【発明の詳細な説明】[Detailed description of the invention]
産業上の利用分野
本発明は超電導薄膜とその作製方法に関する。
より詳細には、高い超電導臨界温度を有し、且つ、その
高い性能を長期にわたり安定して発揮する新規な超電導
薄膜と、この超電導薄膜を作製する方法に関する。
従来の技術
電子の相転移であるといわれる超電導現象は、特定の条
件下で導体の電気抵抗が零の状態となり完全な反磁性を
示す現象である。即ち、超電導下では、超電導体に電流
を流しても電力損失が全く無く、密度の高い電流が永久
に流れ続ける。従って、例えば送電技術に超電導を応用
すれば、現在送電に伴って生じているといわれる約7%
の不可避な送電損失を大幅に減少できる。また、高磁場
発生用電磁石としての応用は、発電技術の分野ではMH
D発電、電動機等と共に、起動に発電量以上の電力を消
費するともいわれる核融合反応の実現を有利に促進する
技術として期待されている。
また磁気浮上列車、電磁気推進船舶等の動力として、更
に、計測・医療の分野でもNMR,π中間子治療、高エ
ネルギー物理実験装置などへの利用が゛期待されている
。
更に、上述のような大型の装置にふける利用とは別に、
超電導材料は各種の電子素子への応用も提案されている
。代表的なものとしては、超電導材料どうしを弱く接合
した場合に印加電流によって量子効果が巨視的に現れる
ジョセフソン効果を利用した素子が挙げられる。トンネ
ル接合型ジョセフソン素子は、超電導材料のエネルギー
ギャップが小さいことから、極めて高速な低電力消費の
スイッチング素子として期待されている。また、電磁波
や磁場に対するジョセフソン効果が正確な量子現象とし
て現れることから、ジョセフソン素子を磁場、マイクロ
波、放射線等の超高感度センサとして利用することも期
待されている。更に、電子回路の集積度が高くなるにつ
れて単位面積当たりの消費電力が冷却能力の限界に達す
るものと見られている。そこで超高速計算機には超電導
素子の開発が要望されている。
従来、様々な努力にもかかわらず、超電導材料の超電導
臨界温度Tcは長期間に亘ってNb3Geの23Kを越
えることができなかった。これに対して、1986年に
、ベドノーツおよびミニーラー等によって、複合酸化物
系超電導材料が高いTcを有することが発見されるに至
って、高温超電導の可能性が大きく開けてきた( Be
dnorz、 fTOller、”Z、Phys。
864、1986.189” )。
これまでにも複合酸化物系のセラミック材料が超電導特
性を示すということ自体は知られていた。
例えば、米国特許第3,932.315号にはBa−P
b−B1系の複合酸化物が超電導特性を示すということ
が記載されている。また、特開昭60−173.885
号公報にはBa−B1系の複合酸化物が超電導特性を示
すことが記載されている。しかしながら、これまでに知
られていた複合酸化物超電導材料の超電導臨界温度Tc
(以下、単にTcと表記する)は、IOK以下と全般的
に極めて低く、超電導現象を得るには高価且つ稀少な液
体ヘリウム(沸点4.2K)の使用が不可避であった。
ベドノーツおよびミ二−ラー等によって発見された酸化
物超電導体は、(La、 Ba)、CuO4なる組成を
有し、KzNiFa型の結晶構造を有するものと見られ
ている。この複合酸化物系超電導材料は、従来から知ら
れていたペロブスカイト型酸化物系超′電導材料と結晶
構造が類似しているが、Tcは従来の超電導材料に比べ
て飛躍的に高い約30にという値であった。
また、1987年2月に、チュー等によって90に級の
臨界温度を示すBa −Y −Cu系の複合酸化物が発
見された。このYBCOと通称される複合酸化物はY+
BazCu30i−xで表される組成を有すると考えら
れている。
更に、続いて発見されたBi −5r−Ca−Cu系お
よびTI −Ba −Ca−Cu系複合酸化物は、Tc
が100Kを越えただけではなく化学的にも安定してお
り、YBCO等のような超電導特性の経時的劣化が少な
いことから、TIの毒性等にも関わらず、より実用に適
しているのではないかと期待されている。
これらの新しい複合酸化物系超電導材料の発見によって
高温超電導体実現の機運が俄かに高まっている。
発明が解決しようとする課題
しかしながら、これら酸化物超電導体は、一般に経時変
化により結晶中の酸素あるいは酸素欠損が減少して超電
導特性が太き(劣化することが知られている。即ち、超
電導臨界温度、臨界電流等の特性は、作製直後が最も良
く、その後は徐々に悪化する傾向がある。また、超電導
材料全体の体積に比較して表面積の大きい薄膜では特に
この傾向が顕著であった。
上記の新しい複合酸化物系超電導体の超電導特性は、結
晶中の酸素欠陥が深く関与しており、そのため、作製の
最終段階では酸素分圧が高い雰囲気で熱処理する必要が
あり、この過程を経ない酸化物超電導体の超電導特性は
極端に悪い。
また、このような処理を経た酸化物超電導体でも、大気
中では時間と共に結晶中の酸素を失い、徐々に超電導特
性が悪化する。この理由としては、複合酸化物超電導体
が空気中の水分と反応すること、また、結晶中の酸素が
時間の経過とともに失われ、含有される酸素欠陥が適正
でなくなること等が考えられる。これは、優れた超電導
特性を有する酸化物超電導体が準安定相であり、空気中
の水分と反応することによって他の物質あるいは他の相
に変化するためではないかと考えられている。
このため、現状では複合酸化物系超電導体の優れた超電
導特性を長期にわたって安定に利用することは困難であ
り、酸化物超電導体を利用しようとする場合に大きな問
題となっている。
そこで、本発明の目的は、経時変化の少ない新規な複合
酸化物系超電導薄膜を提供することにある。また、この
新規な複合酸化物系超電導薄膜を作製する新規な作製方
法も本発明の範囲内に在る。
課題を解決するための手段
即ち、本発明に従い、基板上に形成された複合酸化物系
超電導材料よりなる薄膜と、該薄膜の表面を被覆する高
分子化合物層とを具備することを特徴とする複合酸化物
系超電導薄膜が提供される。
〕月
本発明による複合酸化物系超電導薄膜は、基板上に形成
された複合酸化物系超電導材料よりなる薄膜の表面が高
分子化合物によって被覆されていることをその主要な特
徴としている。
ここで、上記高分子化合物としそは、集積回路のパッシ
ベーション膜用に用いられている、シリコン樹脂系高分
子化合物、エポキシ樹脂系高分子化合物またはポリイミ
ド樹脂系高分子化合物を好ましいものとして例示できる
。更に、この他等の高分子化合物としては、例えば、ジ
アリルフタレート樹脂、アルキド樹脂、UV硬化型樹脂
等のICのパッケージング用に用いられている樹脂や熱
硬化性樹脂等を挙げることもできる。
これらの高分子化合物は組織が緻密であり、超電導薄膜
結晶から酸素が遊離することを抑制し、超電導薄膜の作
製当初の良好な特性を長期間に亘って維持することがで
きる。更に、これらの高分子化合物は、化学的にも極め
て安定であり、被覆として使用した場合に超電導薄膜に
対する悪影響が無く、且つ、比較的低温で形成すること
ができるので、製造プロセスにおいても超電導薄膜を傷
めることがない。
上記の高分子化合物層は、適切な溶媒を用いて塗布法に
よって超電導薄膜上に形成することができる。また、溶
媒を用いずに、溶融状態で超電導薄膜上に直接成膜する
こともできる。更に、場合によっては、トランスファー
成形によって超電導薄膜上に直接成形することもできる
。
尚、上記高分子化合物被覆を形成する際の基板温度は5
00℃以下に制限することが好ましい。即ち、上記の超
電導薄膜は、形成後に500℃を超える温度に加熱され
ると結晶中の酸素が失われ、超電導特性が顕著に悪化す
るからである。従って、高分子化合物層を形成する際あ
るいは形成後の熱硬化時の基板温度を500℃以下とす
ることが有利である。
また、上記の高分子化合物層は単層に限られるものでは
なく、組成または構成元素の異なる2種以上の層を積層
することも有効である。
本発明の超電導薄膜を製造するには、一般に、焼結等で
作製した超電導体原料酸化物をターゲットとしてスパッ
タリング等で上記基板上に超電導薄膜を形成し、必要に
応じ酸素含有雰囲気で熱処理を行った後に、上記の高分
子化合物を被覆する。
上記複合酸化物系超電導材料よりなる薄膜は周期律表1
a族元素から選択された少なくとも1種の元素αと、周
期律表1a族元素から選択された少なくとも1種の元素
βと、周期律表Ib、nb。
mb、■b1■a族元素から選択された少なくとも1種
の元素Tの複合酸化物の薄膜であることができる。一般
に、元素TはCuである。
更に具体的には、下記一般式:
%式%
〔但し、αおよびβは、上記定義の元素であり、Xはα
十βに対するβの原子比で、
0.1≦X≦0.9を満たす数であり、yおよび2は、
(αl−XβX)を1とした場合に、それぞれ
0.4≦y≦3.01
1 ≦2≦5を満たす原子比である〕
で表される組成の複合酸化物薄膜とすることができる。
尚、上記範囲内において、上記元素αがBaまたはSr
であり(この元素αの10〜80%をMg5Ca。
Srから選択された1種または2種の元素で置換するこ
ともできる)、上記元素βがY、 La5GdSDy。
HOlBrlTm、 YbおよびLuよりなる群の中か
ら選択された少なくとも一つの元素である複合酸化物薄
膜を好ましい具体例として挙げることができる。
また、上記の元素の他に、更に^1、Fe、 Co、
Ni。
2nSAg およびTiによって構成される群から選
択される少なくとも1種の元素を含めることも可能であ
る。
上記元素αとβの比は上記αおよびβの種類に応じて適
宜選択できる。例えば、Ba−Y、 Ba−La。
5r−La系の場合にはそれぞれ以下の比を満足するの
が好ましい。
Y/ (Y+Ba) : 0.06〜0.
94、好ましくは0.1〜0.4
Ba/ (La+Ba) : 0.04〜
0.96、好ましくは0.08〜0.45
酸化物の原子比が上記の範囲からはずれた場合にはいず
れも酸化物の結晶構造、酸素欠損等が所望のものと異な
るためTcが低くなる。
上記の元素の組合せの中で、特に、本発明が特に好まし
く適用できる複合酸化物薄膜としては、例えば、Y−B
a−Cu−0系、La−Ba−Cu −0系およびLa
−3r −Cu−0系の複合酸化物薄膜が挙げられる。
具体的には、
Y+8;12CusCh−X% HO+Ba2
CIJ30t−xSLu1Ba2CU3 Ch−xs
Sm1BazCua Ch−x、Nd+BazCus
O1−xSGd+BaaCu30t−x、Eu1Baz
Cu30t−w、 巳r1BazCu30 t−x
s[)y18a2cu30t−x、 Tm+Ba2CU
s 0t−xYb + BazCu 30 t−X
La l Ba 2Cus Ot−x s〔た
だし、Xは0<x<1を満たす数〕で表わされる複合酸
化物超電導薄膜がある。
上記酸化物はペロブスカイト型酸化物または擬似ペロブ
スカイト型酸化物であることが好ましい。
擬似ペロブスカイトとはペロブスカイトに類似した構造
をいい、例えば酸素欠損ペロブスカイト型、オルソロン
ピック型等を含むものである。
本発明は、上記の系以外に、更に下記一般式:%式%
mは、6≦m≦10を満たす数であり、nは、4≦n≦
8を満たす数であり、
pSqおよびrは、それぞれ
p= (6+2m+2n) / 2
0<Q<1
一2≦r≦2を満たす数を表す)
で表される組成を主として含む複合酸化物超電導薄膜に
も適用することができる。
上記基板は一般にガラス、石英、Si1サフアイア、ス
テンレス鋼およびセラミックスによって作られている。
特に、基板はMgO単結晶または5rTi03単結晶で
あるのが好ましい。これらの単結晶基板の成膜面は(0
01)面または(110)面にすることができる。これ
により、超電導体を構成する結晶は揃ったC軸配向性を
持つ結晶となり、特に臨界電流密度Jcが大きくなる。
超電導薄膜薄膜は低圧蒸着法、スパッタリング法、イオ
ンブレーティング法等の物理蒸着(PVD)法、反応蒸
着法法、光CVD法等の各種CVD法、更には、分子線
エピタキシー法等形成する上記が使用できる。一般には
、スパッタリング法を用いる場合が多い。
物理蒸着法で用いられる蒸着源の各金属元素の原子比は
これら金属元素の蒸着効率および基板上での吸着確率に
応じて調節される。以下は代表的な複合酸化物系の具体
的なαとβとの比である。
Y/ (Y+Ba) : 0.06〜0.
94、好ましくは0.1〜0.4
Ba/ (La+Ba) : 0.04
〜0.96、好ましくは0.08〜0.45
これらの蒸着源は、各金属元素の酸化物、炭酸塩、硝酸
塩または硫酸塩の混合粉末(必要に応じて、この混合粉
末に^l、 Fe、 Co、N1、ZnSAgおよびT
iによって構成される群から選択される少なくとも1種
の元素の酸化物、炭酸塩、硝酸塩または硫酸塩の粉末を
添加することもできる)を焼結した焼結体またはその粉
末にするのが好ましい。例えば、Y2O5、CuOおよ
びBaCu O2の混合粉末の焼結体とすることができ
る。
上記の系の場合の焼結温度としては以下範囲を挙げるこ
とできる。
Y+Ba系220〜1230℃
La+Ba系234〜1260℃
蒸着源を複数に分け、例えば、Cuのみの蒸着源と(B
a+Y)複合酸化物よりなる蒸着源との2つ、あるいは
、YSBaおよびCuの単体の3つに分けるに分けるこ
ともできる。
酸化物超電導薄膜の超電導特性を向上させるために、成
膜後、酸素含有雰囲気で熱処理を行うことが好ましい。
この熱処理は、酸素分圧0.1〜150気圧で300〜
1500℃に加熱し、その温度を1時間以上維持したの
ち100℃/分以下、好ましくはlO℃/分以下の冷却
速度で徐冷する過程を経るのが好ましい。いずれの条件
もこの範囲を外れると熱処理の効果は現れず、特に温度
が1500℃を超えた場合は酸化物超電導体に与える悪
影響の方が大きく、このような高温で処理された酸化物
超電導体は、超電導性を失う場合がある。
以下、本発明を実施例により説明するが、本発明の技術
的範囲はこれらの実施例に何等制限されるものではない
ことは勿論である。尚、以下の実施例の超電導薄膜は、
いずれもマグネトロンヌパッタリング装置を用いて作製
した。また、比較のために、それぞれの実施例について
他の条件を同一にして、高分子化合物層を設けた試料と
、これの無い試料とを作製した。
実施例1
チャンバ内に基板、原料ターゲットを取りつけた後、チ
ャンバ内を真空に排気し、5. OX 10−”Tor
rのArガスと1. OXl0−2Torrの02ガス
を導入した。
基板温度を670℃にし、蒸着をした。マグネトロン電
極には、3N/cdの高周波電力をかけた。酸化物超電
導薄膜原料ターゲットとして、YSBaのモル比が1:
2となるようにY2O,とBaCO5とを混合し、更に
、Ys Ba、 Cuのモル比が1:2:3となる量よ
りもCuOを10重量%過剰に混合したものを950℃
で焼結して得たYBa2Cu、07焼結体ブロック(3
00mmφ)を用いた。基板にはMgO単結晶を用い、
(001)面を成膜面とした。成膜速度は、約0.50
人/秒で膜厚が1μmになるまで成膜し、成膜後、酸素
分圧1気圧の雰囲気下で基板温度を650℃に保ち15
時間保持した後、7度/分で冷却した。
次に、この熱処理後、厚さ5μmのポリイミド樹脂(デ
ュポン社製造)層をスピンコードにより薄膜表面に形成
した。尚、コーテイング後の硬化温度は300℃X30
分とした。即ち、得られた超電導薄膜は、その表面にポ
リイミド樹脂被覆を備えたものとなっている。また、前
述のように、ポリイミド樹脂被覆層を形成せずに、超電
導薄膜のみとした比較試料も作製した。
得られた試料の抵抗を測定するためサンプルを作製した
。抵抗測定を行うサンプルは、基板上に形成された薄膜
の両端部分に、更に真空蒸着で一対の^l電極を形成し
、このAI電極にリード線をハンダ付けした。
臨界温度Tc並びにTcfの測定は、クライオスタット
中で液体ヘリウムに浸して一旦8Kまで冷却し、試料が
超電導を示すことを確認した後ヒータによって徐々に昇
温し、試料が超電導を失い始め、電気抵抗を示し始める
温度(Tcf)と、試料の超電導が消失して常態と同じ
電気抵抗を示す温度(Tc )とを測定した。なお、T
c 、Tcfの測定は、超電導薄膜作製直後と1ケ月後
の2回行い特性の経時変化を評価した。
主な成膜条件とTc 5Tcfを併せて、第1表に示す
。
実施例2
原料ターゲットとして、La2es、BaC0aをLa
、 Baのモル比1:2で混合し、CuOをLa5Ba
。
Cuのモル比が1:2:3となる量よりも10重量%過
剰に混合し、970℃焼結して得たLaBa、Cu、
O。
焼結体ブロックを用い、基板にはMgO単結晶の(00
1)面を成膜面として用いた。
成膜の手順およびTc 、Tcfの測定方法は、実施例
1と同様に行った。主な成膜条件とTc5Tcfを併せ
て第1表に示す。
第1表
但し、INDUSTRIAL APPLICATION FIELD The present invention relates to a superconducting thin film and a method for producing the same. More specifically, the present invention relates to a novel superconducting thin film that has a high superconducting critical temperature and stably exhibits its high performance over a long period of time, and a method for producing this superconducting thin film. BACKGROUND OF THE INVENTION Superconductivity, which is said to be a phase transition of electrons, is a phenomenon in which the electrical resistance of a conductor becomes zero under certain conditions and exhibits complete diamagnetic properties. That is, under superconductivity, there is no power loss at all even when current is passed through a superconductor, and a high-density current continues to flow forever. Therefore, for example, if superconductivity is applied to power transmission technology, the approximately 7%
This can significantly reduce unavoidable power transmission losses. In addition, in the field of power generation technology, MH
Along with D power generation and electric motors, it is expected to be a technology that advantageously promotes the realization of nuclear fusion reactions, which are said to consume more power than the amount of power generated to start them up. It is also expected to be used as a power source for magnetic levitation trains, electromagnetic propulsion ships, etc., and also for use in NMR, pi-meson therapy, high-energy physics experiment equipment, etc. in the measurement and medical fields. Furthermore, apart from the above-mentioned indulging in the use of large devices,
Applications of superconducting materials to various electronic devices have also been proposed. A typical example is an element that utilizes the Josephson effect, in which quantum effects appear macroscopically due to applied current when superconducting materials are weakly bonded together. Tunnel junction type Josephson devices are expected to be extremely high-speed switching devices with low power consumption because the energy gap of superconducting materials is small. Furthermore, since the Josephson effect on electromagnetic waves and magnetic fields appears as a precise quantum phenomenon, it is expected that Josephson elements will be used as ultra-sensitive sensors for magnetic fields, microwaves, radiation, etc. Furthermore, as the degree of integration of electronic circuits increases, it is expected that power consumption per unit area will reach the limit of cooling capacity. Therefore, there is a need for the development of superconducting elements for ultra-high-speed computers. Conventionally, despite various efforts, the superconducting critical temperature Tc of superconducting materials could not exceed 23K of Nb3Ge for a long period of time. On the other hand, in 1986, Bednautz and Mineler et al. discovered that composite oxide superconducting materials have a high Tc, greatly opening up the possibility of high-temperature superconductivity (Be
dnorz, fTOller, “Z, Phys. 864, 1986.189”). It has been known for some time that composite oxide ceramic materials exhibit superconducting properties. For example, U.S. Pat. No. 3,932.315 describes Ba-P
It has been described that b-B1-based composite oxides exhibit superconducting properties. Also, JP-A-60-173.885
The publication describes that a Ba-B1-based composite oxide exhibits superconducting properties. However, the superconducting critical temperature Tc of the previously known composite oxide superconducting materials
(hereinafter simply referred to as Tc) is generally extremely low, below IOK, and in order to obtain the superconducting phenomenon, the use of expensive and rare liquid helium (boiling point 4.2K) was unavoidable. The oxide superconductor discovered by Bednotes and Mineral et al. has a composition of (La, Ba), CuO4, and is thought to have a KzNiFa type crystal structure. This composite oxide-based superconducting material has a crystal structure similar to that of previously known perovskite-type oxide-based superconducting materials, but its Tc is approximately 30, which is significantly higher than that of conventional superconducting materials. This was the value. In addition, in February 1987, Chu et al. discovered a Ba--Y--Cu based composite oxide which exhibits a critical temperature of 90 degrees. This complex oxide commonly known as YBCO is Y+
It is thought to have a composition represented by BazCu30i-x. Furthermore, the subsequently discovered Bi-5r-Ca-Cu and TI-Ba-Ca-Cu complex oxides are Tc
Not only does it exceed 100K, but it is also chemically stable, and its superconducting properties do not deteriorate over time like YBCO etc., so it may be more suitable for practical use, despite the toxicity of TI. It is hoped that there will be. The discovery of these new composite oxide-based superconducting materials has suddenly increased the momentum for realizing high-temperature superconductors. Problems to be Solved by the Invention However, it is known that these oxide superconductors generally have thicker (deteriorated) superconducting properties due to a decrease in oxygen or oxygen vacancies in the crystal due to aging. In other words, superconducting criticality Characteristics such as temperature and critical current tend to be best immediately after fabrication, and then gradually deteriorate.Also, this tendency was particularly noticeable in thin films with a large surface area compared to the total volume of the superconducting material. The superconducting properties of the above-mentioned new composite oxide superconductors are deeply related to oxygen defects in the crystal, and therefore, in the final stage of fabrication, it is necessary to perform heat treatment in an atmosphere with a high oxygen partial pressure. The superconducting properties of oxide superconductors without oxidation are extremely poor.Also, even oxide superconductors that have undergone such treatment lose oxygen in their crystals over time in the atmosphere, and their superconducting properties gradually deteriorate.The reason for this is This is thought to be due to the composite oxide superconductor reacting with moisture in the air, oxygen in the crystal being lost over time, and the oxygen defects contained becoming inappropriate. It is thought that this is because the oxide superconductor, which has superconducting properties, is a metastable phase and changes into other substances or other phases by reacting with moisture in the air. It is difficult to stably utilize the excellent superconducting properties of oxide superconductors over a long period of time, which poses a major problem when attempting to utilize oxide superconductors. The object of the present invention is to provide a novel composite oxide-based superconducting thin film that undergoes little change.Furthermore, a novel manufacturing method for manufacturing this novel composite oxide-based superconducting thin film is also within the scope of the present invention. That is, according to the present invention, a composite oxide system comprising a thin film made of a composite oxide superconducting material formed on a substrate, and a polymer compound layer covering the surface of the thin film. A superconducting thin film is provided.] The main feature of the composite oxide superconducting thin film according to the present invention is that the surface of the thin film made of a composite oxide superconducting material formed on a substrate is coated with a polymer compound. Here, the above-mentioned polymer compound is preferably a silicone resin-based polymer compound, an epoxy resin-based polymer compound, or a polyimide resin-based polymer compound, which are used for passivation films of integrated circuits. Furthermore, other polymeric compounds include resins used for IC packaging such as diallyl phthalate resins, alkyd resins, and UV-curable resins, thermosetting resins, etc. You can also list. These polymer compounds have a dense structure, suppress the release of oxygen from the superconducting thin film crystal, and can maintain the good characteristics of the superconducting thin film for a long period of time. Furthermore, these polymer compounds are chemically extremely stable and have no adverse effect on superconducting thin films when used as coatings, and can be formed at relatively low temperatures, so they can be used to form superconducting thin films during the manufacturing process. will not damage. The above polymer compound layer can be formed on the superconducting thin film by a coating method using an appropriate solvent. Further, it is also possible to directly form a film on a superconducting thin film in a molten state without using a solvent. Furthermore, in some cases, it is also possible to mold directly onto the superconducting thin film by transfer molding. In addition, the substrate temperature when forming the above-mentioned polymer compound coating was 5.
It is preferable to limit the temperature to 00°C or less. That is, if the above-mentioned superconducting thin film is heated to a temperature exceeding 500° C. after formation, oxygen in the crystal will be lost, and the superconducting properties will be significantly deteriorated. Therefore, it is advantageous to keep the substrate temperature at 500° C. or less when forming the polymer compound layer or during thermosetting after formation. Moreover, the above-mentioned polymer compound layer is not limited to a single layer, but it is also effective to laminate two or more layers having different compositions or constituent elements. To manufacture the superconducting thin film of the present invention, generally, a superconducting thin film is formed on the substrate by sputtering using a superconducting raw material oxide prepared by sintering or the like as a target, and then heat-treated in an oxygen-containing atmosphere as necessary. After that, the above polymer compound is coated. The thin film made of the above composite oxide superconducting material is listed in the periodic table 1.
At least one element α selected from group a elements, at least one element β selected from elements of group 1a of the periodic table, and Ib and nb of the periodic table. It can be a thin film of a composite oxide of at least one element T selected from group elements mb, b1, and a. Generally, element T is Cu. More specifically, the following general formula: % formula % [However, α and β are the elements defined above, and X is α
The atomic ratio of β to ten β is a number that satisfies 0.1≦X≦0.9, and y and 2 are
When (αl−XβX) is 1, the atomic ratio satisfies 0.4≦y≦3.01 and 1≦2≦5, respectively.] A composite oxide thin film having a composition expressed as follows. In addition, within the above range, the above element α is Ba or Sr.
(10 to 80% of this element α can be replaced with one or two elements selected from Mg5Ca.Sr), and the element β is Y, La5GdSDy. Preferred specific examples include composite oxide thin films containing at least one element selected from the group consisting of HOlBrlTm, Yb, and Lu. In addition to the above elements, ^1, Fe, Co,
Ni. It is also possible to include at least one element selected from the group constituted by 2nSAg and Ti. The ratio of the elements α and β can be appropriately selected depending on the types of the elements α and β. For example, Ba-Y, Ba-La. In the case of 5r-La system, it is preferable that the following ratios be satisfied. Y/(Y+Ba): 0.06~0.
94, preferably 0.1 to 0.4 Ba/(La+Ba): 0.04 to
0.96, preferably 0.08 to 0.45 If the atomic ratio of the oxide deviates from the above range, the crystal structure, oxygen vacancies, etc. of the oxide will differ from the desired one, resulting in a lower Tc. . Among the above-mentioned combinations of elements, examples of composite oxide thin films to which the present invention can be particularly preferably applied include, for example, Y-B
a-Cu-0 system, La-Ba-Cu-0 system and La
A -3r-Cu-0-based composite oxide thin film is mentioned. Specifically, Y+8; 12CusCh-X% HO+Ba2
CIJ30t-xSLu1Ba2CU3 Ch-xs
Sm1BazCua Ch-x, Nd+BazCus
O1-xSGd+BaaCu30t-x, Eu1Baz
Cu30t-w, Mi r1BazCu30t-x
s[)y18a2cu30t-x, Tm+Ba2CU
s 0t-xYb + BazCu 30 t-X
There is a composite oxide superconducting thin film represented by La l Ba 2 Cus Ot-x s (where X is a number satisfying 0<x<1). The oxide is preferably a perovskite-type oxide or a pseudo-perovskite-type oxide. Pseudo-perovskite refers to a structure similar to perovskite, and includes, for example, an oxygen-deficient perovskite type, an orthorhombic type, and the like. In addition to the above system, the present invention further provides the following general formula: % formula % m is a number satisfying 6≦m≦10, and n is 4≦n≦
8, and pSq and r represent numbers satisfying p = (6 + 2 m + 2 n) / 2 0 < Q < 1 - 2 < r < 2). It can also be applied to The substrates are commonly made of glass, quartz, Si1 sapphire, stainless steel and ceramics. In particular, the substrate is preferably MgO single crystal or 5rTi03 single crystal. The film formation surface of these single crystal substrates is (0
01) plane or (110) plane. As a result, the crystals constituting the superconductor become crystals with uniform C-axis orientation, and in particular, the critical current density Jc becomes large. Superconducting thin films can be formed using various CVD methods such as low-pressure evaporation, sputtering, physical vapor deposition (PVD) such as ion blating, reactive evaporation, and photo-CVD, as well as molecular beam epitaxy. Can be used. Generally, a sputtering method is often used. The atomic ratio of each metal element in the vapor deposition source used in the physical vapor deposition method is adjusted depending on the vapor deposition efficiency of these metal elements and the adsorption probability on the substrate. The following are specific ratios of α and β of typical composite oxide systems. Y/(Y+Ba): 0.06~0.
94, preferably 0.1 to 0.4 Ba/(La+Ba): 0.04
~0.96, preferably 0.08-0.45 These vapor deposition sources are mixed powders of oxides, carbonates, nitrates, or sulfates of each metal element (if necessary, ^l, Fe, Co, N1, ZnSAg and T
A powder of an oxide, carbonate, nitrate or sulfate of at least one element selected from the group constituted by i may also be added) is preferably sintered into a sintered body or a powder thereof. . For example, it can be a sintered body of mixed powder of Y2O5, CuO and BaCuO2. The sintering temperature for the above system may be in the following range. Y+Ba system 220-1230℃ La+Ba system 234-1260℃ Divide the evaporation source into multiple sources, for example, a Cu-only evaporation source and (B
a+Y) A vapor deposition source made of a composite oxide can be divided into two, or it can be divided into three, YSBa and Cu alone. In order to improve the superconducting properties of the oxide superconducting thin film, it is preferable to perform heat treatment in an oxygen-containing atmosphere after film formation. This heat treatment is performed at an oxygen partial pressure of 0.1 to 150 atm and
It is preferable to heat the material to 1500°C, maintain that temperature for 1 hour or more, and then gradually cool it at a cooling rate of 100°C/min or less, preferably 10°C/min or less. If any condition is outside this range, the effect of heat treatment will not appear, and especially if the temperature exceeds 1500°C, the negative effect on the oxide superconductor will be greater, and the oxide superconductor treated at such high temperatures will may lose superconductivity. The present invention will be explained below with reference to Examples, but it goes without saying that the technical scope of the present invention is not limited to these Examples in any way. In addition, the superconducting thin films of the following examples are:
Both were produced using a magnetronne sputtering device. For comparison, a sample with a polymer compound layer and a sample without it were prepared under the same conditions for each of the examples. Example 1 After mounting the substrate and the raw material target in the chamber, the inside of the chamber was evacuated to a vacuum, and 5. OX 10-”Tor
r Ar gas and 1. 02 gas of OXl0-2 Torr was introduced. The substrate temperature was set to 670° C. and vapor deposition was performed. A high frequency power of 3 N/cd was applied to the magnetron electrode. As the oxide superconducting thin film raw material target, the molar ratio of YSBa is 1:
Y2O, and BaCO5 were mixed so that the molar ratio of Ys Ba and Cu was 1:2:3, and CuO was mixed in an amount 10% by weight in excess of the molar ratio of Ys Ba and Cu to 1:2:3.
YBa2Cu, 07 sintered body block (3
00 mmφ) was used. MgO single crystal is used for the substrate,
The (001) plane was used as the film formation surface. The film formation rate is approximately 0.50
The film was formed at a speed of 1 μm per second, and after the film was formed, the substrate temperature was maintained at 650°C in an atmosphere with an oxygen partial pressure of 1 atm.
After holding for a period of time, it was cooled at a rate of 7 degrees/min. Next, after this heat treatment, a 5 μm thick polyimide resin (manufactured by DuPont) layer was formed on the thin film surface using a spin cord. The curing temperature after coating is 300℃ x 30℃.
It was a minute. That is, the obtained superconducting thin film has a polyimide resin coating on its surface. Furthermore, as described above, a comparative sample was also prepared in which only a superconducting thin film was used without forming a polyimide resin coating layer. A sample was prepared to measure the resistance of the obtained sample. In the sample for resistance measurement, a pair of electrodes were further formed by vacuum evaporation on both ends of the thin film formed on the substrate, and lead wires were soldered to these AI electrodes. To measure the critical temperatures Tc and Tcf, the sample is immersed in liquid helium in a cryostat and cooled to 8K. After confirming that the sample exhibits superconductivity, the temperature is gradually raised using a heater, and the sample begins to lose superconductivity, causing electrical resistance to decrease. The temperature (Tcf) at which the superconductivity of the sample begins to show and the temperature (Tc) at which the superconductivity of the sample disappears and the electrical resistance becomes the same as normal were measured. In addition, T
c and Tcf were measured twice, immediately after the superconducting thin film was prepared and once one month later, to evaluate changes in characteristics over time. The main film forming conditions and Tc 5Tcf are shown in Table 1. Example 2 La2es and BaC0a were used as raw material targets.
, Ba is mixed in a molar ratio of 1:2, and CuO is mixed with La5Ba
. LaBa, Cu, which was obtained by mixing 10% by weight in excess of the molar ratio of Cu of 1:2:3 and sintering at 970°C,
O. A sintered block is used, and the substrate is MgO single crystal (00
1) surface was used as the film-forming surface. The film forming procedure and the measuring method of Tc and Tcf were the same as in Example 1. Table 1 shows the main film forming conditions and Tc5Tcf. Table 1: However,
【−】は、液体ヘリウムの沸点以上で超電導を示
さなかったことを意味する。
実施例3
実施例1と同様な原料を用い、同様な条件で作製した酸
化物超電導薄膜に、約1mmのエポキシ樹脂(信越化学
社製造)による被覆を実施例1と同様な方法で実施した
。
成膜の手順およびTc 、Tcfの測定方法は、実施例
1と同様に行った。主な成膜条件とTc5Tcfを併せ
て第2表に示す。
実施例4
実施例2と同様な原料を用い、同様な条件で作製した酸
化物超電導薄膜に、実施例4と同じエポキシ樹脂による
被覆をやはり実施例1と同様な方法で実施した。
成膜の手順およびTCs Tcfの測定方法は、実施例
1と同様に行った。主な成膜条件とTc5Tcfを併せ
て第2表に示す。
第2表
但し、[-] means that superconductivity was not exhibited above the boiling point of liquid helium. Example 3 An oxide superconducting thin film prepared using the same raw materials and under the same conditions as in Example 1 was coated with about 1 mm of epoxy resin (manufactured by Shin-Etsu Chemical Co., Ltd.) in the same manner as in Example 1. The film forming procedure and the measuring method of Tc and Tcf were the same as in Example 1. Table 2 shows the main film forming conditions and Tc5Tcf. Example 4 An oxide superconducting thin film prepared using the same raw materials and under the same conditions as in Example 2 was coated with the same epoxy resin as in Example 4 in the same manner as in Example 1. The procedure for film formation and the method for measuring TCs Tcf were performed in the same manner as in Example 1. Table 2 shows the main film forming conditions and Tc5Tcf. Table 2: However,
【−】は、液体ヘリウムの沸点以上で超電導を示
さなかったことを意味する。
本発明の方法に従って作製したいずれの超電導薄膜もそ
のTc 5Tcfは1ケ月たった後も作製直後と事実上
同じであったが、コーティングを施さなかった超電導薄
膜のTc5TCfは1ケ月後には大幅に低下した。
これらの実施例の結果、本発明の高分子化合物コーティ
ングを施した超電導薄膜は、結晶中の酸素欠陥を適正に
制御するとともにその状態を長期に亘って保ち、優れた
特性を安定に持つことが証明された。
発明の詳細
な説明したように、本発明により、従来の超電導体より
もはるかに安定した超電導特性を有する酸化物超電導薄
膜が提供される。
従って、本発明を、超電導体を薄膜素子として応用する
分野、例えばジョセフソン素子と呼ばれるマチイソ−(
Matisoo)のスイッチング素子やアナツカ−(A
nacker)のメモリー素子、更には超電導量子干渉
計(SQUID)などに利用すると効果的である。[-] means that superconductivity was not exhibited above the boiling point of liquid helium. The Tc5Tcf of any superconducting thin film prepared according to the method of the present invention was virtually the same after one month as that immediately after preparation, but the Tc5TCf of the uncoated superconducting thin film decreased significantly after one month. . As a result of these examples, the superconducting thin film coated with the polymer compound of the present invention can appropriately control oxygen defects in the crystal, maintain this state for a long period of time, and stably have excellent properties. Proven. DETAILED DESCRIPTION OF THE INVENTION As described, the present invention provides oxide superconducting thin films with much more stable superconducting properties than conventional superconductors. Therefore, the present invention is useful in the field of applying superconductors as thin film devices, such as Josephson devices.
Matisoo) switching elements and Anatsuka (A
It is effective to use it in memory devices such as those used in electronic devices (such as electronic devices), as well as superconducting quantum interferometers (SQUIDs).