JPH02175649A - Oxide-based high-temperature superconducting ceramics - Google Patents

Oxide-based high-temperature superconducting ceramics

Info

Publication number
JPH02175649A
JPH02175649A JP63327709A JP32770988A JPH02175649A JP H02175649 A JPH02175649 A JP H02175649A JP 63327709 A JP63327709 A JP 63327709A JP 32770988 A JP32770988 A JP 32770988A JP H02175649 A JPH02175649 A JP H02175649A
Authority
JP
Japan
Prior art keywords
temperature
oxide
based high
temperature superconducting
superconducting ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63327709A
Other languages
Japanese (ja)
Inventor
Kakuei Matsubara
松原 覚衛
Hiroshi Daimon
宏 大門
Kazuhiro Fujii
一宏 藤井
Toshihiko Abu
俊彦 阿武
Hiroshi Miura
洋 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP63327709A priority Critical patent/JPH02175649A/en
Publication of JPH02175649A publication Critical patent/JPH02175649A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide readily producible oxide-based high-temperature superconducting ceramics having the high critical temperature and stable superconductive characteristics by composing the ceramics from Bi, Sr, Ca, Li, copper and oxygen at a specific molar ratio. CONSTITUTION:The above-mentioned oxide-based high-temperature superconducting ceramics are mainly composed of Bi, Sr, Ca, Li, copper and oxygen and preferably have the composition expressed by the formula (1<=v<=3; 1<=w<=2.2; 0.5<=x<=1; 2<=y<=3.5; 6<=z<=12; 0.05<=y/x<=0.5; 1<=x+y<=2.5). The aforementioned superconducting ceramics are preferably produced by a method for mixing powders of Bi2O3, SrCO3, CaCO3 and CuO at a prescribed molar ratio, calcining the resultant mixture, then adding LiCO3 at a prescribed molar ratio, forming and sintering the resultant mixture.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、酸化物系高温超電導セラミックス、具体的に
はBi、 Sr、 Ca、 Li、および銅を含む酸化
物系高温超電導セラミックスに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to oxide-based high-temperature superconducting ceramics, specifically oxide-based high-temperature superconducting ceramics containing Bi, Sr, Ca, Li, and copper.

(従来技術及びその問題点) Y−Ba−Cu−0系に代表される稀土類元素−アルカ
リ土類元素−銅の酸化物からなる酸素欠損型層状ペロブ
スカイト構造を有する高温超電導セラミックス、B1−
Ca−5r−Cu−0系に代表されるBi−アルカリ土
類元素−銅酸化物系及びTl−Ca−Ba−Cu−0系
に代表されるTI−アルカリ土類元素−銅酸化物系高温
超電導セラミックスは、交通機関、重電機器、コンピュ
ーター、医療機器の多方面への応用が期待されている。
(Prior art and its problems) High-temperature superconducting ceramic having an oxygen-deficient layered perovskite structure consisting of rare earth element-alkaline earth element-copper oxide represented by Y-Ba-Cu-0 system, B1-
Bi-alkaline earth element-copper oxide system represented by Ca-5r-Cu-0 system and TI-alkaline earth element-copper oxide system represented by Tl-Ca-Ba-Cu-0 system Superconducting ceramics are expected to have many applications in transportation, heavy electrical equipment, computers, and medical equipment.

これらの酸化物系高温超電導セラミックスは、いずれも
液体窒素以上で超電導状態になるため、経済的に大きな
メリットがある。
These oxide-based high-temperature superconducting ceramics all become superconducting at temperatures higher than liquid nitrogen, so they have great economic advantages.

しかしながら、上記いずれの高温超電導セラミックスも
、製造の困難さ、超電導特性の安定性などの各種の問題
点が指摘されている。
However, various problems have been pointed out in all of the above-mentioned high-temperature superconducting ceramics, such as difficulty in manufacturing and stability of superconducting properties.

上記超電導セラミックスの内、Bi−アルカリ土類元素
−銅酸化物系は、これまで構造の異なった三種類の高温
超電導セラミックス(BizSr2CuOy、Bi25
rzCalCu20y 、 BizSr2CazCtl
+Oy )が知られているが(Japanese Jo
urnal of AppliedPhysics 、
 1988年、27巻、No、9、レターの1665ペ
ージ)、液体窒素温度以上の臨界温度を有するものは一
種類(BizSr2.CazCutOy)であり、その
製造においては、焼成温度範囲が狭いため制御が困難で
、さらに焼成時間が長いという欠点があった(Japa
nese  Journal  of  Applie
d  Physics  、  1988年、27巻、
No、8、レターの1460ページ)。
Among the superconducting ceramics mentioned above, the Bi-alkaline earth element-copper oxide system has so far been classified into three types of high-temperature superconducting ceramics with different structures (BizSr2CuOy, Bi25
rzCalCu20y, BizSr2CazCtl
+Oy ) is known, but (Japanese Jo
urnal of Applied Physics,
(1988, Vol. 27, No. 9, Letter, p. 1665), there is only one type (BizSr2.CazCutOy) that has a critical temperature higher than the liquid nitrogen temperature, and in its production, control is difficult because the firing temperature range is narrow. It was difficult and the firing time was long (Japanese).
nese Journal of Applie
d Physics, 1988, Volume 27,
No. 8, page 1460 of the letter).

従って、製造法が容易で、臨界温度が高いなどの超電導
特性が優れた、且つ、充分安定である新たな高温超電導
体を得るため、いろいろ検討されている。
Therefore, various studies have been made to obtain a new high-temperature superconductor that is easy to manufacture, has excellent superconducting properties such as a high critical temperature, and is sufficiently stable.

(問題点解決のための技術的手段) 本発明者等は、上記問題点について鋭意研究した結果、
本発明に至った。
(Technical means for solving the problem) As a result of intensive research into the above problem, the present inventors found that
This led to the present invention.

本発明は、主として、ビスマス(Bi)、ストロンチウ
ム(Sr)、カルシウム(Ca)、リチウム(Li)、
銅および酸素からなる酸化物系高温超電導セラミックス
に関する。
The present invention mainly uses bismuth (Bi), strontium (Sr), calcium (Ca), lithium (Li),
This article relates to oxide-based high-temperature superconducting ceramics consisting of copper and oxygen.

本発明の酸化物系高温超電導セラミックスの好ましい組
成は、式BizSrvCawLiXCuyO,で示され
る。
A preferred composition of the oxide-based high temperature superconducting ceramic of the present invention is represented by the formula BizSrvCawLiXCuyO.

上記式において、V、W、X、y、および2は、1.0
<v<3.0.1.0<w<2.2.0.5<x<1゜
0.2.’0<y<  3.5.5.0 < z < 
12.0、且つ、0゜05< y/x < 0.5 、
および1.0 < x+y < 2.5の範囲の数値で
ある。
In the above formula, V, W, X, y, and 2 are 1.0
<v<3.0.1.0<w<2.2.0.5<x<1°0.2. '0<y<3.5.5.0<z<
12.0, and 0°05<y/x<0.5,
and a numerical value in the range of 1.0 < x+y < 2.5.

本発明における、主として、旧、Sr、 Ca、 Li
、銅および酸素からなる酸化物系高温超電導セラミック
スの製造法としては特に限定されないが、例えば、所望
の超電導セラミックスの各組成元素の化合物を乾式混合
法あるいは湿式混合法で混合して原料粉末を調製し、原
料粉末を仮焼成、粉砕混合後、成形あるいは成形せずに
本焼成する方法が挙げられる。この場合、Liの化合物
を仮焼成した後に添加混合して原料粉末を調製すること
が特に好ましい。
In the present invention, mainly old, Sr, Ca, Li
The method for producing oxide-based high-temperature superconducting ceramics consisting of copper and oxygen is not particularly limited, but for example, a raw material powder may be prepared by mixing compounds of each compositional element of the desired superconducting ceramic using a dry mixing method or a wet mixing method. However, there is a method in which the raw material powder is temporarily fired, pulverized and mixed, and then molded or main fired without being molded. In this case, it is particularly preferable to pre-calcinate the Li compound and then add and mix it to prepare the raw material powder.

上記の原料粉末を製造する方法の一つとしての乾式混合
法は、B1、Sr、 Ca、銅の酸化物、硝酸塩、亜硝
酸塩、炭酸塩、有機酸塩、アルコキシド、あるいは錯体
の粉末、例えば、旧203.5rC03、CaCO3、
CuOの粉末を出発原料として、ボールミル、播潰機あ
るいは乳棒・乳鉢などで粉砕、混合した後に仮焼結し、
Liの酸化物、硝酸塩、亜硝酸塩、炭酸塩、有機酸塩、
アルコキシド、錯体、あるいはハロゲン化物の粉末を添
加、粉砕混合して原料粉末を調製する方法である。特に
L’iのハロゲン化物を用いることによって、本焼成の
温度を低くすることができる。
The dry mixing method as one of the methods for producing the above-mentioned raw material powder is used to prepare powders of B1, Sr, Ca, copper oxides, nitrates, nitrites, carbonates, organic acid salts, alkoxides, or complexes, for example. Old 203.5rC03, CaCO3,
Using CuO powder as a starting material, it is ground and mixed using a ball mill, crusher, pestle, mortar, etc., and then pre-sintered.
Li oxides, nitrates, nitrites, carbonates, organic acid salts,
This is a method for preparing raw material powder by adding powder of alkoxide, complex, or halide, grinding and mixing. In particular, by using a halide of L'i, the temperature of the main firing can be lowered.

湿式混合法は、乾式法と同様の出発原料に、出発原料と
反応せず実質的に不溶な溶媒を加えて、機械的に混合す
る方法である。その他に原料粉末を調製する方法として
は、ゾル−ゲル法、フラックス法及び水熱法などが挙げ
られる。
The wet mixing method is a method in which a solvent that does not react with and is substantially insoluble in the starting materials is added to the same starting materials as in the dry method, and the mixture is mechanically mixed. Other methods for preparing the raw material powder include a sol-gel method, a flux method, and a hydrothermal method.

本発明における高温超電導セラミックスから製造できる
成形体の形状については特別の制限はなく、膜、線材、
型物などのそれ自体公知の成形法すべてが適用できる。
There are no particular restrictions on the shape of the molded body that can be manufactured from the high-temperature superconducting ceramics in the present invention, such as membranes, wires,
All molding methods known per se, such as molding, can be applied.

例えば、前記原料粉末をペーストとして基板に塗布、焼
結して薄膜状に成形したり、高温超電導セラミックスの
構成成分からなる単一あるいは複数のターゲットを使用
して、スパッタリング、真空蒸着等の物理化学的な方法
も、薄膜形成に適用される。さらに原料粉末を熔融し、
引き延ばして線材とすることができる。この他にセラミ
クツスゲリーン体の成形法として知られているラバープ
レス法、射出成形法、加圧成形法、泥しよう鋳込み法な
どによって成形体を調製することができる。
For example, applying the raw material powder as a paste to a substrate, sintering it and forming it into a thin film, or using a single or multiple targets made of high-temperature superconducting ceramic components to perform physical chemical processes such as sputtering and vacuum evaporation. Other methods are also applicable to thin film formation. Furthermore, the raw material powder is melted,
It can be drawn into a wire rod. In addition, the molded body can be prepared by a rubber press method, an injection molding method, a pressure molding method, a slurry casting method, etc., which are known as methods for molding ceramic geline bodies.

本発明では、原料粉末を調製する場合の仮焼成する温度
は、700〜900°Cであり、好ましくは750〜8
50°C1特に好ましい温度範囲は、810〜840”
Cである。本焼成の温度は、700〜900°Cであり
、好ましくは750〜880°C1特に好ましい温度範
囲は、780〜850°Cである。
In the present invention, the temperature for pre-calcination when preparing the raw material powder is 700 to 900°C, preferably 750 to 8°C.
50°C1 Particularly preferred temperature range is 810-840"
It is C. The temperature of the main firing is 700 to 900°C, preferably 750 to 880°C, and a particularly preferable temperature range is 780 to 850°C.

仮焼成および本焼成で加熱する雰囲気は、空気あるいは
酸素中が好ましい。加熱時間は、10分間〜60時間、
好ましくは1〜30時間、特に好ましくは3〜15時間
の範囲である。
The atmosphere for heating during preliminary firing and main firing is preferably air or oxygen. Heating time is 10 minutes to 60 hours.
The time period is preferably 1 to 30 hours, particularly preferably 3 to 15 hours.

(実施例) 以下に本発明の実施例を示す。(Example) Examples of the present invention are shown below.

実施例l Bi201.5rCO,、CaC0,、およびCuO(
モル比で2:2:1.4:3)の粉末をボールミルで1
2時間、溶媒としてエタノールと、ジルコニア製のボー
ルを用いて攪拌混合した。混合後、エタノールスラリー
を濾過し、分離された粉体を60°Cで乾燥した。乾燥
粉体を830°C112時間空気中で仮焼成した。次い
で仮焼成した粉体にLiC0z (Li/Caモル比が
0.25)を加えてメノウによって混合した。この混合
粉体2gを1000kg/c+flで直径20mm、厚
さ約2mmの円板状のペレットに成形し、電気炉で84
0°C112時間空気中で本焼成した。
Example l Bi201.5rCO,, CaC0, and CuO(
Powder with a molar ratio of 2:2:1.4:3) was mixed with a ball mill.
The mixture was stirred and mixed for 2 hours using ethanol as a solvent and a zirconia ball. After mixing, the ethanol slurry was filtered and the separated powder was dried at 60°C. The dry powder was calcined in air at 830°C for 112 hours. Next, LiC0z (Li/Ca molar ratio 0.25) was added to the calcined powder and mixed using an agate. 2 g of this mixed powder was formed into a disc-shaped pellet with a diameter of 20 mm and a thickness of approximately 2 mm at 1000 kg/c+fl, and was
Main firing was carried out in air at 0°C for 112 hours.

得られた成形焼結体の交流帯磁率と温度の関係(第1図
の曲線1)を調べた結果、93.5に付近から反磁化が
認められた。
As a result of examining the relationship between AC magnetic susceptibility and temperature (curve 1 in FIG. 1) of the obtained shaped sintered body, demagnetization was observed from around 93.5.

成形焼結体の抵抗と温度との関係(第2図の曲線1)を
調べた結果、超電導転移開始温度が93.1にで、抵抗
が80にで零になった。
As a result of examining the relationship between the resistance and temperature of the shaped sintered body (curve 1 in Figure 2), the superconducting transition starting temperature was found to be 93.1, and the resistance became zero at 80.

実施例2 Bi203、SrCO3、CaCO3、およびCuO(
モル比で2=2:1.6:3)の粉末をボールミルで1
2時間、溶媒としてエタノールと、ジルコニア製のボー
ルを用いて攪拌混合した。混合後、エバポレーターで脱
溶媒し、残された粉体を60°Cで乾燥した。この乾燥
粉体を830°C112時間空気中で仮焼成した。仮焼
成した粉体とLiF(Li/Caモル比0.25)をメ
ノウを用いて混合した。実施例1と同様にペレットに成
形し、電気炉で785°C115時間空気中で本焼成し
た。
Example 2 Bi203, SrCO3, CaCO3, and CuO(
Powder with a molar ratio of 2 = 2:1.6:3) was mixed with a ball mill to 1
The mixture was stirred and mixed for 2 hours using ethanol as a solvent and a zirconia ball. After mixing, the solvent was removed using an evaporator, and the remaining powder was dried at 60°C. This dry powder was calcined in air at 830° C. for 112 hours. The calcined powder and LiF (Li/Ca molar ratio 0.25) were mixed using agate. It was molded into pellets in the same manner as in Example 1, and fired in air at 785° C. for 115 hours in an electric furnace.

得られた成形焼結体の交流帯磁率と温度の関係を調べ、
90.3に付近から反磁化が認められた。
The relationship between AC magnetic susceptibility and temperature of the obtained shaped sintered body was investigated,
Demagnetization was observed near 90.3.

実施例3 BizOa、5rC(L+、BaCO3、およびCuO
(モル比で2:2:2:3)の粉末を実施例1と同様に
混合、仮焼成し、1、il’(Li/Caモル比0,1
)を加え、ペレットに成形した後、電気炉で855°C
112時間空気中で本焼成した。
Example 3 BizOa, 5rC(L+, BaCO3, and CuO
Powders of (2:2:2:3 in molar ratio) were mixed and calcined in the same manner as in Example 1, and 1,il' (Li/Ca molar ratio 0,1
) and formed into pellets, heated at 855°C in an electric furnace.
Main firing was performed in air for 112 hours.

得られた成形焼結体の交流帯磁率と温度の関係を調べ、
90.3に付近から反磁化が認められた。
The relationship between AC magnetic susceptibility and temperature of the obtained shaped sintered body was investigated,
Demagnetization was observed near 90.3.

比較例I LiFを使用せず、本焼成を840°C112時間空気
中で行った以外は実施例3と同様に成形焼結体を製造し
た。
Comparative Example I A shaped sintered body was produced in the same manner as in Example 3, except that LiF was not used and the main firing was performed at 840° C. for 112 hours in air.

得られた成形焼結体の交流帯磁率と温度の関係(第1図
の曲線2)を調べ、75.4に付近から反磁化が認めら
れた。
The relationship between AC magnetic susceptibility and temperature (curve 2 in FIG. 1) of the obtained shaped sintered body was examined, and demagnetization was observed from around 75.4.

また、成形焼結体の抵抗と温度との関係(第2図の曲線
2)を調べた結果、超電導転移開始温度が82.4にで
、抵抗が70.1にで零になった。
Further, as a result of examining the relationship between the resistance and temperature of the shaped sintered body (curve 2 in FIG. 2), the superconducting transition starting temperature was found to be 82.4, and the resistance became zero at 70.1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1及び比較例1の成形焼結体の交流帯
磁率と温度の関係を示している。 第2図は、実施例1及び比較例1の成形焼結体の電気抵
抗と温度の関係を示している。 特許出願人    宇部興産株式会社
FIG. 1 shows the relationship between AC magnetic susceptibility and temperature of the shaped sintered bodies of Example 1 and Comparative Example 1. FIG. 2 shows the relationship between the electrical resistance and temperature of the shaped sintered bodies of Example 1 and Comparative Example 1. Patent applicant: Ube Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)主として、ビスマス(Bi)、ストロンチウム(
Sr)、カルシウム(Ca)、リチウム(Li)、銅お
よび酸素からなる酸化物系高温超電導セラミックス。
(1) Mainly bismuth (Bi), strontium (
An oxide-based high-temperature superconducting ceramic consisting of Sr), calcium (Ca), lithium (Li), copper, and oxygen.
(2)式Bi_zSr_vCa_wLi_xCu_yO
_zで示される特許請求の範囲第1項記載の酸化物系高
温超電導セラミックス。 (上記式において、v、w、x、y、およびzは、1.
0<v<3.0、1.0<w<2.2、0.5<x<1
.0、2.0<y<3.5、6.0<z<12.0、且
つ、0.05<y/x<0.5、1.0<x+y<2.
5の範囲の数値である。)
(2) Formula Bi_zSr_vCa_wLi_xCu_yO
The oxide-based high-temperature superconducting ceramic according to claim 1, indicated by _z. (In the above formula, v, w, x, y, and z are 1.
0<v<3.0, 1.0<w<2.2, 0.5<x<1
.. 0, 2.0<y<3.5, 6.0<z<12.0, and 0.05<y/x<0.5, 1.0<x+y<2.
It is a numerical value in the range of 5. )
JP63327709A 1988-12-27 1988-12-27 Oxide-based high-temperature superconducting ceramics Pending JPH02175649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63327709A JPH02175649A (en) 1988-12-27 1988-12-27 Oxide-based high-temperature superconducting ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63327709A JPH02175649A (en) 1988-12-27 1988-12-27 Oxide-based high-temperature superconducting ceramics

Publications (1)

Publication Number Publication Date
JPH02175649A true JPH02175649A (en) 1990-07-06

Family

ID=18202111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63327709A Pending JPH02175649A (en) 1988-12-27 1988-12-27 Oxide-based high-temperature superconducting ceramics

Country Status (1)

Country Link
JP (1) JPH02175649A (en)

Similar Documents

Publication Publication Date Title
JPH02175649A (en) Oxide-based high-temperature superconducting ceramics
JPH02133322A (en) Bi-pb-sr-ba-ca-cu-o superconducting material
JP2598055B2 (en) Oxide superconducting thin film for electronic devices
JPH0274556A (en) Oxide-based high-temperature superconducting ceramics
JP2556096B2 (en) Superconductor manufacturing method
JP2597578B2 (en) Superconductor manufacturing method
JP2597579B2 (en) Superconductor manufacturing method
JP2696691B2 (en) Oxide superconducting material
JP2632543B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
JPS63303851A (en) Sintered body of superconducting ceramic
JPH0662332B2 (en) Method for producing oxide-based superconducting material
JPH01119555A (en) Production of ceramic superconducting material
JPH0259466A (en) Oxide superconducting sintered body
JPH02196058A (en) Production of superconductor
JPH01164785A (en) Production of oxide superconductor
JPH0459654A (en) Oxide superconductor
JPH02196061A (en) Production of superconductor
JPH01278459A (en) Production of superconductor
JPS63270309A (en) Oxide superconductor
JPH01179719A (en) Oxide superconductor and its production
JPH01157452A (en) Fiber reinforced superconductor
JPH01278467A (en) Production of superconductor
JPH01278461A (en) Production of superconductor
JPH01278458A (en) Production of superconductor
JPH01172208A (en) High density oxide superconducting material and its production