図は本発明における薄膜
超電導体製造方法の基体概略図である。 11・・・基体、12・・・複合化合物被膜、15・・
・酸素イオン。
FIG. 1 is a schematic cross-sectional view of the basic configuration of a method for manufacturing a thin film superconductor according to an embodiment of the present invention, FIG. 2 is a basic characteristic diagram of the thin film superconductor in the method of the present invention, and FIG. 3 is a diagram showing the basic characteristics of the thin film superconductor in the method of the present invention. FIG. 3 is a schematic diagram of a base body in a method for manufacturing a body. 11... Substrate, 12... Composite compound coating, 15...
・Oxygen ions.

Claims (4)

【特許請求の範囲】[Claims] (1)基体上に少なくともA元素、B元素およびCuを
含む酸化物で、元素のモル比率が 0.5≦(A+B)/Cu≦2.5 の複合化合物被膜をスパッタ蒸着する際に、少なくとも
基体表面を酸素イオンで照射することを特徴とする薄膜
超電導体の製造方法。
(1) When sputter-depositing on a substrate a composite compound film of an oxide containing at least element A, element B, and Cu, with a molar ratio of elements of 0.5≦(A+B)/Cu≦2.5, at least A method for producing a thin film superconductor, the method comprising irradiating the surface of a substrate with oxygen ions.
(2)蒸着をスパッタで行うことを特徴とする特許請求
の範囲第1項記載の薄膜超電導体の製造方法。
(2) The method for producing a thin film superconductor according to claim 1, wherein the vapor deposition is performed by sputtering.
(3)蒸着において、少なくとも基体表面の温度Tsが
Tt≧Ts≧Tcの範囲であることを特徴とする特許請
求の範囲第1項記載の薄膜超電導体の製造方法。ここに
、Tt、Tcはそれぞれ複合化合物の正方晶/斜方晶転
移温度、結晶化温度を示す。
(3) The method for manufacturing a thin film superconductor according to claim 1, wherein the temperature Ts of at least the surface of the substrate is in the range of Tt≧Ts≧Tc in the vapor deposition. Here, Tt and Tc respectively represent the tetragonal/orthorhombic transition temperature and crystallization temperature of the composite compound.
(4)蒸着を、熱蒸着で行うことを特徴とする特許請求
の範囲第1項記載の薄膜超電導体の製造方法。
(4) The method for producing a thin film superconductor according to claim 1, wherein the vapor deposition is performed by thermal vapor deposition.
JP62262060A 1987-10-16 1987-10-16 Method of manufacturing thin film superconductor Expired - Lifetime JPH07100609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62262060A JPH07100609B2 (en) 1987-10-16 1987-10-16 Method of manufacturing thin film superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62262060A JPH07100609B2 (en) 1987-10-16 1987-10-16 Method of manufacturing thin film superconductor

Publications (2)

Publication Number Publication Date
JPH01105416A true JPH01105416A (en) 1989-04-21
JPH07100609B2 JPH07100609B2 (en) 1995-11-01

Family

ID=17370469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62262060A Expired - Lifetime JPH07100609B2 (en) 1987-10-16 1987-10-16 Method of manufacturing thin film superconductor

Country Status (1)

Country Link
JP (1) JPH07100609B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220312A (en) * 1988-02-29 1989-09-04 Sumitomo Cement Co Ltd Manufacture of superconductive ceramic wire rod
JPH01261204A (en) * 1988-04-11 1989-10-18 Fujikura Ltd Production of oxide based superconductor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63245829A (en) * 1987-03-31 1988-10-12 Sumitomo Electric Ind Ltd Manufacture of oxide superconductive thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63245829A (en) * 1987-03-31 1988-10-12 Sumitomo Electric Ind Ltd Manufacture of oxide superconductive thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220312A (en) * 1988-02-29 1989-09-04 Sumitomo Cement Co Ltd Manufacture of superconductive ceramic wire rod
JPH01261204A (en) * 1988-04-11 1989-10-18 Fujikura Ltd Production of oxide based superconductor

Also Published As

Publication number Publication date
JPH07100609B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
JPH02145761A (en) Manufacture of thin superconductor film
JPS63239742A (en) Manufacture for film superconductor
JPH01105416A (en) Manufacture of thin film superconductor
JPH0358488A (en) Planar josephson element and manufacturing method of the same
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
JPH01208327A (en) Production of thin film of superconductor
JPS61194786A (en) Heat treatment method of oxide superconductor thin-film
US5462921A (en) Method of forming Hg-containing oxide superconducting films
JPH01275434A (en) Production of high temperature superconducting oxide film
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
JPS63225599A (en) Preparation of oxide superconductive thin film
EP0333513B1 (en) Oxide superconductor
JP2669052B2 (en) Oxide superconducting thin film and method for producing the same
JPH01208328A (en) Sputtering target and production of superconductor thin film
JP2702711B2 (en) Manufacturing method of thin film superconductor
JPS63236794A (en) Production of superconductive thin film of oxide
JPH01219023A (en) Production of thin superconductor film
JP2564598B2 (en) Oxide superconductor and manufacturing method thereof
JP2555477B2 (en) Superconducting thin film and manufacturing method thereof
JPH05170448A (en) Production of thin ceramic film
JPH07106896B2 (en) Superconductor
JPH0244782A (en) Superconductive element and manufacture thereof
JPS63235462A (en) Formation of thin oxide film with k2nif4-type crystalline structure
JPH0517147A (en) Production of thin compound oxide film containing lead
JPH01252530A (en) Target for sputtering and production of superconducting thin film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term