JPH01119555A - Production of ceramic superconducting material - Google Patents

Production of ceramic superconducting material

Info

Publication number
JPH01119555A
JPH01119555A JP62275635A JP27563587A JPH01119555A JP H01119555 A JPH01119555 A JP H01119555A JP 62275635 A JP62275635 A JP 62275635A JP 27563587 A JP27563587 A JP 27563587A JP H01119555 A JPH01119555 A JP H01119555A
Authority
JP
Japan
Prior art keywords
ceramic
powder
cooled
cooling rate
calcined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62275635A
Other languages
Japanese (ja)
Inventor
Takenobu Sakai
武信 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP62275635A priority Critical patent/JPH01119555A/en
Publication of JPH01119555A publication Critical patent/JPH01119555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To produce the title uniform and dense ceramic superconductive material having a high superconductive critical temp. Tc by cooling the calcined and sintered Y-Ba-Cu-O based ceramic mixed powder to a prescribed temp. at a specified cooling rate. CONSTITUTION:The Y-Ba-Cu-O based ceramic powder contg. Y2O3, BaCO3, and CuO in a specified ratio is mixed by a ball mill. The mixed powder is placed in an Al2O3 crucible, and calcined at about 850 deg.C. The calcined powder is cooled from the calcination temp. to 500 deg.C at a cooling rate of 100-500 deg.C/hr. The obtained cooled ceramic is crushed, and the calcination and sintering are repeated plural times. The obtained calcined powder is press-formed into a specified shape. The formed product is sintered at about 980 deg.C, and then cooled to 500 deg.C at a cooling rate of 100-500 deg.C/hr. By this method, a uniform superconductive phase free of an impurity phase is formed, and a ceramic superconductive material having a high superconductive critical temp. Tc is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミック超伝導材料の製造方法に係り、特に
均一で緻密で高い超伝導臨界温度T、を有するセラミッ
ク超伝導材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a ceramic superconducting material, and particularly to a method for manufacturing a ceramic superconducting material that is uniform, dense, and has a high superconducting critical temperature T.

〔従来の技術〕[Conventional technology]

セラミック系超伝導材料が発見されて以来、該超伝導材
料の研究、開発が急速に発展した。昭和62年末にはY
−Ba−Cu−0系で超伝導臨界温度(Tc)=90K
を作ることができた。
Since the discovery of ceramic superconducting materials, research and development of these superconducting materials have rapidly progressed. At the end of 1986, Y
-Superconducting critical temperature (Tc) = 90K in Ba-Cu-0 system
I was able to make it.

従来セラミック系超伝導材料の製造は例えばY−Ba 
−Cu −0系ならばY2O,、BaC0,、CuOを
出発物質として混合粉砕後、約900〜950℃で12
時間酸素雰囲気中で仮焼し、その後ボールミル粉砕、プ
レス成形を経て、約950〜1000℃酸素雰囲気中で
焼成し、その後550℃程度に急冷し一定時間保持した
後、室温まで徐冷することによってなされる。
Traditionally, ceramic superconducting materials have been manufactured using Y-Ba, for example.
-Cu -0 system uses Y2O, BaC0, and CuO as starting materials, and after mixing and pulverizing, the
By calcining in an oxygen atmosphere for an hour, then ball milling and press forming, firing in an oxygen atmosphere at approximately 950-1000℃, then rapidly cooling to approximately 550℃, holding for a certain period of time, and slowly cooling to room temperature. It will be done.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記焼成処理温度からの急冷するとY、B
aCu0s及びBaCu0t等の不純物第2相生成され
、超伝導臨界温度Tcが低下する。また上記徐冷工程で
は超伝導粒子が巨大化し不均一な組織となり上記と同様
にTcが低下する。
However, when rapidly cooled from the above firing temperature, Y, B
A second phase of impurities such as aCu0s and BaCu0t is generated, and the superconducting critical temperature Tc is lowered. Further, in the slow cooling step, the superconducting particles become gigantic and have a non-uniform structure, resulting in a decrease in Tc as described above.

本発明は高いT、を有する均一で緻密な超伝導体を製造
することを目的とする。
The present invention aims to produce a uniform and dense superconductor with a high T.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は本発明によれば 下記工程(イ)−(へ) : (イ) Y−Ba −Cu −0系セラミック粉末を混
合する工程、 (ロ)該混合粉をルツボに入れ仮焼する工程、(ハ)前
記仮焼温度から降温速度100〜500℃/時間で50
0℃迄降温、冷却する工程、(ニ)該冷却セラミックを
粉砕し前記(ロ)工程1.(ハ)工程そして該(ニ)工
程を複数回繰返す工程、 (ホ)得られた仮焼粉を所定形状に成形する工程・ (へ)所定温度で焼結し降温速度100〜500℃/時
間で500℃迄降温、冷却する工程、を含んでなること
を特徴とするセラミック超伝導材料の製造方法によって
解決される。
According to the present invention, the above problems can be solved by the following steps (a) to (f): (a) mixing the Y-Ba-Cu-0 ceramic powder; (b) putting the mixed powder in a crucible and calcining it. Step (c) 50°C at a cooling rate of 100 to 500°C/hour from the calcination temperature.
A step of lowering the temperature to 0° C. and cooling it, (d) pulverizing the cooled ceramic and step (b) step 1. (c) Step and repeating step (d) multiple times; (e) Forming the obtained calcined powder into a predetermined shape. (f) Sintering at a predetermined temperature with a cooling rate of 100-500°C/hour The problem is solved by a method for producing a ceramic superconducting material, which is characterized by comprising a step of lowering the temperature to 500° C. and cooling it.

〔作 用〕[For production]

本発明によれば仮焼後、及び焼結後の所定温度迄の降温
速度を一定に制御しているので不純物相のない均一な超
伝導相を得ることができる。
According to the present invention, since the rate of cooling down to a predetermined temperature after calcination and after sintering is controlled to be constant, a uniform superconducting phase free of impurity phases can be obtained.

〔実施例〕〔Example〕

以下本発明の方法の実施例を工程順に説明する。 Examples of the method of the present invention will be described below in order of steps.

(1)出発材料として”bos(酸化イツトリウム)、
BaC02(炭酸バリウム) 、Cub(酸化銅)を元
素モル比で1:2:3となる様に秤量しボールミルによ
り24h(時間)湿式混合後乾燥した。
(1) “BOS (yttrium oxide)” as a starting material,
BaC02 (barium carbonate) and Cub (copper oxide) were weighed so that the elemental molar ratio was 1:2:3, wet mixed in a ball mill for 24 hours, and then dried.

(2)  A i zo、ルツボに上記混合粉を入れ炉
内に投入し250℃/hで850℃まで昇温保持後25
0℃/hで降温した。
(2) A i zo, put the above mixed powder in a crucible, put it into the furnace, raise the temperature to 850 ° C at 250 ° C / h and hold it for 25 minutes.
The temperature was lowered at 0°C/h.

(3)降温により500℃まで降下した後AJ!gos
ルツボを炉内から取出し冷却した。
(3) AJ after the temperature drops to 500℃! gos
The crucible was taken out of the furnace and cooled.

(4)冷却物を乳鉢にて粉砕後、A1zOsルツボに該
粉末を入れ550℃の炉内へ入れる。
(4) After pulverizing the cooled material in a mortar, the powder is placed in an A1zOs crucible and placed in a furnace at 550°C.

(5)  250℃/hで昇温し前記(2)〜(4)工
程を3〜5回繰返す。
(5) Raise the temperature at 250° C./h and repeat steps (2) to (4) 3 to 5 times.

(6)外径15鶴高さ1鶴のベレットにプレス成形後2
50℃/hの昇温速度にて980℃x6h焼結後250
℃/hにて500℃迄降温した。
(6) After press forming into a pellet with outer diameter of 15 cranes and height of 1 crane, 2
250℃ after sintering at 980℃ x 6h at a heating rate of 50℃/h
The temperature was lowered to 500°C at a rate of °C/h.

(7)降温速度をそれぞれ50 、100 、250 
、500、及び600℃/hに変え抵抗率とT、の関係
を測定した。それぞれのグラフを1.2.3.4及び5
で示した。
(7) Temperature decreasing rate of 50, 100, 250, respectively.
, 500, and 600° C./h to measure the relationship between resistivity and T. 1.2.3.4 and 5 for each graph
It was shown in

その結果を第1図に示す。The results are shown in FIG.

第1図によれば降温速度100℃/h、  250℃/
h、及び500℃/hにおいて抵抗率約60X10−’
Ω・1以下及びTc 92K 、 93Kを得た。
According to Figure 1, the temperature decreasing rate is 100℃/h, 250℃/h.
h, and resistivity approximately 60X10-' at 500°C/h.
Ω・1 or less and Tc of 92K and 93K were obtained.

また、本実施例により作成した超伝導材の粉末X線回折
による生成相と850℃→急冷法(600℃/h)によ
り仮焼後焼結したものの生成相とを第1表に示す。
Further, Table 1 shows the phases formed by powder X-ray diffraction of the superconducting material prepared according to this example and the phases formed after calcination and sintering by the 850° C. → rapid cooling method (600° C./h).

本実施例による仮焼方法によれば不純物相は検出されず
仮焼体及び焼結体においても超伝導相Ba、YCu、O
,単相であった。
According to the calcination method according to this embodiment, no impurity phase is detected, and superconducting phases Ba, YCu, O
, it was single phase.

又第1表下段に抵抗率が0になる温度Tcを示す0本方
法によるTcは従来法より高かった。
In addition, the temperature Tc at which the resistivity becomes 0 is shown in the lower part of Table 1, and the Tc obtained by the zero method was higher than that of the conventional method.

電子顕微鏡にて微細組織を観察したところ本方法により
作成した試料には、幅約2(o)、長さ約5(DJの結
晶相が均一にかつ緻密に存在していた。
When the microstructure was observed using an electron microscope, it was found that the sample prepared by this method had a uniform and dense crystalline phase with a width of about 2 (o) and a length of about 5 (DJ).

一方従来法により作成した試料には上記サイズの結晶粒
をとりかこむ様に幅約10(D)、長さ約50(o)の
巨大粒子が混在していた。
On the other hand, in the sample prepared by the conventional method, giant particles having a width of about 10 (D) and a length of about 50 (o) were mixed in, surrounding the crystal grains of the above-mentioned size.

以下余白 第1表 〔発明の効果〕 以上説明したように本発明によれば超伝導臨界温度、T
、の高い均一で緻密な超伝導相を有するセラミック超伝
導体を得ることができる。
Below is Table 1 in the margin [Effects of the invention] As explained above, according to the present invention, the superconducting critical temperature, T
A ceramic superconductor having a highly uniform and dense superconducting phase can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

ある。 be.

Claims (1)

【特許請求の範囲】[Claims] 1.下記工程(イ)−(へ): (イ)Y−Ba−Cu−O系セラミック粉末を混合する
工程、 (ロ)該混合粉末をルツボに入れ仮焼する工程、(ハ)
前記仮焼温度から降温速度100〜500℃/時間で5
00℃迄降温、冷却する工程、 (ニ)該冷却セラミックを粉砕し前記(ロ)工程、(ハ
)工程そして該(ニ)工程を複数回繰返す工程、 (ホ)得られた仮焼粉末を所定形状に成形する工程、 (へ)所定温度で焼結し降温速度100〜500℃/時
間で500℃迄降温、冷却する工程、 を含んでなることを特徴とするセラミック超伝導材料の
製造方法。
1. The following steps (a) to (e): (a) a step of mixing Y-Ba-Cu-O ceramic powder; (b) a step of calcining the mixed powder in a crucible; (c)
5 at a cooling rate of 100 to 500°C/hour from the above calcination temperature.
(d) pulverizing the cooled ceramic and repeating the steps (b), (c) and (d) several times; (e) the resulting calcined powder. A method for producing a ceramic superconducting material, comprising the following steps: (f) sintering at a predetermined temperature and lowering the temperature to 500°C at a cooling rate of 100 to 500°C/hour. .
JP62275635A 1987-11-02 1987-11-02 Production of ceramic superconducting material Pending JPH01119555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62275635A JPH01119555A (en) 1987-11-02 1987-11-02 Production of ceramic superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62275635A JPH01119555A (en) 1987-11-02 1987-11-02 Production of ceramic superconducting material

Publications (1)

Publication Number Publication Date
JPH01119555A true JPH01119555A (en) 1989-05-11

Family

ID=17558205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62275635A Pending JPH01119555A (en) 1987-11-02 1987-11-02 Production of ceramic superconducting material

Country Status (1)

Country Link
JP (1) JPH01119555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03136950A (en) * 1989-10-24 1991-06-11 Takata Kk Restriction/protection seat for baby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03136950A (en) * 1989-10-24 1991-06-11 Takata Kk Restriction/protection seat for baby

Similar Documents

Publication Publication Date Title
JP3089294B2 (en) Manufacturing method of superconducting tape material
JPH01119555A (en) Production of ceramic superconducting material
JP3034255B2 (en) Superconductor, superconductor wire, and method of manufacturing superconducting wire
JPH0251468A (en) Production of yttrium-barium-copper oxide powder and superconducting yttrium-barium-copper oxide sintered body
WO1993010047A1 (en) Method of fabricating thallium-containing ceramic superconductors
JP2555734B2 (en) Production method of superconducting material
JP2597578B2 (en) Superconductor manufacturing method
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JP2677882B2 (en) Method for producing bismuth oxide superconductor
JP2969221B2 (en) Manufacturing method of oxide superconductor
JPH02229722A (en) Method for synthesizing oxide fine particle by spray drying
JPS63279513A (en) Superconductor wire rod and its manufacture
JPH0431355A (en) Production of superconductive ceramics
JP2597579B2 (en) Superconductor manufacturing method
JPH0288456A (en) Production of bi superconductor
JP2632543B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
JPH02225368A (en) Production of superconducting ceramics
Goto et al. High-T c Superconducting Bi-Pb-Sr-Ca-Cu-O and Tl-Ca-Ba-Cu-O Filaments Produced by the Suspension Spinning Method
JP2000344525A (en) Bismuth based oxide superconducting body and calcined powder for manufacturing the same
JPH01176268A (en) Production of high-temperature superconductor
JPS63277547A (en) Production of high-temperature superconductive porcelain
JPH02175649A (en) Oxide-based high-temperature superconducting ceramics
JPH04202046A (en) Production of superconducting ceramic sintered body
JPH01179719A (en) Oxide superconductor and its production
JPH01157455A (en) Production of oxide superconducting sintered body