JPH01257159A - Oxide superconducting material - Google Patents

Oxide superconducting material

Info

Publication number
JPH01257159A
JPH01257159A JP63082601A JP8260188A JPH01257159A JP H01257159 A JPH01257159 A JP H01257159A JP 63082601 A JP63082601 A JP 63082601A JP 8260188 A JP8260188 A JP 8260188A JP H01257159 A JPH01257159 A JP H01257159A
Authority
JP
Japan
Prior art keywords
superconducting material
sintering
oxide superconducting
delta
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63082601A
Other languages
Japanese (ja)
Other versions
JP2596964B2 (en
Inventor
Atsushi Tsuchiya
淳 土屋
Toshihiko Yoshitomi
吉富 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP63082601A priority Critical patent/JP2596964B2/en
Publication of JPH01257159A publication Critical patent/JPH01257159A/en
Application granted granted Critical
Publication of JP2596964B2 publication Critical patent/JP2596964B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To form an oxide superconducting material exhibiting superconducting characteristics even when oxygen is not satisfactorily absorbed in the material during sintering, by providing a specified compsn. CONSTITUTION:This oxide superconducting material has a compsn. represented by a formula CaxR1-xBa2Cu3O7-delta (where R is at least one kind of metal selected among Y and lanthanoids, 0.4<x<0.6 and 0<delta<1). The superconducting material may be obtd. by uniformly mixing compds. of the constituent elements such as oxides, salts or alkoxides in a prescribed ratio, drying and sintering the mixture. At this time, in order to allow a solid phase reaction to proceed satisfactorily, the powdery mixture is preferably press-molded and sintered in the form of pellets. The pref. sintering temp. is 920-940 deg.C. It is not especially required to slowly cool the sintered material and this material may be rapidly cooled by putting in liq. nitrogen after calcining.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は各種の超伝導応用装置や超伝導素子等に使用さ
れる酸化物超伝導材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to oxide superconducting materials used in various superconducting application devices, superconducting elements, and the like.

〔従来の技術〕[Conventional technology]

超伝導材料として、最近着目浴びている物質としてYB
a2Cu307−.5 (0<δ<7)がある。この物
質は高い臨界温度(Tc)をもつものの、300℃以上
の温度において酸素の吸蔵、放出が著しく、組成式Y、
Ba 2Cu30.−δの場合δ>o、左では正方晶系
となシ、超伝導特性を示さない事がわかっている。この
ため、該物質を焼結する際には900℃〜qtio℃で
焼成した後、一般に50℃/h程度の降温速度で徐冷し
て十分酸素を吸収させる必要がある。
YB is a substance that has recently attracted attention as a superconducting material.
a2Cu307-. 5 (0<δ<7). Although this substance has a high critical temperature (Tc), it absorbs and releases oxygen significantly at temperatures above 300°C, and has a compositional formula of Y.
Ba2Cu30. In the case of −δ, δ>o, the one on the left is a tetragonal system, and it is known that it does not exhibit superconducting properties. Therefore, when sintering the substance, it is necessary to sinter it at 900° C. to qtio° C. and then slowly cool it at a cooling rate of generally about 50° C./h to absorb enough oxygen.

一方超伝導材料は、磁石やコイルに使用する場合、使用
条件から高い電流密度をもつ事が要請されており、その
ためには粒と粒が十分よく接触した緻密な充填状態とす
る必要がある。ところが緻密化すると徐冷過程において
焼結体内部まで酸素を十分吸収させる事が難しい。
On the other hand, when superconducting materials are used in magnets and coils, they are required to have a high current density due to the usage conditions, and to achieve this, it is necessary to have a densely packed state in which the particles are in sufficient contact with each other. However, when the sintered body becomes dense, it becomes difficult to absorb enough oxygen into the interior of the sintered body during the slow cooling process.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

そこで、本発明者らは焼結過程において酸素を十分吸収
させなくても超伝導特性を示す酸化物超伝導材料につい
て鋭意検討した結果、本発明に到達した。
Therefore, the present inventors have conducted intensive studies on oxide superconducting materials that exhibit superconducting properties even without sufficient absorption of oxygen during the sintering process, and as a result, have arrived at the present invention.

〔課題を解決するだめの手段〕[Failure to solve the problem]

即ち、本発明の要旨は組成式 CaXR,−xBa2Cu、O,−6 (式中、Rはイツトリウムおよび・ランタノイドから選
ばれた少なくとも7種の金属を表わす。
That is, the gist of the present invention is the composition formula CaXR, -xBa2Cu, O, -6 (wherein R represents at least seven metals selected from yttrium and lanthanoids).

XはQ、lI<X<0.6、好ましくはo、qs≦X≦
o、!rsの数を表わし、δは0くδく/の数を表わす
。)で示される酸化物超伝導材料に存する。
X is Q, lI<X<0.6, preferably o, qs≦X≦
o,! represents the number of rs, and δ represents the number of 0 × δ ×/. ) exists in oxide superconducting materials shown in

具体的には、例えばCax(y、−、Ery)、−XB
a2Cu307−δ、CaX(Y、−yYby)、−x
Ba2Cu30,4 (式中、Xは0、ダ< x < 
0.乙の数、yは0≦y≦7の数、δはOくδく/の数
をそれぞれ表わす。)等が挙げられる。
Specifically, for example, Cax (y, -, Ery), -XB
a2Cu307-δ, CaX(Y, -yYby), -x
Ba2Cu30,4 (where X is 0, Da<x<
0. The number O, y represents the number 0≦y≦7, and δ represents the number Okuδku/, respectively. ) etc.

原料であるランタノイド化合物、カルシウム化合物、バ
リウム化合物および銅化合物としてはそれぞれの元素の
炭酸塩、水酸化物、硝酸塩、硫酸塩、蓚酸塩、塩化物及
びアルコキサイド等を使用することができる。秤量され
た各元素の化合物は、例えば粉末混合法、湿式共沈法、
湿式蒸発乾固法、アルコキシド法等、従来から知られて
いる均一混合を目的とする方法により混合される。得ら
れた混合物は乾燥されたのち焼成される。
Carbonates, hydroxides, nitrates, sulfates, oxalates, chlorides, alkoxides, etc. of the respective elements can be used as the lanthanide compounds, calcium compounds, barium compounds, and copper compounds that are raw materials. The weighed compounds of each element are prepared by, for example, powder mixing method, wet co-precipitation method,
Mixing is performed by a conventionally known method aiming at uniform mixing, such as a wet evaporation to dryness method or an alkoxide method. The resulting mixture is dried and then fired.

この際、固相反応をより十分ならしめる為には粉末を加
圧成形しペレット状にして焼成することが好ましい。
At this time, in order to make the solid phase reaction more sufficient, it is preferable that the powder is press-molded into pellets and fired.

加圧成形における成形圧力は粉体をハンドリングできる
程度の圧粉状態が得られる程度であればよい。
The molding pressure in pressure molding may be any pressure that can provide a compacted powder state that allows the powder to be handled.

焼結は、原料圧粉体を用いてもよいが試料の均一性を高
めるため、goθ〜qoo℃、70時間程度の仮焼工程
を経て、その後、粉砕、成型、本焼成してもかまわない
。焼結温度は900℃から940℃の間、望ましくは9
コ0℃からqlIo℃の範囲である。焼結時間は7時間
以上であれば充分であるが、望ましくはS時間以上を必
要とする。
For sintering, a raw powder compact may be used, but in order to improve the uniformity of the sample, a calcination step for about 70 hours at goθ~qoo°C may be performed, followed by pulverization, molding, and main firing. . The sintering temperature is between 900°C and 940°C, preferably 9
The range is from 0°C to qlIo°C. A sintering time of 7 hours or more is sufficient, but desirably a time of S or more is required.

焼成した材料は、特に徐冷する必要はなく、例えば焼成
後液体窒素中に入れて急冷してもよい○ 即ち、本発明においては、焼成後徐冷して酸素を十分吸
収させなくても超伝導特性を示す酸化物超伝導材料が得
られる。また、焼成後の冷却時間を大幅に短縮すること
ができる。さらに高度に緻密化し、高い電流密度を得る
ことができる。
There is no particular need to slowly cool the fired material; for example, it may be placed in liquid nitrogen after firing to rapidly cool it. In other words, in the present invention, it is not necessary to slowly cool the material after firing to absorb enough oxygen. An oxide superconducting material exhibiting conductive properties is obtained. Moreover, the cooling time after firing can be significantly shortened. Further, it is possible to achieve a high degree of densification and obtain a high current density.

〔実施例〕〔Example〕

以下実施例により本発明を具体的に説明するが、本発明
はその要旨を超えない限υ以下の実施例に限定されるも
のではない。
The present invention will be specifically explained below with reference to examples, but the present invention is not limited to the following examples as long as they do not go beyond the gist of the invention.

実施例/ 各々純度?9.9%以上の試薬を用いた。Example/ Purity of each? 9.9% or more of reagent was used.

酸化イツトリウム   (Y2O2) 炭酸カルシウム  (CaCO3) 炭酸バリウム  (BaCO3) 酸   化   銅   (CuO) の各粉末をY : Ca : Ba : Cuの原子比
でθ、j−: 0.k : 2 : 3となるように秤
量後、メノウ乳鉢を用いて湿式混合法により均一に混合
した。これを乾燥後/ t/z2の圧力で直径コOtm
φ、厚み/*3 mに加圧成型し、次いで空気中9’l
O℃で20時間にわたって焼成した。焼成後試料を液体
窒素中に入れ急冷を行なった。
Each powder of yttrium oxide (Y2O2), calcium carbonate (CaCO3), barium carbonate (BaCO3), and copper oxide (CuO) was prepared at an atomic ratio of Y: Ca: Ba: Cu with θ, j-: 0. After weighing so that k: 2: 3 was obtained, the mixture was uniformly mixed by a wet mixing method using an agate mortar. After drying this/at a pressure of t/z2, the diameter is reduced to Otm.
Pressure molded to φ, thickness/*3 m, then 9'l in air
Calcined at 0° C. for 20 hours. After firing, the sample was placed in liquid nitrogen and rapidly cooled.

得られた酸化物超伝導材料の組成は Cao、5Yo、5Ba2Cu30.−δであった□ 
Tc onset (’K)およびTc end (’
K)の値を第1表に示した。
The composition of the obtained oxide superconducting material was Cao, 5Yo, 5Ba2Cu30. −δ was □
Tc onset ('K) and Tc end ('
K) values are shown in Table 1.

第7図に得られた酸化物超伝導材料の電気抵抗の温度変
化を示した。
FIG. 7 shows the temperature change in electrical resistance of the obtained oxide superconducting material.

比較例/ 組成がYBa2Cu307−δ となるように各試薬を
秤量したこと以外は実施例/と全く同様の方法で酸化物
材料を製造した。Tc onset (’K)およびT
c end (°K)の値を第1表に示した。
Comparative Example/An oxide material was produced in exactly the same manner as in Example/, except that each reagent was weighed so that the composition was YBa2Cu307-δ. Tc onset ('K) and T
The values of c end (°K) are shown in Table 1.

第2図に得られたYBa2Cu307−δの電気抵抗の
温度変化を示した。
FIG. 2 shows the temperature change in electrical resistance of the obtained YBa2Cu307-δ.

第1図および第2図より明らかなように、従来Tc=9
0に級といわれているYBa2Cu30.δは、焼成後
急冷すると高温時の酸素不足のまま凍結してしまうため
超伝導を示さない。ところが、本発明のCao−、Yo
、5Ba2Cu、O,−,5ではTcのonsetおよ
びTcのendは低下するものの、急冷により酸素の供
給景が少なくても超伝導を示す。
As is clear from FIGS. 1 and 2, conventional Tc=9
YBa2Cu30, which is said to be of grade 0. If δ is rapidly cooled after firing, it will freeze due to the lack of oxygen at high temperatures, so it does not exhibit superconductivity. However, in the present invention, Cao-, Yo
, 5Ba2Cu, O,-,5, although the Tc onset and Tc end decrease, they exhibit superconductivity even when the oxygen supply is small due to rapid cooling.

実施例−〜3および比較例2〜7 第1表に示す組成となるように各試料を秤量したこと以
外は実施例/と全く同様の方法で酸化物材料を製造した
。Tc onset (’K)およびTc end (
’K)の値を第1表に示した。
Examples 3 and Comparative Examples 2 to 7 Oxide materials were produced in exactly the same manner as in Examples except that each sample was weighed to have the composition shown in Table 1. Tc onset ('K) and Tc end (
'K) values are shown in Table 1.

第7表 〔発明の効果〕 本発明によれば、高温から急冷した材料においても超伝
導を示す材料を得ることができるため、製造工程におい
て冷却による酸素吸収時間を短縮することができる。ま
た、本発明の超伝導材料は線材化して磁石用のコイルや
、薄膜化して5QUIDなどの超伝導デバイスとして用
いることができる。
Table 7 [Effects of the Invention] According to the present invention, it is possible to obtain a material exhibiting superconductivity even when the material is rapidly cooled from a high temperature, so that the oxygen absorption time due to cooling can be shortened in the manufacturing process. Further, the superconducting material of the present invention can be made into a wire to be used as a coil for a magnet, or made into a thin film to be used as a superconducting device such as a 5QUID.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例/で得られたCao、Yo、Ba2C
u30.δの抵抗率温度特性を示しだ図である。 第2図は、比較例/で得られだYBa2Cu307−δ
の抵抗率温度特性を示した図である。 出 願 人  三菱化成工業株式会社 代 理 人 弁理士長谷用  − ほか/名
Figure 1 shows Cao, Yo, Ba2C obtained in Example/
u30. FIG. 3 is a diagram showing the resistivity-temperature characteristics of δ. Figure 2 shows YBa2Cu307-δ obtained in Comparative Example/
FIG. 3 is a diagram showing the resistivity temperature characteristics of Applicant: Mitsubishi Chemical Industries, Ltd. Agent: Patent Attorney Hase - Others/Names

Claims (1)

【特許請求の範囲】[Claims] (1)組成式 Ca_xR_1_−_xBa_2Cu_3O_7_−_
δ(式中、Rはイットリウムおよびランタノイドから選
ばれた少なくとも1種の金属を表 わす。xは0.4<x<0.6の数を表わし、δは0<
δ<1の数を表わす。) で示される酸化物超伝導材料。
(1) Composition formula Ca_xR_1_-_xBa_2Cu_3O_7_-_
δ (wherein R represents at least one metal selected from yttrium and lanthanoids, x represents a number of 0.4<x<0.6, and δ represents 0<
Represents a number where δ<1. ) is an oxide superconducting material.
JP63082601A 1988-04-04 1988-04-04 Oxide superconducting material Expired - Lifetime JP2596964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63082601A JP2596964B2 (en) 1988-04-04 1988-04-04 Oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63082601A JP2596964B2 (en) 1988-04-04 1988-04-04 Oxide superconducting material

Publications (2)

Publication Number Publication Date
JPH01257159A true JPH01257159A (en) 1989-10-13
JP2596964B2 JP2596964B2 (en) 1997-04-02

Family

ID=13779003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63082601A Expired - Lifetime JP2596964B2 (en) 1988-04-04 1988-04-04 Oxide superconducting material

Country Status (1)

Country Link
JP (1) JP2596964B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230618A (en) * 1988-07-20 1990-02-01 Natl Inst For Res In Inorg Mater Oxide high-temperature superconductor
WO1991000847A1 (en) * 1989-07-07 1991-01-24 International Superconductivity Technology Center Oxide superconductor and method of producing the same
JP2003095652A (en) * 2001-09-20 2003-04-03 Internatl Superconductivity Technology Center 123 superconductor of calcium-substituted rare-earth series

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAPANESE JOURNAL OF APPLIED PHYSICS *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230618A (en) * 1988-07-20 1990-02-01 Natl Inst For Res In Inorg Mater Oxide high-temperature superconductor
WO1991000847A1 (en) * 1989-07-07 1991-01-24 International Superconductivity Technology Center Oxide superconductor and method of producing the same
JP2003095652A (en) * 2001-09-20 2003-04-03 Internatl Superconductivity Technology Center 123 superconductor of calcium-substituted rare-earth series

Also Published As

Publication number Publication date
JP2596964B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
JPH01257159A (en) Oxide superconducting material
JPH02133322A (en) Bi-pb-sr-ba-ca-cu-o superconducting material
JPH0251468A (en) Production of yttrium-barium-copper oxide powder and superconducting yttrium-barium-copper oxide sintered body
JPS63285812A (en) Manufacture of oxide superconductive wire material
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JP2598055B2 (en) Oxide superconducting thin film for electronic devices
JP2635704B2 (en) Method for producing Bi-based oxide high-temperature superconductor
JPS63318015A (en) Oxide superconductor and its manufacture
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JP2556096B2 (en) Superconductor manufacturing method
JP2556095B2 (en) Superconductor manufacturing method
JPH07242424A (en) Oxide superconducting structure and production thereof
JP2748943B2 (en) Oxide superconductor
JP2696691B2 (en) Oxide superconducting material
JPS63315566A (en) Perovskite type oxide superconducting material having high jc and tc
JP2748942B2 (en) Oxide superconductor
EP0406006A2 (en) Oxide superconductor
JP2637617B2 (en) Manufacturing method of superconducting material
JPH02175649A (en) Oxide-based high-temperature superconducting ceramics
JPH01160855A (en) Production of superconductor
JPH02248321A (en) Oxide superconductor
JPH01108149A (en) Oxide superconducting material
JPS63315563A (en) Superconductor
JPS63252921A (en) Oxide superconductor
JPH03122017A (en) Superconducting material