JPH01252533A - Laminate of superconducting ceramics and production thereof - Google Patents

Laminate of superconducting ceramics and production thereof

Info

Publication number
JPH01252533A
JPH01252533A JP63080020A JP8002088A JPH01252533A JP H01252533 A JPH01252533 A JP H01252533A JP 63080020 A JP63080020 A JP 63080020A JP 8002088 A JP8002088 A JP 8002088A JP H01252533 A JPH01252533 A JP H01252533A
Authority
JP
Japan
Prior art keywords
film
composite oxide
base material
laminate
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63080020A
Other languages
Japanese (ja)
Other versions
JP2649242B2 (en
Inventor
Kazutomo Hoshino
和友 星野
Shigeru Yamazaki
茂 山崎
Hidefusa Takahara
高原 秀房
Katsuo Fukutomi
福富 勝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
National Research Institute for Metals
Original Assignee
Mitsui Mining and Smelting Co Ltd
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, National Research Institute for Metals filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP63080020A priority Critical patent/JP2649242B2/en
Priority to DE8989303174T priority patent/DE68904588T2/en
Priority to EP89303174A priority patent/EP0339801B1/en
Publication of JPH01252533A publication Critical patent/JPH01252533A/en
Priority to US07/647,216 priority patent/US5096878A/en
Application granted granted Critical
Publication of JP2649242B2 publication Critical patent/JP2649242B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Laminated Bodies (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To easily improve the critical current density of a Bi-Sr-Ca-Cu compound oxide formed on a metallic substrate, by heat-treating thick film of the compound oxide to effect the orientation of the crystal axis in a specific manner. CONSTITUTION:A thick film of a compound oxide composed of Bi, Sr, Ca and Cu is formed on a flat surface of a metallic substrate such as a tape. The thick film is heat-treated to crystallize the oxide in a state to orient the c-axis of the crystal essentially perpendicular to the surface of the substrate. The substrate is preferably silver, copper, gold, platinum or nickel. The heat- treatment of the film is preferably carried out by heating the film at 860-900 deg.C to melt a part or total of the film and slowly cooling the molten film.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、ビスマス(Bi)、ストロンチウム(S 
r) 、カルシウム(c a)および銅(Cu)より構
成された超電導セラミックス積層体に関し、より詳細に
は、配向した複合酸化物結晶の膜が形成されたB i−
3r−Ca−Cu系超電導セラミックス積層体積層体お
よびその製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides bismuth (Bi), strontium (S
r), a superconducting ceramic laminate composed of calcium (ca) and copper (Cu), and more specifically, B i- in which a film of oriented composite oxide crystals is formed.
The present invention relates to a 3r-Ca-Cu based superconducting ceramic laminate and a method for manufacturing the same.

[従来の技術] 超電導材料は、臨界温度Tc、臨界磁場Hc。[Conventional technology] A superconducting material has a critical temperature Tc and a critical magnetic field Hc.

臨界電流密度Jcの臨界値以下の条件で、電気抵抗がゼ
ロになる性質(超電導状態)を示す材料である。
It is a material that exhibits a property in which electrical resistance becomes zero (superconducting state) under conditions where the critical current density Jc is equal to or less than the critical value.

90に程度の温度で超電導性を示す酸化物セラミックス
として、Y−Ba−Cu−0系の複合酸化物セラミック
スが知られている。さらに、最近では、80〜100に
のTcを示す複合酸化物として、B1−8r−Ca−C
u系超電導セラミックスが発見されている。このB1−
8r−Ca−Cu系は、Y−Ba−Cu−0系に比べて
安定性に優れ、水分などの外部環境に対しても強い耐性
を有する。
Y-Ba-Cu-0-based composite oxide ceramics are known as oxide ceramics that exhibit superconductivity at temperatures of about 90°C. Furthermore, recently, B1-8r-Ca-C
U-based superconducting ceramics have been discovered. This B1-
The 8r-Ca-Cu system has superior stability compared to the Y-Ba-Cu-0 system, and has strong resistance to external environments such as moisture.

通常、これらの複合酸化物セラミックスは、セラミック
ス原料粉末の成形物を、常圧焼結、加圧焼結、雰囲気焼
結などにより焼結して得られる。
Usually, these composite oxide ceramics are obtained by sintering a molded product of ceramic raw material powder by normal pressure sintering, pressure sintering, atmosphere sintering, or the like.

線材化、テープ化およびコイル化されて従来から実用化
されている超電導材料としては、Nb−Ti合金やN 
b a S n合金が知られているが、これらの材料で
は、液体ヘリウム温度まで冷却する必要があり、冷却の
ために多額の費用がかかる。
Superconducting materials that have been put into practical use in the form of wires, tapes, and coils include Nb-Ti alloys and Nb-Ti alloys.
b a S n alloys are known, but these materials require cooling to liquid helium temperatures, which is expensive.

゛ 従って、臨界温度が高い複合酸化物からなる高温超
電導体を用いた線材、テープおよびコイルの実用化のた
めの種々の提案がなされている。
Therefore, various proposals have been made for the practical application of wires, tapes, and coils using high-temperature superconductors made of composite oxides with high critical temperatures.

[発明が解決しようとする課題] 超電導体を実用化するためは、超電導体を線材化、テー
プ化およびコイル化すると共に、大きな臨界電流密度J
cを有する導体でなくてはならない。B i−8r−C
a−Cu系超電導セラミックスの結晶構造は、確立され
ていないが、提案されているものの特徴は、結晶軸のう
ち著しくa軸が長く、a軸やb軸の長さの5倍以上であ
り、各原子がab而に層状に配列していることである。
[Problem to be solved by the invention] In order to put a superconductor into practical use, it is necessary to make the superconductor into wires, tapes, and coils, and to increase the critical current density J.
It must be a conductor with c. B i-8r-C
The crystal structure of a-Cu-based superconducting ceramics has not been established, but the characteristics of the proposed one are that among the crystal axes, the a-axis is extremely long, more than five times the length of the a-axis and the b-axis. The atoms are arranged in a layered manner.

従って、超電導状態では、ab面(a軸に垂直方向)に
添って電子が移動し、C軸方向に移動し難い結晶構造に
なっていると考えられる。
Therefore, in the superconducting state, it is considered that the crystal structure is such that electrons move along the a-b plane (perpendicular to the a-axis) and are difficult to move in the c-axis direction.

従来の高温超電導セラミックスを用いた線材、テープお
よびコイルでは、このような結晶構造を考慮したものが
少なく、線材、テープおよびコイルの長手方向に大きな
電流を流す方策を講じていないものは、実用的に大きな
臨界電流密度が得られない。
Few conventional wires, tapes, and coils using high-temperature superconducting ceramics take such crystal structures into consideration, and wires, tapes, and coils that do not take measures to flow a large current in the longitudinal direction are not practical. A large critical current density cannot be obtained.

線材、テープおよびコイルの長手方向に大きな電流を流
して実用的に大きな臨界電流密度を得るために、上述の
ように結晶を配向させる方法として、蒸着法、スパッタ
法、CVD法などの気相法が提案されている。しかしな
がら、これらの方法は、膜の形成速度が小さく製造工程
が複雑でかつ製造コストが極めて高く、−殻内には線材
、テープなどへの長尺化が困難である。
In order to obtain a practically large critical current density by passing a large current in the longitudinal direction of wires, tapes, and coils, vapor phase methods such as vapor deposition, sputtering, and CVD are used to orient crystals as described above. is proposed. However, these methods have a slow film formation rate, a complicated manufacturing process, and an extremely high manufacturing cost, and - it is difficult to make the film into a long wire, tape, etc. inside the shell.

この発明は上述の背景に基づきなされたものであり、そ
の目的とするところは、線材、テープの長手方向に大き
な電流を流すことができ実用的に大きな臨界電流密度を
示す超電導セラミックス積層体並びに、良好な結晶配向
性を有する超電導セラミックス積層体を簡易にかつ廉価
に製造する方法を提供することである。
This invention was made based on the above-mentioned background, and its purpose is to provide a superconducting ceramic laminate that can flow a large current in the longitudinal direction of a wire or tape and exhibits a practically large critical current density; An object of the present invention is to provide a method for easily and inexpensively manufacturing a superconducting ceramic laminate having good crystal orientation.

[課題を解決するための手段] 上記の課題は、この発明による超電導セラミックス積層
体およびその製造法により達成される。
[Means for Solving the Problems] The above problems are achieved by a superconducting ceramic laminate and a method for manufacturing the same according to the present invention.

すなわち、この発明による超電導セラミックス積層体の
製造法は、ビスマス、ストロンチウム、カルシウムおよ
び銅より構成された複合酸化物の厚膜をテープ状などの
金属基材平面に形成し、形成された膜を熱処理して複合
酸化物結晶のC結晶軸が基材平面に実質的に垂直になる
ように配向結晶化させることを特徴とするものである。
That is, the method for producing a superconducting ceramic laminate according to the present invention involves forming a thick film of a composite oxide composed of bismuth, strontium, calcium, and copper on a flat metal substrate such as a tape, and heat-treating the formed film. The method is characterized by oriented crystallization such that the C crystal axis of the composite oxide crystal is substantially perpendicular to the plane of the base material.

この発明の好ましい態様において、基材は、銀、銅、金
、白金、ニッケルからなるものとすることができる。
In a preferred embodiment of this invention, the substrate may be made of silver, copper, gold, platinum, or nickel.

更に、この発明の好ましい態様において、膜の熱処理を
、860〜900℃の温度に加熱して膜の一部または全
部を溶融し、その後に徐冷して行うことができる。
Furthermore, in a preferred embodiment of the present invention, the film can be heat-treated by heating the film to a temperature of 860 to 900°C to melt part or all of the film, and then slowly cooling the film.

この発明の超電導セラミックス積層体は、ビスマス、ス
トロンチウム、カルシウムおよび銅より構成された複合
酸化物セラミックス膜がテープ状などの金属基材平面に
形成された積層体であって、膜内の複合酸化物結晶が配
向してC結晶軸が基材平面に実質的に垂直であることを
特徴とするものである。
The superconducting ceramic laminate of the present invention is a laminate in which a composite oxide ceramic film composed of bismuth, strontium, calcium, and copper is formed on a flat metal base material such as a tape, and the composite oxide in the film is It is characterized in that the crystals are oriented and the C crystal axis is substantially perpendicular to the plane of the substrate.

以下、この発明をより詳細に説明する。This invention will be explained in more detail below.

複合酸化物膜の形成 複合酸化物厚膜の基材上への形成は、種々の方法で実施
することができ、例えば、スクリーン印刷法、ドクター
ブレード法、溶液塗布法などがあり、適宜選択できる。
Formation of a composite oxide film A thick composite oxide film can be formed on a base material by various methods, such as a screen printing method, a doctor blade method, a solution coating method, etc., which can be selected as appropriate. .

複合酸化物膜の膜厚は、目的に応じて適宜変更できるが
、例えば、数μmから数百μmである。
The thickness of the composite oxide film can be changed as appropriate depending on the purpose, and is, for example, from several μm to several hundred μm.

セラミックス原料の化合物の種類などは、膜形成法など
により合目的的に選択することが望ましい。
It is desirable that the type of compound of the ceramic raw material be selected appropriately depending on the film formation method and the like.

通常、セラミックス原料粉末を得る方法には、例えば、
セラミックスの構成成分の各化合物粉末を混合しこれを
か焼する乾式法が、また、目的とするセラミックス構成
成分を含む混合液を調製し、これにシュウ酸や炭酸カリ
ウムなどの沈澱形成剤を一段階または多段階的に添加さ
せて共同沈澱物を得、これを乾燥・か焼する湿式法があ
る。
Usually, the method for obtaining ceramic raw material powder includes, for example,
There is also a dry method in which powders of each compound of the ceramic components are mixed and calcined.Also, a mixed solution containing the desired ceramic components is prepared and a precipitate forming agent such as oxalic acid or potassium carbonate is added to this. There is a wet method in which co-precipitates are obtained by adding in stages or in multiple stages, and this is dried and calcined.

この発明において、複合酸化物厚膜は、金属基材平面に
形成される。金属基材の形状は、配向結晶化が可能な実
質的に平面を有するものであれば、いずれの形状でもよ
いが、長尺物が好ましく、例えば、テープ状、線状であ
り、特にテープ状が好ましい。
In this invention, a complex oxide thick film is formed on a flat surface of a metal substrate. The shape of the metal base material may be any shape as long as it has a substantially flat surface that allows for oriented crystallization, but elongated materials are preferable, such as tape-like or linear shapes, particularly tape-like shapes. is preferred.

この発明において用いられる基材は、銀、銅、金、白金
などの貴金属、ニッケルからなり、特に銀が好ましい。
The base material used in this invention is made of noble metals such as silver, copper, gold, and platinum, and nickel, with silver being particularly preferred.

これは、銀が超電導セラミックス膜との反応性が小さく
超電導相を破壊することがなく、その膜との密性性が高
いからである。基材表面は、必要に応じて適宜前処理に
付される。
This is because silver has low reactivity with the superconducting ceramic film, does not destroy the superconducting phase, and has high density with the film. The surface of the base material is subjected to appropriate pretreatment as necessary.

膜形成法のうち、スクリーン印刷法で行う場合、複合酸
化物のペーストを調製して基材面に塗布する。
Among the film forming methods, when screen printing is used, a composite oxide paste is prepared and applied to the base material surface.

ここで、ペーストは、通常の手法で得た複合酸化物粉末
を、アクリル系樹脂などのバインダーと混練し、ペース
トの粘度を調整するために更に溶剤、可塑剤などを添加
して調製することができる。
Here, the paste can be prepared by kneading the composite oxide powder obtained by a conventional method with a binder such as an acrylic resin, and further adding a solvent, a plasticizer, etc. to adjust the viscosity of the paste. can.

この発明における超電導酸化物セラミックス中に、その
焼結性や超電導性を制御するために、微量の成分を添加
することができる。そのような成分元素として、Ti、
SnSMn5Al、Cs。
In order to control the sinterability and superconductivity of the superconducting oxide ceramic in this invention, trace amounts of components can be added. Such component elements include Ti,
SnSMn5Al, Cs.

Ce5V、Bi、Fe、Cr、N i+  I r s
 Rh sGaがあり、添加するそれらの化合物として
は、その水酸化物、オキシ塩化物、炭酸塩、炭酸水素塩
、オキシ硝酸塩、硫酸塩、亜硫酸塩、硝酸塩、酢酸塩、
ギ酸塩、シュウ酸塩、塩化物、およびフッ化物などがあ
る。この微量成分の添加は、原料中に含めて、または、
か焼した複合酸化物粉末中に含めて行うことができる。
Ce5V, Bi, Fe, Cr, N i+ I r s
Rh sGa, and the compounds to be added include its hydroxide, oxychloride, carbonate, bicarbonate, oxynitrate, sulfate, sulfite, nitrate, acetate,
These include formates, oxalates, chlorides, and fluorides. The addition of this trace component can be done by including it in the raw material or
It can be carried out by including it in the calcined composite oxide powder.

膜の熱処理 基材上へ形成された複合酸化物膜は、次いで、熱処理さ
れる。この発明において熱処理により、複合酸化物結晶
のC結晶軸が基材平面に実質的に垂直に配向する。
Heat Treatment of Membrane The composite oxide film formed on the substrate is then heat treated. In this invention, the C crystal axis of the composite oxide crystal is oriented substantially perpendicular to the plane of the base material by the heat treatment.

膜の熱処理条件について、上記のC軸配向膜が形成され
るように、前処理、加熱速度、加熱温度、加熱雰囲気、
加熱時間、冷却速度などが選択される。
Regarding the heat treatment conditions for the film, pretreatment, heating rate, heating temperature, heating atmosphere,
Heating time, cooling rate, etc. are selected.

ペーストとして形成された複合酸化物膜では、100℃
前後で乾燥し、次いで樹脂などのバインダーを蒸発させ
るために、400℃前後に1時間焼鈍して前処理を施す
ことが望ましい。
For a composite oxide film formed as a paste, the temperature is 100°C.
It is desirable to perform pretreatment by drying before and after, and then annealing at around 400° C. for 1 hour in order to evaporate the binder such as resin.

加熱温度(焼成温度)は、複合酸化物の組成などに応じ
て適宜変更することができるが、例えば、860〜95
0℃、好ましくは870〜910℃である。これは、8
60℃未満では、複合酸化物膜が溶出することもなく、
結晶をC軸配向させることもできず、また、膜中のセラ
ミックス粒子の一部も溶融せず、膜の緻密化が進行しな
いからであり、他方、950℃を超すと、複合酸化物が
熱分解、または一部が蒸発する恐れがあるからである。
The heating temperature (calcination temperature) can be changed as appropriate depending on the composition of the composite oxide, and for example, 860-95
0°C, preferably 870-910°C. This is 8
At temperatures below 60°C, the composite oxide film does not elute.
This is because the crystals cannot be C-axis oriented, and some of the ceramic particles in the film do not melt, and the film does not become densified.On the other hand, when the temperature exceeds 950°C, the composite oxide This is because there is a risk of decomposition or partial evaporation.

加熱の際の昇温速度については、その速度がセラミック
スの微構造および超電導特性を大きく左右するので、複
合酸化物の構成成分の扛類や含量に応じて適宜設定され
る。
The rate of temperature increase during heating greatly affects the microstructure and superconducting properties of the ceramic, and is therefore appropriately set depending on the composition and content of the constituent components of the composite oxide.

この発明において、加熱は、酸素雰囲気または非酸素雰
囲気で実施される。酸素以外に窒素ガス、ヘリウム、ア
ルゴンなどの不活性ガスを加えることもできる。
In this invention, heating is performed in an oxygen atmosphere or a non-oxygen atmosphere. In addition to oxygen, an inert gas such as nitrogen gas, helium, or argon can also be added.

加熱後、C軸配向結晶化するように、徐冷する。After heating, it is slowly cooled so that C-axis orientation crystallization occurs.

例えば、冷却速度として、500〜b 好ましくは200〜b は、100℃/時間前後を採用することができる。For example, the cooling rate is 500~b Preferably 200-b can be around 100°C/hour.

複合酸化物セラミックス この発明により得られる超電導セラミックス積層体は、
ビスマス、ストロンチウム、カルシウムおよび銅より構
成された複合酸化物セラミックス膜が、テープ状などの
金属基材平面に形成された積層体であって、膜内の複合
酸化物結晶がC軸配向し、その結晶軸のC軸が基材平面
に実質的に垂直であることを特徴とするものである。
Composite oxide ceramics The superconducting ceramic laminate obtained by this invention is
A laminate in which a composite oxide ceramic film composed of bismuth, strontium, calcium, and copper is formed on a flat metal base material such as a tape, and the composite oxide crystals in the film are C-axis oriented. It is characterized in that the C axis of the crystal axes is substantially perpendicular to the plane of the substrate.

この発明において膜内の複合酸化物結晶の形状や寸法な
どは、C軸配向している限り、任意である。この発明の
積層体の概略図を第1図AおよびBに示す。この態様で
は、テープ状金属基材1とその面に設けられた複合酸化
物セラミックス膜2とからなり、その膜内の結晶は、C
軸が基材平面に実質的に垂直になっている。この発明で
は、ab軸方向が一致している態様、および一致してい
ない態様も含む。
In the present invention, the shape and dimensions of the composite oxide crystal within the film are arbitrary as long as they are C-axis oriented. Schematic diagrams of the laminate of this invention are shown in FIGS. 1A and 1B. This embodiment consists of a tape-shaped metal base material 1 and a composite oxide ceramic film 2 provided on its surface, and the crystals in the film are C
The axis is substantially perpendicular to the plane of the substrate. The present invention also includes embodiments in which the ab-axis directions match and embodiments in which they do not match.

製造されたセラミックスは、超電導性を示すことができ
、種々の超電導材料として利用することができる。
The manufactured ceramics can exhibit superconductivity and can be used as various superconducting materials.

[作 用] 上記のように構成されたこの発明のセラミックスの製造
法のメカニズムを、この発明のより良い理解のために説
明する。従って、以下は、この発明の範囲を限定するも
のではない。
[Function] The mechanism of the ceramic manufacturing method of the present invention configured as described above will be explained for a better understanding of the present invention. Accordingly, the following is not intended to limit the scope of the invention.

この発明の方法においては、処理前の複合酸化物膜では
、セラミックス粒子は、ランダムに配列し、また、非晶
質および品質が混在し、熱処理により、膜の酸化物の一
部または全部が溶融し、この溶融物を徐々に冷却するこ
とにより、C軸配向するように結晶化される。特に、基
材が、銀、銅、金、白金など貴金属、ニッケルからなる
場合、B1−8r−Ca−Cu系セラミックスとの結晶
格子の整合性が良く、容易にBi系セラミックスのC軸
配向膜を形成させることができる。
In the method of this invention, in the composite oxide film before treatment, the ceramic particles are randomly arranged, and the ceramic particles are mixed in amorphous and quality, and the heat treatment melts some or all of the oxides in the film. By gradually cooling this melt, it is crystallized with C-axis orientation. In particular, when the base material is made of noble metals such as silver, copper, gold, platinum, or nickel, the crystal lattice matches well with B1-8r-Ca-Cu ceramics, and C-axis alignment films of Bi ceramics can be easily formed. can be formed.

[発明の効果] この発明により次の効果を得ることができる。[Effect of the invention] The following effects can be obtained by this invention.

(イ) この請求項1記載の製造法により、従来の複雑
高価な蒸着法、スパッタ法、CVD法などを用いずに、
操作容易かつコストが易い熱処理工程を利用するので、
良好な結晶配向性を有する超電導セラミックス積層体を
、簡易にかつ廉価に製造することができる。
(b) By the manufacturing method according to claim 1, without using the conventional complicated and expensive vapor deposition method, sputtering method, CVD method, etc.
Since it uses a heat treatment process that is easy to operate and low cost,
A superconducting ceramic laminate having good crystal orientation can be manufactured easily and at low cost.

(ロ) この請求項2記載の製造法では、基材がテープ
状良導電体であるめで、加工性の悪いセラミックスの弱
点をカバーし、この発明の積層体をフレキシブルなもの
とすることができる(ハ) この請求項3記載の製造法
では、基材がAgなどの良導電体であるので、使用中に
超電導状態が破れても、すなわちクエンチ状態になって
も、金属基材が電流のバイパスとなって安定化材の役割
をはたす。
(b) In the manufacturing method according to claim 2, since the base material is a tape-like good conductor, the weak point of ceramics, which has poor workability, can be covered, and the laminate of the present invention can be made flexible. (c) In the manufacturing method according to claim 3, since the base material is a good conductor such as Ag, even if the superconducting state is broken during use, that is, even if it becomes a quench state, the metal base material will not carry the current. It becomes a bypass and plays the role of a stabilizing material.

(ニ)m求項4記載の製造法では、加熱条件がより特定
され、Agなどの貴金属を基材としてmmいることによ
り、C軸配向化をより確実にして良好な超電導セラミッ
クス積層体を得ることができる。
(D) In the manufacturing method described in Item 4, the heating conditions are more specific, and by using a noble metal such as Ag as a base material, C-axis orientation is more ensured and a good superconducting ceramic laminate is obtained. be able to.

(ホ) 請求項5記載の積層体では、超電導セラミック
ス膜が配向されているので、線材、テープの長平方向に
大きな電流を流すことができ実用的に大きな臨界電流密
度を示す超電導セラミックス積層体を得ることができる
(e) In the laminate according to claim 5, since the superconducting ceramic film is oriented, a large current can be passed in the longitudinal direction of the wire or tape, and the superconducting ceramic laminate exhibits a practically large critical current density. Obtainable.

(へ) 請求項4記載の製造法では、加熱条件がより特
定され、この条件で、加熱時に膜が半溶融状態になり、
極めて緻密な膜を形成することができる。
(F) In the manufacturing method according to claim 4, the heating conditions are more specific, and under these conditions, the film becomes semi-molten during heating,
An extremely dense film can be formed.

[実施例] この発明を実施例により具体的に説明する。[Example] This invention will be specifically explained by examples.

実施例1 BLOo、5モル、S r COa 1モル、Ca C
Oa 1モルおよびCuO2モルを乳鉢で乾式混合し、
800℃で10時間か焼した。このか焼粉末を乳鉢で粉
砕し280メシ二以下の粉末とした。次いで、アクリル
系樹脂3重量部をか焼物10重量部に添加し30分間混
練機で混合した。
Example 1 BLOo, 5 mol, S r COa 1 mol, Ca C
Dry mix 1 mol of Oa and 2 mol of CuO in a mortar,
Calcined at 800°C for 10 hours. This calcined powder was ground in a mortar to form a powder of 280 mesh or less. Next, 3 parts by weight of acrylic resin was added to 10 parts by weight of the calcined material and mixed for 30 minutes using a kneader.

粘度を:A整するために、溶剤としてパラピノール、可
塑剤としてジブチルフタレートを数滴添加してよく混合
した。
In order to adjust the viscosity to:A, several drops of parapinol as a solvent and dibutyl phthalate as a plasticizer were added and mixed well.

得られたペーストを、スフ1−−ン印刷法によりAgテ
ープ(厚さ0.1mm、幅3mras長さ50■)上に
厚膜形成した。膜厚は焼成前で数十μmから数百μmで
あった。
The obtained paste was formed into a thick film on an Ag tape (thickness: 0.1 mm, width: 3 mras, length: 50 cm) by the 1-line printing method. The film thickness was from several tens of μm to several hundred μm before firing.

このテープを100℃前後で乾燥し、400℃で1時間
バインダーを蒸発させて前処理し、880℃で10分間
熱処理した。その後に、100℃/時間の割合で冷却し
、超電導セラミックス積層体テープを得た。得られた膜
厚は5〜10μmから数十μmであった。
This tape was dried at around 100°C, pretreated by evaporating the binder at 400°C for 1 hour, and heat-treated at 880°C for 10 minutes. Thereafter, it was cooled at a rate of 100° C./hour to obtain a superconducting ceramic laminate tape. The obtained film thickness was from 5 to 10 μm to several tens of μm.

得られた超電導セラミックス積層体テープの超電導特性
を試験するために、Agテープから一部を剥がし、通常
の4端子法で、温度と電気抵抗率との関係を調べた。そ
の結果を第2図に示す。この図から明らかなように、電
気抵抗の温度変化は、金属的であり、Tcは78Kが得
られた。また、超電導への遷移も極めてシャープであっ
た。
In order to test the superconducting properties of the obtained superconducting ceramic laminate tape, a part of it was peeled off from the Ag tape and the relationship between temperature and electrical resistivity was investigated using the usual four-probe method. The results are shown in FIG. As is clear from this figure, the temperature change in electrical resistance was metallic, and a Tc of 78K was obtained. The transition to superconductivity was also extremely sharp.

結晶配向性を調べるために、粉末X線回折分析を行った
。その結果を示す第3図より、結晶構造は、(00n)
面のピークが高くかつ強く、著しくc軸に配向している
ことが分かった。
Powder X-ray diffraction analysis was performed to examine crystal orientation. From Figure 3 showing the results, the crystal structure is (00n)
It was found that the plane peak was high and strong, and was significantly oriented along the c-axis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の積層体の概略説明図、第2図は、
実施例1で得られた複合酸化物セラミックスの温度と電
気抵抗率との関係を示すグラフ、第3図は、実施例1で
得られた複合酸化物セラミックスのX線分析を示すグラ
フである。 出願人代理人  佐  藤  −雄 第2図
FIG. 1 is a schematic explanatory diagram of the laminate of the present invention, and FIG.
A graph showing the relationship between temperature and electrical resistivity of the composite oxide ceramic obtained in Example 1, and FIG. 3 is a graph showing an X-ray analysis of the composite oxide ceramic obtained in Example 1. Applicant's agent Mr. Sato - Figure 2

Claims (1)

【特許請求の範囲】 1、ビスマス、ストロンチウム、カルシウムおよび銅よ
り構成された複合酸化物の厚膜を金属基材平面に形成し
、形成された膜を熱処理して複合酸化物結晶のc結晶軸
が基材平面に実質的に垂直になるように配向結晶化させ
ることを特徴とする超電導セラミックス積層体の製造法
。 2、基材がテープ状良導電体である、請求項1記載の製
造法。 3、基材が、銀、銅、金、白金またはニッケルからなる
、請求項1または2記載の製造法。 4、膜の熱処理を、860〜950℃の温度に加熱して
膜の一部または全部を溶融し、その後に徐冷して行う、
請求項1、2または3記載の製造法。 5、ビスマス、ストロンチウム、カルシウムおよび銅よ
り構成された複合酸化物セラミックス膜が、銀、銅、金
、白金またはニッケルからなる金属基材平面に形成され
た積層体であって、膜内の複合酸化物結晶が配向してc
結晶軸が基材平面に実質的に垂直であることと特徴とす
る超電導セラミックス積層体。 6、基材がテープ状である、請求項6記載の超電導セラ
ミックス積層体。
[Claims] 1. A thick film of a composite oxide composed of bismuth, strontium, calcium, and copper is formed on a plane of a metal substrate, and the formed film is heat-treated to change the c-crystal axis of the composite oxide crystal. 1. A method for producing a superconducting ceramic laminate, which comprises oriented crystallization so that the laminate is substantially perpendicular to the plane of the base material. 2. The manufacturing method according to claim 1, wherein the base material is a tape-like good conductor. 3. The manufacturing method according to claim 1 or 2, wherein the base material is made of silver, copper, gold, platinum or nickel. 4. Heat treatment of the film is performed by heating to a temperature of 860 to 950°C to melt part or all of the film, and then slowly cooling it.
The manufacturing method according to claim 1, 2 or 3. 5. A laminate in which a composite oxide ceramic film composed of bismuth, strontium, calcium, and copper is formed on a plane surface of a metal substrate composed of silver, copper, gold, platinum, or nickel, and the composite oxide in the film is crystals are oriented c
A superconducting ceramic laminate characterized in that a crystal axis is substantially perpendicular to a base material plane. 6. The superconducting ceramic laminate according to claim 6, wherein the base material is tape-shaped.
JP63080020A 1988-03-31 1988-03-31 Superconducting ceramic laminate and its manufacturing method Expired - Lifetime JP2649242B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63080020A JP2649242B2 (en) 1988-03-31 1988-03-31 Superconducting ceramic laminate and its manufacturing method
DE8989303174T DE68904588T2 (en) 1988-03-31 1989-03-30 THIN SUPRAL-CONDUCTING CERAMIC LAYERS AND METHOD FOR THEIR PRODUCTION.
EP89303174A EP0339801B1 (en) 1988-03-31 1989-03-30 Superconductive ceramics laminates and method for production thereof
US07/647,216 US5096878A (en) 1988-03-31 1991-01-28 Method for production of bi-containing superconducting ceramics laminates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63080020A JP2649242B2 (en) 1988-03-31 1988-03-31 Superconducting ceramic laminate and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH01252533A true JPH01252533A (en) 1989-10-09
JP2649242B2 JP2649242B2 (en) 1997-09-03

Family

ID=13706611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63080020A Expired - Lifetime JP2649242B2 (en) 1988-03-31 1988-03-31 Superconducting ceramic laminate and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2649242B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235103A (en) * 1988-03-15 1989-09-20 Toray Ind Inc Superconducting material
JPH03150209A (en) * 1989-11-04 1991-06-26 Dowa Mining Co Ltd Paste for preparing superconductive film
JPH0480026A (en) * 1990-07-24 1992-03-13 Ngk Insulators Ltd Bismuth superconductive layer-noble metal laminated body
JPH06279126A (en) * 1993-03-25 1994-10-04 Natl Inst For Res In Inorg Mater Formation of oriented thick film of bismuth-containing superconducting ceramic
JPH0887919A (en) * 1994-09-19 1996-04-02 Natl Res Inst For Metals Oxide superconducting wire rod and manufacture thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472905A (en) * 1987-06-12 1989-03-17 American Telephone & Telegraph Production of superconductor and device and system comprising same
JPH01212228A (en) * 1988-02-19 1989-08-25 Matsushita Electric Ind Co Ltd Oxide superconducting material and its production
JPH01226735A (en) * 1988-03-07 1989-09-11 Sanyo Electric Co Ltd Production of superconducting material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472905A (en) * 1987-06-12 1989-03-17 American Telephone & Telegraph Production of superconductor and device and system comprising same
JPH01212228A (en) * 1988-02-19 1989-08-25 Matsushita Electric Ind Co Ltd Oxide superconducting material and its production
JPH01226735A (en) * 1988-03-07 1989-09-11 Sanyo Electric Co Ltd Production of superconducting material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235103A (en) * 1988-03-15 1989-09-20 Toray Ind Inc Superconducting material
JPH03150209A (en) * 1989-11-04 1991-06-26 Dowa Mining Co Ltd Paste for preparing superconductive film
JPH0480026A (en) * 1990-07-24 1992-03-13 Ngk Insulators Ltd Bismuth superconductive layer-noble metal laminated body
JPH06279126A (en) * 1993-03-25 1994-10-04 Natl Inst For Res In Inorg Mater Formation of oriented thick film of bismuth-containing superconducting ceramic
JPH0887919A (en) * 1994-09-19 1996-04-02 Natl Res Inst For Metals Oxide superconducting wire rod and manufacture thereof

Also Published As

Publication number Publication date
JP2649242B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
US5096878A (en) Method for production of bi-containing superconducting ceramics laminates
US5527765A (en) Superconducting YBa2 Cu3 O7-x produced at low temperatures
US5240903A (en) Oxide superconductor comprising babo3 dispersions (where b is zr, sn, ce or ti)
JPH01252533A (en) Laminate of superconducting ceramics and production thereof
US20020013231A1 (en) Mg-doped high-temperature superconductor having low superconducting anisotropy and method for producing the superconductor
JP2532914B2 (en) Superconducting ceramic laminate and its manufacturing method
JPH01275434A (en) Production of high temperature superconducting oxide film
JPH0251806A (en) Superconducting ceramic laminated body and manufacture thereof
JPH0251805A (en) Superconducting ceramic laminated body and manufacture thereof
JP2822328B2 (en) Superconductor manufacturing method
JP3181642B2 (en) Manufacturing method of oxide superconducting wire
JP2696689B2 (en) Oxide superconducting material
JPH04124032A (en) Superconductor and its synthesis
JP3086876B1 (en) Method for producing thin film of ribbon-shaped oxide high-temperature superconductor
JPS63274017A (en) Superconductive wire material
JP3053238B2 (en) Method for producing Bi-based oxide superconductor
JPH0238359A (en) Production of superconductor
JPH03112810A (en) Production of oxide superconducting film
JP3122765B2 (en) Method for producing oxide superconductor thick film tape material
JPH0640721A (en) Preparation of superconductive body with high critical electric current density
JPH03295816A (en) Superconductor and method for synthesizing same
JPH03252007A (en) Oxide superconductor and manufacture thereof
JPS63285157A (en) Production of superconductor
JPH04182346A (en) Production of thick oxide superconducting film
JPH0948616A (en) Oxide superconductive film using oriented substrate and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term