JPH01275434A - Production of high temperature superconducting oxide film - Google Patents

Production of high temperature superconducting oxide film

Info

Publication number
JPH01275434A
JPH01275434A JP63102922A JP10292288A JPH01275434A JP H01275434 A JPH01275434 A JP H01275434A JP 63102922 A JP63102922 A JP 63102922A JP 10292288 A JP10292288 A JP 10292288A JP H01275434 A JPH01275434 A JP H01275434A
Authority
JP
Japan
Prior art keywords
film
temperature
superconducting
substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63102922A
Other languages
Japanese (ja)
Inventor
Katsuo Fukutomi
福富 勝夫
Yoshiaki Tanaka
田中 吉秋
Toshihisa Asano
浅野 稔久
Hiroshi Maeda
弘 前田
Junichi Machida
町田 順一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
National Research Institute for Metals
Original Assignee
Mitsui Mining and Smelting Co Ltd
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, National Research Institute for Metals filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP63102922A priority Critical patent/JPH01275434A/en
Publication of JPH01275434A publication Critical patent/JPH01275434A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconducting Bi-Sr-Ca-Cu oxide film having such superconducting characteristics as about 100K superconduction transition finishing point with high reproducibility by heating a substrate to half-melt the lower part of a film on the substrate side at least once in the early stage of film formation, cooling the substrate to a prescribed temp. and continuing film formation. CONSTITUTION:When a film of a multiple oxide consisting of Bi, Sr, Ca, Cu and O is formed on the surface of a substrate to produce a superconducting film, the surface of the substrate is kept in a high temp. range, e.g., of 750-850 deg.C, preferably 790-830 deg.C in which the multiple oxide half-melts until a half-molten layer attains to 2,000-5,000Angstrom thickness in the early stage of film formation. The surface of the substrate is then cooled to a temp. range, e.g., of 650-750 deg.C, preferably 700-740 deg.C in which epitaxial growth can be carried out and film formation is continued. The resulting film is annealed at 870-890 deg.C for 10min-2hr in a flow of gaseous oxygen to produce a superconducting film. This film exhibits satisfactory superconducting characteristics in 1:1:2:2-1:1:0.5:0.5, preferably 1:1:1:about 0.5 atomic ratio of Bi:Sr:Ca: Cu.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、ビスマス(Bi)、ストロンチウム(Sr
)、カルシウム(Ca)および銅(Cu)より構成され
た超電導酸化物膜に関し、より詳細には、高温で超電導
特性を示す複合酸化物膜を再現性よく形成することがで
きるB1−5r−Ca−Cu系超電導酸化物膜の製造法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention is applicable to bismuth (Bi), strontium (Sr),
), calcium (Ca), and copper (Cu), more specifically B1-5r-Ca, which can form a composite oxide film that exhibits superconducting properties at high temperatures with good reproducibility. -Regarding a method for manufacturing a Cu-based superconducting oxide film.

[従来の技術] 超電導材料は、臨界温度Tc、臨界磁j:、Hc。[Conventional technology] The superconducting material has a critical temperature Tc and a critical magnetism j:, Hc.

臨界電流Jcの臨界値以下の条件で、電気抵抗がゼロに
なる性質(超電導状態)を示す材料である。
It is a material that exhibits the property of having zero electrical resistance (superconducting state) under conditions where the critical current Jc is below the critical value.

90に程度の温度で超電導性を示す酸化物セラミックス
として、Y−Ba−Cu−0系の複合酸。
Y-Ba-Cu-0-based composite acid is an oxide ceramic that exhibits superconductivity at temperatures of about 90°C.

化物が知られている。さらに、最近では、75〜105
に前後のTcを示す複合酸化物として、B i −8r
−Ca−Cu系超電導セラミックスが発見されている。
monsters are known. Furthermore, recently, 75 to 105
As a composite oxide showing Tc around , B i -8r
-Ca-Cu based superconducting ceramics have been discovered.

このB1−5r−Ca−Cu系は、Y−Ba−Cu−0
系に比べて安定性に優れ、水分などの外部環境に対して
も強い耐性を有する。
This B1-5r-Ca-Cu system is Y-Ba-Cu-0
It has superior stability compared to other systems, and has strong resistance to external environments such as moisture.

これらの酸化物高温超電導膜は、線状、テープ状の超電
導体として、高磁界用超電導マグネット、−超電導電力
貯蔵などの強電分野から、各種のクライオエレクトロニ
クス素子などの弱電機器、さらに、磁気シールド用のシ
ート材料などの広範な分野での利用が期待されているも
のである。
These oxide high-temperature superconducting films are used as linear or tape-shaped superconductors for applications ranging from high-power fields such as high-field superconducting magnets and superconducting power storage, to low-power equipment such as various cryoelectronic devices, and even for magnetic shielding. It is expected that it will be used in a wide range of fields such as sheet materials.

[発明が解決しようとする課題] 優れた特性を示すB1−8r−Ca−Cu系超電導体に
は、超電導遷移終了点(以後、Tendと;己す)が、
105にの高温相と75〜85にの低温相が存在するこ
とが知られている。しかしながら、好ましい高温相を単
一相として得ること、および高温相に単一相比すること
が極めて困難である。また、高温相の体積分率を向上さ
せてnd To  が100に前後の焼結体あるいは薄膜を得るこ
とができる方法が報告されているが(昭和63年3月1
5日付日本工業新聞15面)、その再現性は良好ではな
く、数多くの作製したサンプルのうち極く少数のものの
みが、高温のTendを示しているにすぎない。
[Problem to be solved by the invention] The B1-8r-Ca-Cu-based superconductor exhibiting excellent properties has a superconducting transition end point (hereinafter referred to as "Tend") that is
It is known that there is a high temperature phase at 105 and a low temperature phase at 75-85. However, it is extremely difficult to obtain the preferred high temperature phase as a single phase and to provide a single phase ratio to the high temperature phase. In addition, a method has been reported in which a sintered body or thin film with nd To of around 100 can be obtained by increasing the volume fraction of the high-temperature phase (March 1, 1988).
The reproducibility is not good, and only a very few of the many samples produced show a high temperature Tend.

この発明は上述の背景に基づきなされたものでnd あり、その目的とするところは、T   100K前後
の超電導特性を示すB1−3r−Ca−Cu系超電導酸
化物膜を再現性よ(形成することができる製造方法を提
供することである。
This invention was made based on the above-mentioned background, and its purpose is to reproducibly (form) a B1-3r-Ca-Cu-based superconducting oxide film exhibiting superconducting properties around T 100K. The objective is to provide a manufacturing method that allows for

〔課題を解決するための手段] 上記の課題は、成膜工程の初期に少なくとも一度、基材
側の一部膜を半溶融状態にし、その後に、所定の温度に
降温しその温度域で、更に、膜形成を実施するこの発明
による酸化物高温超電導膜の製造方法により達成される
[Means for Solving the Problem] The above problem is solved by bringing a part of the film on the base material side into a semi-molten state at least once in the initial stage of the film forming process, and then lowering the temperature to a predetermined temperature and, in that temperature range, Furthermore, this is achieved by the method of manufacturing an oxide high temperature superconducting film according to the present invention, which performs film formation.

すなわち、この発明の製造方法は、ビスマス、ストロン
チウム、カルシウムおよび銅より構成された複合酸化物
の膜を基材表面に形成して超電導膜を製造する方法であ
って、 基材表面にその複合酸化物膜を形成する工程の少なくと
初期に、基材表面温度を、基材側の膜の複合酸化物が半
溶融する高温範囲、好ましくは、750℃を超えかつ8
50℃以下の温度範囲に保持し、 次いで、基材表面温度を、エピタキシー成長可能な温度
範囲、好ましくは650℃以上750℃以下の温度範囲
に降温しその温度域で、所望の厚みの膜を得るために必
要な時間保持して膜形成を完了することを特徴とするも
のである。
That is, the manufacturing method of the present invention is a method for manufacturing a superconducting film by forming a film of a composite oxide composed of bismuth, strontium, calcium, and copper on the surface of a base material, the method comprising: At least in the initial stage of the step of forming the film, the surface temperature of the base material is set to a high temperature range where the composite oxide of the film on the base material side is half-molten, preferably exceeding 750°C and 80°C.
The substrate surface temperature is maintained in a temperature range of 50°C or less, and then the substrate surface temperature is lowered to a temperature range that allows epitaxy growth, preferably a temperature range of 650°C or more and 750°C or less, and a film of a desired thickness is formed in that temperature range. The film formation is completed by holding the film for the time required to obtain the film.

この発明の好ましい態様において、膜形成完了後に、そ
の膜を酸素気流中で870〜890℃の温度で10分〜
2時間ア′ニール処理することができる。
In a preferred embodiment of the present invention, after the film formation is completed, the film is heated in an oxygen stream at a temperature of 870 to 890°C for 10 minutes to
Annealing treatment can be performed for 2 hours.

この発明の好ましい態様において、ビスマス、ストロン
チウム、カルシウムおよび銅より構成された複合酸化物
の原子濃度比Bi:Sr:Ca:Cuを、1:1:2:
2から1:1:0.5:0.5の範囲にすることができ
る。
In a preferred embodiment of the present invention, the atomic concentration ratio of Bi:Sr:Ca:Cu of the composite oxide composed of bismuth, strontium, calcium, and copper is 1:1:2:
It can range from 2 to 1:1:0.5:0.5.

以下、この発明をより詳細に説明する。This invention will be explained in more detail below.

複合酸化物膜の形成 この発明の製造法は、ビスマス、ストロンチウム、カル
シウムおよび銅より構成された複合酸化物の膜を基材表
面に形成して超電導膜を製造する方法であって、基材表
面にその膜を形成する工程の少なくとも初期に、基材表
面温度を、基材側の一部膜の複合酸化物が半溶融する温
度範囲に保持される。
Formation of composite oxide film The manufacturing method of the present invention is a method for manufacturing a superconducting film by forming a composite oxide film composed of bismuth, strontium, calcium, and copper on the surface of a base material. At least in the initial stage of the process of forming the film, the surface temperature of the base material is maintained within a temperature range at which the composite oxide in a part of the film on the base material side is semi-molten.

複合酸化物膜の基材上への形成は、種々の方法で実施す
ることができ、原子濃度比が所定値になる膜が得られる
限り、任意の方法を採用することができる。その様な方
法として、例えば、蒸若法、スパッタ法、CVD法、溶
液スプレー法などがあり、適宜選択できる。複合酸化物
膜の膜厚は、目的に応じて適宜変更できるが、例えば、
数千オングストローム(A)から数十μmである。
The composite oxide film can be formed on the base material by various methods, and any method can be used as long as a film having a predetermined atomic concentration ratio can be obtained. Examples of such methods include a steaming method, a sputtering method, a CVD method, and a solution spray method, which can be selected as appropriate. The film thickness of the composite oxide film can be changed as appropriate depending on the purpose, but for example,
It ranges from several thousand angstroms (A) to several tens of μm.

nd 膜の原子濃度比は、例えば、高温のT   相が高い体
積分率で生成されるような良好な超電導特性が得られる
ように選択することができ、好ましいその比は、Bi:
Sr:Ca:Cuの割合で、1:1:2:2〜1:1:
0.5:0.5、より好ましくは、1:1:1:0.5
の近傍である。
The atomic concentration ratio of the nd film can be selected such that good superconducting properties are obtained, for example, the high temperature T phase is generated in a high volume fraction; the preferred ratio is Bi:
The ratio of Sr:Ca:Cu is 1:1:2:2 to 1:1:
0.5:0.5, more preferably 1:1:1:0.5
It is in the vicinity of .

酸化物原料の化合物の種類などは、膜形成法などにより
合目的的に選択することが望ましい。
The type of compound used as the oxide raw material is desirably selected depending on the film formation method and the like.

この発明において用いられる基材は、超電導膜との反応
性が小さくて超電導相を破壊することがなく、その膜と
の密着性が高いものが好ましく、例えば、AI  OB
ed、MgO,ZrO2,23ゝ Y2O3、Ta205などの酸化物セラミックス、Ti
N5ZrN、TiCなどの非酸化物セラミックス、銅、
ニッケル、銀、金、白金などの貴金属、これらを主成分
とする合金などがある。基材表面は、必要に応じて、金
(Au)、白金(Pt)、銀(Ag)などの貴金属もし
くは、チタン(Ti)、ジルコニウム(2「)などの活
性金属の単体あるいは合金の薄膜を基材表面に被覆する
などの処理に付すことができる。基材の形状は、配向結
晶化が可能な実質的に平面を有するものであれば、いず
れの形状でもよいが、長尺物が好ましく、例えば、テー
プ状、線状である。
The base material used in this invention preferably has low reactivity with the superconducting film, does not destroy the superconducting phase, and has high adhesion to the film. For example, AI OB
Oxide ceramics such as ed, MgO, ZrO2, 23ゝY2O3, Ta205, Ti
Non-oxide ceramics such as N5ZrN and TiC, copper,
These include noble metals such as nickel, silver, gold, and platinum, as well as alloys that have these as their main ingredients. The surface of the base material may be coated with a thin film of a noble metal such as gold (Au), platinum (Pt), or silver (Ag) or an active metal such as titanium (Ti) or zirconium (2') or an alloy thereof, as necessary. The base material can be subjected to a treatment such as coating on the surface of the base material.The shape of the base material may be any shape as long as it has a substantially flat surface that allows oriented crystallization, but a long one is preferable. , for example, tape-like or linear.

この発明において、基材表面への膜形成工程の初期に少
なくとも一度、基材表面温度を、基材側の一部膜の複合
酸化物が半溶融する高温領域に保持される。
In this invention, at least once in the initial stage of the step of forming a film on the surface of the substrate, the temperature of the surface of the substrate is maintained in a high temperature region where the composite oxide of a part of the film on the substrate side is semi-molten.

この発明において、高温領域の基材表面温度は、酸化物
組成、所望の特性、基材の種類などに応じて適宜選択さ
れるが、少なくとも複合酸化物が半溶融状態になる温度
である。例えば、750℃を超えかつ850℃以下、好
ましくは、790℃〜830℃である。
In this invention, the base material surface temperature in the high temperature region is appropriately selected depending on the oxide composition, desired characteristics, type of base material, etc., but is at least a temperature at which the composite oxide is in a semi-molten state. For example, the temperature is higher than 750°C and lower than 850°C, preferably 790°C to 830°C.

この発明における基材表面温度を高温領域とする時期は
、膜形成工程の初期である。ここで「初期」とは、相対
的であり、高温領域の時間、回数などは適宜選択変更す
ることができる。例えば、膜形成工程の最初は、低温で
あり、次いで高温にして初期高温処理を実施することが
でき、また、最初から高温にして初期高温処理を実施す
名ことができ、さらに、高温と低温とを繰り返して初期
高温処理を実施することができる。高温領域の保持時間
は、成膜速度により異なるが、好ましくは、半溶融層の
厚みが2000〜5000オングストロームになるまで
の時間である。
In this invention, the base material surface temperature is set in the high temperature range at the beginning of the film forming process. Here, "initial" is relative, and the time, number of times, etc. of the high temperature region can be selected and changed as appropriate. For example, at the beginning of the film formation process, the temperature is low and then the temperature is raised to perform an initial high temperature treatment, or the temperature can be raised from the beginning to perform an initial high temperature treatment, and furthermore, the temperature is high and then the temperature is low. The initial high temperature treatment can be carried out by repeating the above steps. The holding time in the high temperature region varies depending on the film formation rate, but is preferably the time until the thickness of the semi-molten layer reaches 2000 to 5000 angstroms.

初期高温処理後に、この発明の製造法において、基材表
面温度を、エピタキシー成長可能な温度範囲、好ましく
は650℃以上750℃以下の温度範囲に降温しその温
度域で、所望の厚みの膜を得るために必要な時間保持し
て膜形成を完了する。
After the initial high temperature treatment, in the manufacturing method of the present invention, the surface temperature of the substrate is lowered to a temperature range that allows epitaxy growth, preferably a temperature range of 650°C to 750°C, and a film of a desired thickness is formed in that temperature range. Hold for the required time to complete film formation.

この発明において、低温領域の基材表面温度は、酸化物
組成、所望の特性、基材の種類などに応じて適宜選択さ
れる。例えば、650℃〜750℃以下、好ましくは、
700℃〜740℃である。
In this invention, the substrate surface temperature in the low temperature region is appropriately selected depending on the oxide composition, desired characteristics, type of substrate, etc. For example, 650°C to 750°C or less, preferably,
The temperature is 700°C to 740°C.

この発明における基材表面温度を低温領域にする時期は
、初期高温処理後である。低温領域であれば、その温度
範囲内での変動は許容される。
In this invention, the time when the substrate surface temperature is brought into the low temperature range is after the initial high temperature treatment. As long as the temperature is in a low temperature range, fluctuations within that temperature range are allowed.

低温領域の保持時間は、成膜速度により異なり、所定の
厚みの膜が形成されるまでの時間である。
The holding time in the low temperature region varies depending on the film formation rate, and is the time required to form a film of a predetermined thickness.

必要に応じて、基材上へ形成された複合酸化物膜は、次
いで熱処理される。この態様において熱処理により、よ
り安定化されかつより高いnd Tc 、を得ることができる。
If necessary, the composite oxide film formed on the base material is then heat treated. In this embodiment, heat treatment can provide a more stabilized and higher nd Tc.

膜の熱処理条件について、良好な超電導特性が得られる
ように、前処理、加熱速度、加熱温度、加熱雰囲気、加
熱時間、冷却速度などが選択される。好ましい熱処理は
、膜形成完了後に、その膜を酸素気流中で870〜89
0℃の温度で10分〜2時間アニール処理することであ
る。酸素以外に窒素ガス、ヘリウム、アルゴンなどの不
活性ガスを加えることもできる。
Regarding the heat treatment conditions for the film, pretreatment, heating rate, heating temperature, heating atmosphere, heating time, cooling rate, etc. are selected so as to obtain good superconducting properties. A preferred heat treatment is to heat the film to 870 to 899 °C in an oxygen stream after film formation is complete.
The annealing treatment is performed at a temperature of 0° C. for 10 minutes to 2 hours. In addition to oxygen, an inert gas such as nitrogen gas, helium, or argon can also be added.

この発明により得られる酸化物高温超電導膜は、良好な
超電導性を示し、種々の超電導材料とじて利用すること
ができる。
The oxide high temperature superconducting film obtained by this invention exhibits good superconductivity and can be used as various superconducting materials.

[作 用] 上記のように構成されたこの発明の高温超電導膜の製造
法のメカニズムを、この発明のより良い理解のために説
明する。従って、以下は、この発明の範囲を限定するも
のではない。
[Function] The mechanism of the method for manufacturing the high temperature superconducting film of the present invention configured as described above will be explained for a better understanding of the present invention. Accordingly, the following is not intended to limit the scope of the invention.

この発明の方法においては、膜形成工程の初期に、基材
表面温度が、複合酸化物が半溶融する高温度領域に保持
される。この様に高温域に昇温保持されることにより、
基材表面近傍の膜では、Cu濃度が低く、原子濃度比B
i:Sr:Caが、1:1:1に近い組成を有し、半透
明の半溶融状態の層が形成される。
In the method of this invention, at the beginning of the film forming process, the substrate surface temperature is maintained in a high temperature range where the composite oxide is semi-molten. By raising and maintaining the temperature in the high temperature range in this way,
In the film near the base material surface, the Cu concentration is low and the atomic concentration ratio B
i:Sr:Ca has a composition close to 1:1:1, and a translucent, semi-molten layer is formed.

この半溶融層が、更に上層の酸化物の結晶化における核
(もしくは、種)となって、超電導特性にとって好まし
い酸化物膜が、高温保持後の低温域に降温保持されるこ
とにより、エピタキシー成長的に形成される。すなわち
、B1−5r−Ca−Cu系超電導酸化物の結晶は、C
軸に比べてa1b軸が短い正方晶系であると考えられ、
半溶融層が核となったエピタキシー成長により、膜内の
複合酸化物結晶がC軸配向し、その結晶軸のC軸が基材
平面に実質的に垂直になると考えられるからである。エ
ピタキシー成長的に形成された膜内では、原子がa−b
軸面に平行、換言すれば、C軸に垂直に配列し、電流は
a−b軸面に平行、(C軸に垂直)に流れると考えられ
、こえは、超電導特性にとって好ましい。
This semi-molten layer becomes a nucleus (or seed) for the crystallization of the upper oxide layer, and the oxide film, which is favorable for superconducting properties, is kept at a low temperature after being kept at a high temperature, resulting in epitaxial growth. is formed. That is, the crystal of B1-5r-Ca-Cu-based superconducting oxide is C
It is thought to be a tetragonal system where the a1b axis is shorter than the a1b axis,
This is because it is thought that due to epitaxial growth with the semi-molten layer serving as a nucleus, the composite oxide crystal within the film is C-axis oriented, and the C-axis of the crystal axis is substantially perpendicular to the plane of the base material. In a film formed by epitaxial growth, atoms are a-b
It is considered that the current flows parallel to the a-b axis plane (perpendicular to the C axis), which is favorable for superconducting properties.

[発明の効果] この発明により次の効果を得ることができる。[Effect of the invention] The following effects can be obtained by this invention.

(イ) この請求項1記載の製造法により、nd T、   100K前後の超電導特性を示し、C軸  
 −配向性、緻密性、平面平滑性に優れたB1−5r−
Ca−Cu系超電導酸化物膜を再現性よく形成すること
ができ、更に、大きな臨界電流JcをHする超電導酸化
物膜を期待することができる。
(a) By the manufacturing method according to claim 1, nd T, exhibiting superconducting properties around 100K, and C axis
-B1-5r with excellent orientation, density, and plane smoothness-
A Ca-Cu-based superconducting oxide film can be formed with good reproducibility, and furthermore, a superconducting oxide film having a large critical current Jc can be expected.

(ロ) この請求項2記載の製造法では、熱処理nd により、より安定化されかつより高いT   を得るこ
とができる。
(b) In the manufacturing method according to claim 2, by the heat treatment nd it is possible to obtain a more stable and higher T2.

(ハ) この請求項3記載の製造法では、より確実に半
溶融状態の層を形成することができ、この半溶融層が、
更に上層の酸化物の結晶化における核(もしくは、種)
となって、超電導特性にとって好ましい酸化物膜を形成
させることができる。
(c) In the manufacturing method according to claim 3, it is possible to more reliably form a layer in a semi-molten state, and this semi-molten layer is
Nuclei (or seeds) in the crystallization of the upper oxide layer
As a result, an oxide film preferable for superconducting properties can be formed.

(ニ) 請求項4記載の製造法では、より確実にエピタ
キシー成長を促進して、複合酸化物結晶をC軸配向させ
、超電導特性にとって好ましい酸化物膜とすることがで
きる。
(d) In the manufacturing method according to claim 4, epitaxial growth can be more reliably promoted and the composite oxide crystal can be oriented along the C axis, resulting in an oxide film that is favorable for superconducting properties.

(ホ) 請求項5記載の製造法により、組成が最nd 適化され、T   が110Kに近い超電導体を得るこ
とが可能になる。
(E) By the manufacturing method according to claim 5, it is possible to obtain a superconductor whose composition is most optimized and whose T is close to 110K.

(へ) 請求項6記載の製造法により、界面エネルギー
を低くすることができる。従って、半溶融層が基板によ
く濡れ均一に拡がるため、平滑な超電導膜を得ることが
できる。更に、基材と半溶融層間の好ましからざる界面
反応を抑制することができる。
(F) By the manufacturing method according to claim 6, the interfacial energy can be lowered. Therefore, since the semi-molten layer wets the substrate well and spreads uniformly, a smooth superconducting film can be obtained. Furthermore, undesirable interfacial reactions between the base material and the semi-molten layer can be suppressed.

[実施例] この発明を実施例により具体的に説明するが、この発明
はこの例に限定されるものではない。
[Example] This invention will be specifically explained with reference to Examples, but the invention is not limited to these Examples.

実施例1 マグネトロンスパッタを使用し、組成りi二Sr:Ca
:Cu−1,3:1:1:1.5の焼結ターゲットをA
「ガスでスパッタし、(100)MgO単結晶基板上に
成膜した。スパッタガス圧力は、3 X 10 ’To
rrであった。
Example 1 Using magnetron sputtering, composition i2 Sr:Ca
:Cu-1,3:1:1:1.5 sintered target A
A film was formed on a (100) MgO single crystal substrate by sputtering with gas.The sputtering gas pressure was 3 x 10'To
It was rr.

成膜開始30分間は、基板温度を740℃に保持し、3
0分経過後に800℃に昇温し、半溶融状態の層を形成
保持した。その後、再度、降温して740℃に保持し1
時間で成膜を完了した。得られた膜厚は、約2μmであ
り、この膜は、このnd 状態で7   70にの超電導特性を示した。
For 30 minutes after starting film formation, the substrate temperature was maintained at 740°C.
After 0 minutes, the temperature was raised to 800°C, and a semi-molten layer was formed and maintained. After that, the temperature was lowered again and kept at 740℃ for 1
Film formation was completed within hours. The obtained film thickness was about 2 μm, and the film exhibited superconducting properties of 770 in this nd state.

得られた酸化膜を、酸素気流中、875℃で30分間ア
ニーリング処理を施した。得られた酸化物膜の温度Tと
電気抵抗率Rとの関係を示すグラフを第1図に示す。こ
の図より、アニーリングnd 処理後の酸化膜は、T    100Kの高温超電4特
性を有することがわかる。
The obtained oxide film was annealed at 875° C. for 30 minutes in an oxygen stream. A graph showing the relationship between the temperature T and the electrical resistivity R of the obtained oxide film is shown in FIG. From this figure, it can be seen that the oxide film after the annealing nd treatment has high-temperature superelectric 4 characteristics of T 100K.

この高温超電導膜は、黒色であり、X線回折分析、およ
び走査型電子顕微鏡観察の結果、著しくC軸に配向し、
緻密かつ平面平滑性に優れたものであった。
This high-temperature superconducting film is black in color, and as a result of X-ray diffraction analysis and scanning electron microscopy observation, it is significantly oriented along the C-axis.
It was dense and had excellent planar smoothness.

実施例2 高温域に保持する時期を、成膜開始と同時にし、開始後
30分間初期高温保持を行ったこと以外、実施例1と同
様に実施した。
Example 2 The same procedure as in Example 1 was carried out, except that the high temperature range was held at the same time as the start of film formation, and the initial high temperature was held for 30 minutes after the start.

nd 得られた超電導膜は、T    LOOKの高温超電導
特性を示し、かつ著しくC軸に配向し、緻密、平面平滑
性に優れたものであった。
nd The obtained superconducting film exhibited T LOOK high temperature superconducting properties, was significantly oriented along the C axis, and was dense and excellent in planar smoothness.

実施例3 Mg0単結晶基材に金(Au)を約300オングストロ
ーム蒸着したこと以外、実施例1と同様に実施した。得
られたH4電膜は、広い面積にわnd たり平滑性に極めて優れ、T    103にの高温超
電動特性を示していることがわかった。
Example 3 The same procedure as in Example 1 was carried out except that about 300 angstroms of gold (Au) was deposited on the Mg0 single crystal substrate. It was found that the obtained H4 electrical film had extremely excellent smoothness over a wide area and exhibited high-temperature superelectric properties comparable to T103.

比較例 初期高温保持を行墳フなかったこと以外、実施例1と同
様に実施した。
Comparative Example The same procedure as in Example 1 was carried out except that the initial high temperature was not maintained.

得られた酸化物膜の温度Tと電気抵抗率Rとの関係を示
すグラフを第1図に示す。この図より、nd 得られた超電導膜は、T    63にの低温超電導特
性を示すに過ぎなかった。
A graph showing the relationship between the temperature T and the electrical resistivity R of the obtained oxide film is shown in FIG. From this figure, the superconducting film obtained at nd only showed the low-temperature superconducting properties of T63.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1および比較例で得られた酸化物膜の
温度Tと電気抵抗率Rとの関係を示すグラフである。 出願人代理人  佐  藤  −雄
FIG. 1 is a graph showing the relationship between temperature T and electrical resistivity R of the oxide films obtained in Example 1 and Comparative Example. Applicant's agent Mr. Sato

Claims (1)

【特許請求の範囲】 1、ビスマス、ストロンチウム、カルシウムおよび銅よ
り構成された複合酸化物の膜を基材表面に形成して超電
導膜を製造する方法であって、基材表面に該膜を形成す
る工程の初期に、基材表面温度を、基材側の膜の複合酸
化物が半溶融する高温度領域に保持し、次いで、基材表
面温度を、エピタキシー成長可能な温度範囲に降温しそ
の温度域で、所望の厚みの膜を得るために必要な時間保
持して膜形成を完了することを特徴とする酸化物高温超
電導膜の製造法。 2、膜形成完了後に、該膜を酸素気流中で 870〜890℃の温度で10分〜2時間アニール処理
する請求項1記載の製造法。 3、初期の基材表面温度を、750℃を超えかつ850
℃以下の温度範囲に維持する請求項1記載の製造法。 4、降温された基材表面温度を、650℃以上750℃
以下の温度範囲に維持する請求項1記載の製造法。 5、ビスマス、ストロンチウム、カルシウムおよび銅よ
り構成された複合酸化物の原子濃度比Bi:Sr:Ca
:Cuが、1:1:2:2〜1:1:0.5:0.5で
ある請求項1記載の製造法。 6、基材表面に、予め貴金属または活性金属の単体もし
くは合金の薄膜が設けられた請求項1記載の製造法。
[Claims] 1. A method for manufacturing a superconducting film by forming a film of a composite oxide composed of bismuth, strontium, calcium, and copper on the surface of a base material, the method comprising forming the film on the surface of the base material. At the beginning of the process, the substrate surface temperature is maintained in a high temperature range where the composite oxide of the film on the substrate side is semi-molten, and then the substrate surface temperature is lowered to a temperature range that allows epitaxial growth. A method for producing an oxide high-temperature superconducting film, which comprises holding the film in a temperature range for a time necessary to obtain a film of a desired thickness to complete film formation. 2. The manufacturing method according to claim 1, wherein after the film formation is completed, the film is annealed in an oxygen stream at a temperature of 870 to 890°C for 10 minutes to 2 hours. 3. The initial substrate surface temperature exceeds 750°C and 850°C.
2. The method according to claim 1, wherein the temperature is maintained at a temperature below .degree. 4. Reduce the surface temperature of the base material from 650°C to 750°C.
The manufacturing method according to claim 1, wherein the temperature is maintained in the following temperature range. 5. Atomic concentration ratio Bi:Sr:Ca of composite oxide composed of bismuth, strontium, calcium and copper
The manufacturing method according to claim 1, wherein: Cu is 1:1:2:2 to 1:1:0.5:0.5. 6. The manufacturing method according to claim 1, wherein a thin film of a single noble metal or an active metal or an alloy is provided on the surface of the substrate in advance.
JP63102922A 1988-04-26 1988-04-26 Production of high temperature superconducting oxide film Pending JPH01275434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63102922A JPH01275434A (en) 1988-04-26 1988-04-26 Production of high temperature superconducting oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63102922A JPH01275434A (en) 1988-04-26 1988-04-26 Production of high temperature superconducting oxide film

Publications (1)

Publication Number Publication Date
JPH01275434A true JPH01275434A (en) 1989-11-06

Family

ID=14340347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63102922A Pending JPH01275434A (en) 1988-04-26 1988-04-26 Production of high temperature superconducting oxide film

Country Status (1)

Country Link
JP (1) JPH01275434A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238313A (en) * 1988-07-28 1990-02-07 Matsushita Electric Ind Co Ltd Production of thin film superconductor
JPH054897A (en) * 1991-06-24 1993-01-14 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Bi-sr-ca-cu-o-based superconductor film and production thereof
JPH05254995A (en) * 1992-03-06 1993-10-05 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Multilayer film consisting of superconducting layer of bisrcacuo system and bismuth oxide insulating layer and its production
US5635456A (en) * 1993-04-01 1997-06-03 American Superconductor Corporation Processing for Bi/Sr/Ca/Cu/O-2223 superconductors
US6194352B1 (en) 1994-01-28 2001-02-27 American Superconductor Corporation Multifilament composite BSCCO oxide superconductor
US6284712B1 (en) 1993-04-01 2001-09-04 Alexander Otto Processing of oxide superconductors

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238313A (en) * 1988-07-28 1990-02-07 Matsushita Electric Ind Co Ltd Production of thin film superconductor
JPH054897A (en) * 1991-06-24 1993-01-14 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Bi-sr-ca-cu-o-based superconductor film and production thereof
JPH05254995A (en) * 1992-03-06 1993-10-05 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Multilayer film consisting of superconducting layer of bisrcacuo system and bismuth oxide insulating layer and its production
US5635456A (en) * 1993-04-01 1997-06-03 American Superconductor Corporation Processing for Bi/Sr/Ca/Cu/O-2223 superconductors
US6284712B1 (en) 1993-04-01 2001-09-04 Alexander Otto Processing of oxide superconductors
US6436876B1 (en) 1993-04-01 2002-08-20 American Superconductor Corporation Processing of oxide superconductors
US6194352B1 (en) 1994-01-28 2001-02-27 American Superconductor Corporation Multifilament composite BSCCO oxide superconductor

Similar Documents

Publication Publication Date Title
JP3587956B2 (en) Oxide superconducting wire and its manufacturing method
KR100418279B1 (en) Structures Having Enhanced Biaxial Texture and Method of Fabricating Same
US5527765A (en) Superconducting YBa2 Cu3 O7-x produced at low temperatures
EP1388899A2 (en) Oxide superconducting wire
JP4316070B2 (en) High strength oriented polycrystalline metal substrate and oxide superconducting wire
JP4694965B2 (en) Method for producing metal substrate for oxide superconducting wire and method for producing oxide superconducting wire
JPH01275434A (en) Production of high temperature superconducting oxide film
JPS62170108A (en) Super conductor containing nb, si and al and oxide thereof having transition temperature 77k or more
JPH01252533A (en) Laminate of superconducting ceramics and production thereof
JPH01261204A (en) Production of oxide based superconductor
JPH04179004A (en) Oxide superconductive tape conductor
JPH02162616A (en) Manufacture of oxide high-temperature superconducting film
JPS63306677A (en) Superconducting device and manufacture thereof
JP2840475B2 (en) Method for producing oxide superconducting thin film
JPH03112810A (en) Production of oxide superconducting film
JPH01105416A (en) Manufacture of thin film superconductor
JPH0829938B2 (en) Composite oxide superconducting thin film and method for producing the same
Feenstra et al. Method for making high-critical-current-density YBa 2 Cu 3 O 7 superconducting layers on metallic substrates
JPH01126206A (en) Superconducting thin film
Bindi et al. Deposition and characterization of YBCO/CeO/sub 2/thin films prepared by thermal co-evaporation on metallic tapes
JPH01176216A (en) Production of superconducting thin film of compound oxide
JPS63285157A (en) Production of superconductor
Wen Direct Deposition of C-axis Textured High-Tc YBCO Superconducting Thick Films Unoriented Metallic Substrates
JPH0195418A (en) Formation of superconducting thin film
JPH04149008A (en) Production of superconducting material