JPS63303813A - Superconducting compound oxide material - Google Patents

Superconducting compound oxide material

Info

Publication number
JPS63303813A
JPS63303813A JP62139662A JP13966287A JPS63303813A JP S63303813 A JPS63303813 A JP S63303813A JP 62139662 A JP62139662 A JP 62139662A JP 13966287 A JP13966287 A JP 13966287A JP S63303813 A JPS63303813 A JP S63303813A
Authority
JP
Japan
Prior art keywords
protective layer
superconducting
composite oxide
metal
compound oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62139662A
Other languages
Japanese (ja)
Inventor
Takashi Namikata
尚 南方
Masaru Ozaki
勝 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP62139662A priority Critical patent/JPS63303813A/en
Publication of JPS63303813A publication Critical patent/JPS63303813A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0661After-treatment, e.g. patterning
    • H10N60/0716Passivation

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:A superconducting compound oxide material constituted of a superconducting compound oxide layer contg. an alkaline earth metal with a moisture preventing protective layer formed on its surface causing scarce change with the lapse of time, and having high stability. CONSTITUTION:A moisture preventing protective layer consisting of a ceramic material, metal, or a semiconducting org. material for inhibiting permeation of steam and contact of water is formed on the surface of a superconducting compound oxide layer contg. at least one kind of alkaline earth metal selected from Ca, Sr, and Ba. Said protective layer is formed by, for example, sputtering or CVD process when a ceramic material is used, by vapor deposition or metal spraying, etc., when a metal is used, and by coating, dipping, or vapor deposi tion, etc., when an org. material is used. The thickness of the protective layer may be in an order of submicron - millimeter. Since the superconducting mate rial provided with the protective layer has the afore-mentioned characteristics, the material may contribute to the field of application of the material for electro magnet, electric or electronic material, and application in electronic devices, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は経時変化が少なく、安定性に優れた超伝導性複
合酸化物材料に関するものでおる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a superconducting composite oxide material which shows little change over time and has excellent stability.

[従来の技術] 従来超伝導性を示す物質は数多く知られており、合金系
においてはNb3GeやNbNのようなNb系合金が高
い超伝導臨界温度(以下TCと記述する)を示し、Nb
xGeが23.6にというTcを有することが10年程
前に報告されていたが[ADplied Physic
sLetters、23480(1973)]最近まで
それ以上のTOを有する物質は知られていなかった。
[Prior art] Many materials have been known to exhibit superconductivity, and among alloy systems, Nb-based alloys such as Nb3Ge and NbN exhibit a high superconducting critical temperature (hereinafter referred to as TC), and Nb
It was reported about 10 years ago that xGe has a Tc of 23.6 [ADplied Physic
sLetters, 23480 (1973)] Until recently, no substances with higher TO were known.

一方複合酸化物系においては1−iT!Qnが13.7
にというTcを有することが報告されているが[)Ia
terials Re5earch Bulletin
、8 。
On the other hand, in complex oxide systems, 1-iT! Qn is 13.7
It has been reported that it has a Tc of [)Ia
terials Research Bulletin
, 8.

777 (1973)] 、T Cが低く超伝導材料と
しての実用性は低い。
777 (1973)], its T C is low and its practicality as a superconducting material is low.

超伝導材料の応用範囲は広く、中でも開発の主体となっ
ているのは、磁石用途であり、超伝導磁石は電気抵抗が
ゼロであるため冷却に要するわずかな電力だけで強い磁
場を発生することが可能となる。従って、核融合、磁気
浮上列車、MHD発電、加速器、モーター等強い磁場空
間を必要とする分野での応用が期待できる。電力分野に
おいては、発電機、電力貯蔵や送電線への応用があり、
エレクトロニクス分野に対しては、ロジックとかメモリ
ーといったコンピューター素子(ジョセフソン素子)、
微弱な磁場を検出するセンサー(1子干渉デバイス)や
ミリ波帯のミキサーや発信器に用いることができるマイ
クロ波素子への応用がある。
Superconducting materials have a wide range of applications, and the main area of development is in magnet applications.Superconducting magnets have zero electrical resistance, so they can generate a strong magnetic field with only a small amount of power required for cooling. becomes possible. Therefore, it can be expected to be applied to fields that require a strong magnetic field, such as nuclear fusion, magnetic levitation trains, MHD power generation, accelerators, and motors. In the power field, it has applications in generators, power storage, and power transmission lines.
For the electronics field, computer elements such as logic and memory (Josephson elements),
It has applications in sensors that detect weak magnetic fields (single-child interference devices) and microwave elements that can be used in millimeter-wave mixers and transmitters.

このような用途に用いられる超伝導材料は、高いTCを
持つことが必要とされており、現在も材料の探索が続け
られている。高いTOを有する材料が開発されれば、冷
媒として高価で資源的に問題の多い液体ヘリウム(沸点
4.2K)ではなく、安画て資源的に豊富な液体窒素(
沸点77.3 K)を用いることができるようになり、
その用途はざらに飛躍的に広がるものと思われる。
Superconducting materials used in such applications are required to have a high TC, and the search for materials is still ongoing. If a material with high TO is developed, liquid nitrogen (boiling point 4.2K), which is an abundant resource, can be used as a refrigerant instead of expensive and resource-problematic liquid helium (boiling point 4.2K).
boiling point 77.3 K) can now be used,
Its uses are expected to expand dramatically.

最近La−3r (Ba)−Cu−0系の希土類複合酸
化物が30にという高いTOを有することが報告され[
1eitschrift fur physik。
It has recently been reported that La-3r (Ba)-Cu-0-based rare earth composite oxides have a TO of as high as 30 [
1eitschrift fur physik.

864.189(198B)] 、さらに高いTcを有
するY−Ba−Cu−0系の希土類複合酸化物にライて
も報告されている[Phy3iCal ReVieWL
etters、58,911(1987)]。
Phy3iCal ReView
etters, 58, 911 (1987)].

[発明が解決しようとする問題点] 超伝導性複合酸化物、特に高いTcを有するLa−3r
 (Ba)−Cu−0系、Y−5a−cu−o系希土類
複合酸化物は、空気中に放置したり、低温−室温間のヒ
ートサイクルにより超伝導特性が低下し経時変化を示す
ことがわかった。
[Problems to be solved by the invention] Superconducting composite oxide, especially La-3r having high Tc
(Ba)-Cu-0-based and Y-5a-cu-o-based rare earth composite oxides may exhibit deterioration in superconducting properties over time due to being left in the air or due to heat cycles between low temperature and room temperature. Understood.

このため該超伝導性複合酸化物を用いた超伝導磁石、電
気・電子材料及びエレクトロニクスデバイスなどは性能
、特性が不安定でおり、実用上大きな問題となる。
Therefore, superconducting magnets, electric/electronic materials, electronic devices, etc. using the superconducting composite oxide have unstable performance and characteristics, which poses a major problem in practical use.

[問題を解決するための手段] 本発明者らは前記問題点を解決するため鋭意研究を重ね
た結果、空気中に放置しても経時変化が少なく、安定性
に優れた超伝導性複合酸化物材料を見出し、本発明を成
すに至った。
[Means for Solving the Problem] As a result of extensive research in order to solve the above-mentioned problems, the present inventors have developed a superconducting composite oxide with excellent stability and little change over time even when left in the air. The present invention was achieved by discovering a new material.

すなわち、本発明はアルカリ土類金属を含有する超伝導
性複合酸化物層の表面に防湿保護層を有する超伝導性複
合酸化物材料でおる。
That is, the present invention is a superconducting composite oxide material having a moisture-proof protective layer on the surface of a superconducting composite oxide layer containing an alkaline earth metal.

本発明のアルカリ土類金属を含有する超伝導性複合酸化
物としてBa−(Pb−B i >−〇系(Te13k
)及び銅系複合酸化物がある。Ba −(Pb−B i
 > −0系複合酸化物はTOが低いため高価であり、
また資源的に乏しい液体ヘリウ゛ムを用いねばならない
という問題がおるので実用上の用途が限られてしまう。
As the superconducting composite oxide containing an alkaline earth metal of the present invention, Ba-(Pb-B i >-〇 system (Te13k
) and copper-based composite oxides. Ba-(Pb-B i
> -0-based composite oxides are expensive due to low TO;
Furthermore, there is the problem that liquid helium, which is a scarce resource, must be used, which limits its practical use.

一方、銅系複合酸化物は液体窒素以上にTCをもつもの
もあるため、冷却に低コストで資源的に豊富な液体窒素
を用いることかでき、工業上より好ましいものとなる。
On the other hand, since some copper-based composite oxides have a TC higher than that of liquid nitrogen, liquid nitrogen, which is a low-cost and abundant resource, can be used for cooling, making it more preferable from an industrial perspective.

超伝導性銅系複合酸化物は一般式 %式% ここでMlはca、3riよびBaから選ばれる少なく
とも一種、M2はSC,Y、La、Ce、Pr、Nd、
Pm、Sm、巳u、Gd、Tb、 Dy、Ho、Er、
Tm、Yb、Luから選ばれる少なくとも一種である。
The superconducting copper-based composite oxide has the general formula %, where Ml is at least one selected from ca, 3ri, and Ba, and M2 is SC, Y, La, Ce, Pr, Nd,
Pm, Sm, Miu, Gd, Tb, Dy, Ho, Er,
It is at least one selected from Tm, Yb, and Lu.

ざらに、a、bの組成比としては、 0.5≦a≦3 0.1≦X≦0.9 1、O≦b≦4.0 であることが高いTCの超伝導性複合酸化物を作るので
好ましいものとなる。
Roughly speaking, the composition ratio of a and b is 0.5≦a≦3 0.1≦X≦0.9 1, O≦b≦4.0 in a TC superconducting composite oxide. It is preferable because it creates

次に超伝導性複合酸化物の製造方法について説明する。Next, a method for producing a superconducting composite oxide will be explained.

複合酸化物は、例えば希土類酸化物や希土類水酸化物等
の希土類化合物、醸化バリウム、炭酸バリウム、酸化ス
トロンチウム、炭酸ストロンチウム等のアルカリ土類金
属化合物、および酸化第2銅や炭酸第2銅のような銅化
合物を所定量混合加熱して同相反応させる方法、希土類
元素、ストロンチウム、バリウム等のアルカリ土類金属
および銅の塩化物や硝酸塩等の可溶性化合物の水溶液の
混合物にシュウ酸塩の水溶液を添加して共沈した後加熱
して反応させる方法がおる。また、これらのうち2種の
金属塩を用い共沈法によって沈澱を製造した債、他の金
属化合物と混合して所定の複合酸化物を得ることもでき
る。
Complex oxides include, for example, rare earth compounds such as rare earth oxides and rare earth hydroxides, alkaline earth metal compounds such as fermented barium, barium carbonate, strontium oxide, and strontium carbonate, and cupric oxide and cupric carbonate. A method in which an aqueous solution of oxalate is added to a mixture of aqueous solutions of rare earth elements, alkaline earth metals such as strontium and barium, and soluble compounds such as copper chlorides and nitrates. There is a method of adding and co-precipitating and then heating and reacting. Further, a predetermined composite oxide can also be obtained by preparing a precipitate using two of these metal salts by a coprecipitation method and mixing it with other metal compounds.

加熱反応する条件は組成によって異なるが、600 ’
Cから1000℃において、0.5時間から1週間所定
の雰囲気中において行うことが好ましい。
The heating reaction conditions vary depending on the composition, but 600'
It is preferable to carry out the treatment at a temperature of 1000°C to 1000°C for 0.5 hours to 1 week in a predetermined atmosphere.

上記のようにして得られる超伝導性複合酸化物は必要が
あればボールミルやジェットミル等の粉砕手段を用いて
、例えば5μm以下に粉砕した後に所定の形に成形し焼
結させる。
The superconducting composite oxide obtained as described above is pulverized to, for example, 5 μm or less using a pulverizing means such as a ball mill or a jet mill, if necessary, and then formed into a predetermined shape and sintered.

焼結温度は組成によって異なるが650〜1200’(
:、が好ましく、]O分から5時間行う。
The sintering temperature varies depending on the composition, but is between 650 and 1200' (
:, is preferable, and is carried out for 5 hours from 0 minutes.

次いで所定の雰囲気中において30分から10時間、6
00〜i o o O’Cの温度でアニールする。
Then, in the specified atmosphere for 30 minutes to 10 hours, 6
Anneal at a temperature of 00 to io o O'C.

本発明において複合酸化物中の酸素含有量の制御も重要
な因子であり、それはアニール時の雰囲気を変えること
により行うことができる。酸素含有量を化学量論量より
少なくしたい場合は、窒素、アルゴンやヘリウム等の不
活性ガス雰囲気中において、酸素分圧を調整しながらア
ニールを行う。
In the present invention, controlling the oxygen content in the composite oxide is also an important factor, and this can be done by changing the atmosphere during annealing. When the oxygen content is desired to be lower than the stoichiometric amount, annealing is performed in an atmosphere of an inert gas such as nitrogen, argon, or helium while adjusting the oxygen partial pressure.

また、成形あるいは焼結手段としては複合酸化物をホッ
トプレス、溶融凝固、爆発圧縮等で成形する方法も用い
ることができる。また、成形の際必要に応じ充填剤を含
有させることができる。以上のようにして所定の形状に
成形したバルク状複合酸化物を製造することができる。
Further, as the shaping or sintering means, a method of shaping the composite oxide by hot pressing, melt solidification, explosive compression, etc. can also be used. In addition, a filler can be added if necessary during molding. As described above, a bulk composite oxide formed into a predetermined shape can be manufactured.

また、基板上に複合酸化物を薄膜状に製造することがで
きる。例えばスパッタリング、CVD、噴霧、バインダ
ー法で製造する方法や蒸着、MBE法などにより金属を
形成した後、酸化させて複合酸化物を製造する方法を用
いることができる。これらの方法では基板として、金属
、セラミックス、有機材料等いずれを用いてもよい。
Further, the composite oxide can be produced in the form of a thin film on the substrate. For example, a method of manufacturing by sputtering, CVD, spraying, a binder method, or a method of forming a metal by vapor deposition, MBE, or the like, and then oxidizing it to manufacture a composite oxide can be used. In these methods, any metal, ceramic, organic material, etc. may be used as the substrate.

本発明者らは前記アルカリ土類金属を含有する超伝導性
複合酸化物が空気中においては安定した超伝導特性が得
られないことがわかり、その原因は該複合酸化物が加水
分解しやすいため水に対し不安定であることをつきとめ
た。
The present inventors found that the superconducting composite oxide containing the alkaline earth metal cannot obtain stable superconducting properties in air, and the reason for this is that the composite oxide is easily hydrolyzed. It was found that it is unstable in water.

たとえば空気中に該複合酸化物の焼結体、薄膜を放置す
ると超伝導特性の低下、ざらに構造破壊をも引き起こす
。また、空気中で低温−空温のヒートサイクルを行うと
空気中の水蒸気が結露、付着するため超伝導特性低下は
促進される。したがって該複合酸化物の表面に防湿保護
層を設けることにより、加水分解を防止し、超伝導特性
が安定化することを見出した。
For example, if a sintered body or thin film of the composite oxide is left in the air, the superconducting properties will deteriorate and even structural destruction will occur. Furthermore, when a heat cycle between low temperature and air temperature is performed in air, water vapor in the air condenses and adheres to the material, accelerating the deterioration of superconducting properties. Therefore, it has been found that by providing a moisture-proof protective layer on the surface of the composite oxide, hydrolysis can be prevented and the superconducting properties can be stabilized.

本発明の防湿保護層の材料は該超伝導性複合酸化物への
水蒸気の透過、水の接触を妨げるものであればセラミッ
クス、金属、半導体有機物のいずれも使用することがで
きる。たとえばSiO2,5iOX、GeO2、Cr2
O3、Al2O3、TiO2、 Z ro2、MgO,cuo、Y203、Si 3N4
.5iNX、5iNXOV、1’v1gF2、YF3、
BN、MO32などの酸化物、窒化物、フッ化物、ホウ
化物、硫化物、セラミックス、Cu、Ag、Au、Pt
、Pdなトノ金泥、Si、GaAs、InSbなどの半
導体、ポリスチレン、ポリエチレン、ポリ塩化ビニル、
ポリ塩化ビニリデン、シリコンオイルなどの有機物およ
びこれらの複合材料を用いることができる。
As the material for the moisture-proof protective layer of the present invention, any of ceramics, metals, and semiconductor organic materials can be used as long as it prevents water vapor from passing through and contacting the superconducting composite oxide. For example, SiO2, 5iOX, GeO2, Cr2
O3, Al2O3, TiO2, Z ro2, MgO, cuo, Y203, Si 3N4
.. 5iNX, 5iNXOV, 1'v1gF2, YF3,
Oxides, nitrides, fluorides, borides, sulfides, ceramics, Cu, Ag, Au, Pt such as BN and MO32
, Pd, semiconductors such as Si, GaAs, and InSb, polystyrene, polyethylene, polyvinyl chloride,
Organic substances such as polyvinylidene chloride and silicone oil, and composite materials thereof can be used.

次に防湿保護層の製造方法について説明するが本発明は
これに何ら限定されるものでない。
Next, a method for manufacturing the moisture-proof protective layer will be described, but the present invention is not limited thereto.

本発明の保護層はたとえばセラミックスを用いる場合、
スパッタリング、CVD、噴霧、バインダー法で製造す
る方法や、蒸着、MBE法などにより金属層を形成した
後、酸化、窒化などによりセラミックス層を製造する方
法を用いることができる。金属を用いる場合は蒸着、溶
射、スパッタリング、CVD、粉末焼結法などにより金
属層を製造することができる。
For example, when the protective layer of the present invention is made of ceramics,
A method of manufacturing by sputtering, CVD, spraying, or a binder method, or a method of manufacturing a ceramic layer by forming a metal layer by evaporation, MBE, or the like, and then oxidizing, nitriding, or the like can be used. When using metal, the metal layer can be manufactured by vapor deposition, thermal spraying, sputtering, CVD, powder sintering, or the like.

有機材料を用いる場合、塗布、浸漬、蒸着法や該複合酸
化物上で七ツマ−を重合させる方法などを用いることが
できる。また、ポリマー溶液にセラミックスを分散塗布
したセラミックス−ポリマー複合材料、金属とセラミッ
クスを粉末焼結したセラミックス−金属複合材料などの
複合材料を用いて、保護層を製造することもできる。
When an organic material is used, coating, dipping, vapor deposition, or a method of polymerizing a hexamer on the composite oxide can be used. Further, the protective layer can also be manufactured using a composite material such as a ceramic-polymer composite material in which ceramics are dispersed and coated in a polymer solution, or a ceramic-metal composite material in which metal and ceramic are powder-sintered.

保1の膜厚は用いる材料により異なるが、サブミクロン
ルミリオーダ−の膜厚とすることができる。
The thickness of the film 1 varies depending on the material used, but it can be on the order of submicron lumi.

ざらに該複合酸化物の原料に該保護層または保護層の原
料層を形成したのち、反応させることによって複合酸化
物と保護層を同時に製造することもできる。
It is also possible to produce the composite oxide and the protective layer at the same time by forming the protective layer or a raw material layer for the protective layer on the raw material of the composite oxide and then reacting the mixture.

本発明の超伝導性複合酸化物材料は、経時変化が小さく
、安定性に優れた超伝導材料を提供するものでおり、該
材料は電磁石、電気・電子材料及びエレクトロニクスデ
バイスなどの応用分野に貢献するものでおる。
The superconducting composite oxide material of the present invention provides a superconducting material that shows little change over time and has excellent stability, and the material contributes to applied fields such as electromagnets, electrical/electronic materials, and electronic devices. I have something to do.

以下実施例によりさらに詳細に説明する。The present invention will be explained in more detail with reference to Examples below.

[実施例] 実施例1 酸化イツトリウム22.6g、硝酸バリウム104.5
i;]、酸化第2銅47.7(]をボールミルで混合後
900 ’Cの温度で空気中24時間焼成して複合酸化
物を得た。該複合酸化物をホールミル粉砕後1 ton
/cm2の圧力でプレスして’1cmφX5mmのペレ
ットを作成した後、900°C1空気中で12時間加熱
して焼結体を作成した。
[Example] Example 1 Yttrium oxide 22.6g, barium nitrate 104.5g
i;], cupric oxide 47.7 () were mixed in a ball mill and calcined in air at a temperature of 900'C for 24 hours to obtain a composite oxide.The composite oxide was ground in a whole mill and weighed 1 ton.
After pressing at a pressure of /cm2 to produce pellets of 1 cmφ x 5 mm, the pellets were heated at 900°C in air for 12 hours to produce a sintered body.

該複合酸化物焼結体に電極を付けた後、スパッタリング
法により全表面に5μm厚のAl2O3層を形成した。
After attaching an electrode to the composite oxide sintered body, a 5 μm thick Al2O3 layer was formed on the entire surface by sputtering.

Al2O3を被覆した複合酸化物焼結体を90%RH−
30’Cにおいて1日〜2週間放置した後、クライオス
タット中でTcを測定した。
The composite oxide sintered body coated with Al2O3 was heated to 90% RH-
After standing at 30'C for 1 day to 2 weeks, Tc was measured in a cryostat.

第1表にTcを示す。Table 1 shows Tc.

第1表 Tc(抵抗ゼロ転移温度〉 実施例2 実施例1で得た複合酸化物10gをエタノール8ml中
に分散してスラリー状としだ後4インチ径SUS板上に
塗布して粉末ターゲットを作成した。該ターゲットを用
い、サファイア板上にスパッタリングした(基板温度2
50°C,02分圧1mTOrr)後、900’Cの温
度において02雰囲気下、1時間加熱して複合酸化物薄
膜(膜厚900A>を得た。
Table 1 Tc (zero resistance transition temperature) Example 2 10 g of the composite oxide obtained in Example 1 was dispersed in 8 ml of ethanol to form a slurry, and then applied onto a 4-inch diameter SUS plate to create a powder target. Using this target, sputtering was performed on a sapphire plate (substrate temperature 2
After heating at a temperature of 900'C in an atmosphere of 02C for 1 hour, a composite oxide thin film (thickness 900A>) was obtained.

該複合酸化物薄膜に電極を取り付けた後、その表面に3
 i NXスパッタリングして膜厚2μmの保3層を形
成した。
After attaching an electrode to the composite oxide thin film, 3
i NX sputtering was performed to form a 2 μm thick protective layer.

3 i lNxを被覆した複合酸化物膜を90%RH−
30°Cで1日〜2週間放置した後、クライオスタット
中でTcを測定した。
3i The composite oxide film coated with INx was heated to 90% RH-
After being left at 30°C for 1 day to 2 weeks, Tc was measured in a cryostat.

第2表にTCを示す。Table 2 shows the TC.

第2表 Tc(抵抗ゼロ温度) 実施例3 実施例1で得た複合酸化物をボールミル粉砕後’l t
on、”cm2の圧力でプレスして1Cmφ×5mmの
円板状ペレットを作成したのち、900℃、空気中で1
2時間加熱して焼結体を作成した。
Table 2 Tc (zero resistance temperature) Example 3 After ball milling the composite oxide obtained in Example 1,
on," After pressing with a pressure of cm2 to create a disc-shaped pellet of 1 cmφ x 5 mm, it was heated at 900°C in air for 1 hour.
A sintered body was created by heating for 2 hours.

該複合酸化物焼結体に電極を付けた後、ポリスチレン(
分子量10万)の15%トルエン溶液を表面に塗布して
50μ膜厚の保護層を作成した。
After attaching electrodes to the composite oxide sintered body, polystyrene (
A 15% toluene solution with a molecular weight of 100,000) was applied to the surface to form a protective layer with a thickness of 50 μm.

ポリスチレンを被覆した複合酸化物焼結体を90%RH
−30°Cにおいて1〜2週間放置した後、タラビオス
タット中でTcを測定した。
90% RH of composite oxide sintered body covered with polystyrene
After standing for 1-2 weeks at -30°C, Tc was measured in a Taraviostat.

Tcを第3表に示す。Tc is shown in Table 3.

第3表 TO(抵抗ゼロ温度) 実施例4 実施例1で得た複合酸化物粉末(平均粒径2μm)を1
.5ton/cm2の圧力でプレスした後、900 ’
Cの温度において、12時間加熱して焼結体(10x 
5x5mm)を得た。
Table 3 TO (zero resistance temperature) Example 4 The composite oxide powder (average particle size 2 μm) obtained in Example 1 was
.. After pressing with a pressure of 5ton/cm2, 900'
The sintered body (10x
5x5mm) was obtained.

該焼結体に電極を取付けた後、表面にポリスチレンのキ
シレン溶液(10重量%)を塗布(乾燥後膜厚200μ
mした。ポリスチレンを被覆した焼結体を精製水に8時
間浸漬した後、タライオスタットに入れ、電気伝導度を
測定したところTC(抵抗ゼロ温度)91kを有する超
伝導体でおることがわかった。なお、X線解析法により
該焼結体の結晶構造を測定したところ、菱面島構造(a
:3.82ム、b3.89L c 11.67人)でお
ることかわかった。
After attaching the electrode to the sintered body, a xylene solution of polystyrene (10% by weight) was applied to the surface (film thickness 200 μm after drying).
I did m. After immersing the polystyrene-coated sintered body in purified water for 8 hours, it was placed in a Taliostat and its electrical conductivity was measured, and it was found to be a superconductor with a TC (zero resistance temperature) of 91k. In addition, when the crystal structure of the sintered body was measured by X-ray analysis, it was found that it had a rhombic island structure (a
: 3.82 mm, b 3.89 L c 11.67 people).

比較例4 ポリスチレン被覆を行わない以外は実施例4と同様にし
て電極を取付け、焼結体を精製水に8時間浸漬したとこ
ろ、カーボンペーストで付着した電極がはがれ、表面の
接触抵抗を測定したところ絶縁体であることがわかった
Comparative Example 4 Electrodes were attached in the same manner as in Example 4 except that polystyrene coating was not performed, and the sintered body was immersed in purified water for 8 hours. The electrode attached with carbon paste was peeled off, and the contact resistance of the surface was measured. It turned out that it was an insulator.

X線回折法により表面の結晶構造で測定したところY2
03、cuo、BaCO3の混合物であり、加水分解し
ていることがわかった。また、上記焼結体を浸漬した水
のpHは13を示し、蒸発乾固後得られた白色粉末を螢
光X線法により含有元素を測定したところBaが多量に
検出され、該焼結体表面が加水分解していることがわか
った。
As measured by the surface crystal structure using X-ray diffraction method, Y2
It was found that it was a mixture of 03, cuo, and BaCO3, and was hydrolyzed. In addition, the pH of the water in which the sintered body was immersed was 13, and when the white powder obtained after evaporation to dryness was measured for elements contained in it by fluorescent X-ray method, a large amount of Ba was detected, and the sintered body It was found that the surface was hydrolyzed.

1発明の効果コ 以上説明したように、本発明の超伝導性複合酸化物材料
は高湿度の環境でも安定な超伝導性を示す。
1 Effects of the Invention As explained above, the superconducting composite oxide material of the present invention exhibits stable superconductivity even in a high humidity environment.

Claims (1)

【特許請求の範囲】[Claims] アルカリ土類金属を含有する超伝導性複合酸化物層の表
面に防湿保護層を有することを特徴とする超伝導性複合
酸化物材料。
A superconducting composite oxide material comprising a moisture-proof protective layer on the surface of a superconducting composite oxide layer containing an alkaline earth metal.
JP62139662A 1987-06-05 1987-06-05 Superconducting compound oxide material Pending JPS63303813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62139662A JPS63303813A (en) 1987-06-05 1987-06-05 Superconducting compound oxide material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62139662A JPS63303813A (en) 1987-06-05 1987-06-05 Superconducting compound oxide material

Publications (1)

Publication Number Publication Date
JPS63303813A true JPS63303813A (en) 1988-12-12

Family

ID=15250494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62139662A Pending JPS63303813A (en) 1987-06-05 1987-06-05 Superconducting compound oxide material

Country Status (1)

Country Link
JP (1) JPS63303813A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433087A (en) * 1987-07-28 1989-02-02 Sumitomo Spec Metals Superconducting ceramics having superior water resistance
JPH01126205A (en) * 1987-07-06 1989-05-18 Sumitomo Electric Ind Ltd Superconducting thin film and its formation
JPH01126206A (en) * 1987-07-27 1989-05-18 Sumitomo Electric Ind Ltd Superconducting thin film
JPH01246106A (en) * 1988-03-29 1989-10-02 Mitsubishi Mining & Cement Co Ltd Superconducting oxide material
JPH02192615A (en) * 1989-01-20 1990-07-30 Ngk Insulators Ltd Metal coated superconductive ceramics compact and manufacture thereof
EP0484010A2 (en) * 1990-11-01 1992-05-06 Hughes Aircraft Company Passivation of thin film oxide super-conductors
US5116809A (en) * 1988-07-13 1992-05-26 Ngk Insulators, Ltd. Oxide series superconductive sintered body and method of producing the same
US5296458A (en) * 1988-02-03 1994-03-22 International Business Machines Corporation Epitaxy of high Tc superconducting films on (001) silicon surface

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126205A (en) * 1987-07-06 1989-05-18 Sumitomo Electric Ind Ltd Superconducting thin film and its formation
JPH01126206A (en) * 1987-07-27 1989-05-18 Sumitomo Electric Ind Ltd Superconducting thin film
JPS6433087A (en) * 1987-07-28 1989-02-02 Sumitomo Spec Metals Superconducting ceramics having superior water resistance
US5296458A (en) * 1988-02-03 1994-03-22 International Business Machines Corporation Epitaxy of high Tc superconducting films on (001) silicon surface
JPH01246106A (en) * 1988-03-29 1989-10-02 Mitsubishi Mining & Cement Co Ltd Superconducting oxide material
US5116809A (en) * 1988-07-13 1992-05-26 Ngk Insulators, Ltd. Oxide series superconductive sintered body and method of producing the same
JPH02192615A (en) * 1989-01-20 1990-07-30 Ngk Insulators Ltd Metal coated superconductive ceramics compact and manufacture thereof
EP0484010A2 (en) * 1990-11-01 1992-05-06 Hughes Aircraft Company Passivation of thin film oxide super-conductors

Similar Documents

Publication Publication Date Title
EP0284062B2 (en) Ceramic oxide superconductive composite material
JP3089294B2 (en) Manufacturing method of superconducting tape material
JPS63303813A (en) Superconducting compound oxide material
JP2975608B2 (en) Insulating composition
US5512542A (en) Metallic oxide with boron and process for manufacturing the same
Ramli et al. Microstructure and superconducting properties of Ag-substituted YBa2-xAgxCu3O7-δ ceramics prepared by sol-gel method
JP2603688B2 (en) Superconducting material reforming method
JP2645730B2 (en) Superconducting thin film
JP2653448B2 (en) Oxide superconducting element
JPS63242920A (en) Superconductor
JPH0238359A (en) Production of superconductor
Sah et al. Comparative studies of pure YBa2Cu3O7-ẟ prepared by modified thermal decomposition method against thermal treatment method
JP2601892B2 (en) Manufacturing method of Tl-based superconductor wiring pattern
JPH026366A (en) Oxide-based ceramic, substrate for producing superconducting ceramic film and production of superconducting ceramic film
JPH02162616A (en) Manufacture of oxide high-temperature superconducting film
JPH01257159A (en) Oxide superconducting material
JP2778119B2 (en) Composite oxide superconducting thin film and method for forming the same
JPH0745357B2 (en) Superconducting fibrous single crystal and method for producing the same
Vance Basic Properties of High-Tc Superconductors: Fabrication, Current Materials Research and Applications
JP2585621B2 (en) How to make superconducting material
JPH0453817B2 (en)
JPH01156463A (en) Thin superconductor film
JPH01157009A (en) Superconductor thin film
JPH012212A (en) Method for manufacturing superconducting composite oxide thin film
JPH02160623A (en) Production of bi-system complex oxide superconductor