JP2555734B2 - Production method of superconducting material - Google Patents
Production method of superconducting materialInfo
- Publication number
- JP2555734B2 JP2555734B2 JP1189645A JP18964589A JP2555734B2 JP 2555734 B2 JP2555734 B2 JP 2555734B2 JP 1189645 A JP1189645 A JP 1189645A JP 18964589 A JP18964589 A JP 18964589A JP 2555734 B2 JP2555734 B2 JP 2555734B2
- Authority
- JP
- Japan
- Prior art keywords
- range
- superconducting
- temperature
- viewpoint
- superconducting material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、超電導物質の製法に関する。The present invention relates to a method for producing a superconducting substance.
[従来の技術] 従来より超電導現像の利用範囲を拡大することを目的
として、超電導現像へ移行する温度(臨界温度)の高温
化、いわゆる高温超電導の研究が行なわれている。この
高温超電導を起こす材料として、Y−Ba−Cu−O系材料
が知られている。このY−Ba−Cu−O系超電導物質は、
たとえば第4図に示すように、Y2O3(純度99.9%)、Ba
CO3(純度99%)、CuO(純度90%以上)の粉末を所望割
合で混合し、2t/cm2の圧力で圧縮し、空気中で916℃×
4時間焼成し、微粉化・混合し、2t/cm2の圧力で圧縮
し、空気中で916℃×10時間焼結して製造される。[Prior Art] Conventionally, for the purpose of expanding the range of use of superconducting development, research has been conducted on so-called high-temperature superconductivity, in which the temperature (critical temperature) at which superconducting development shifts is raised. A Y-Ba-Cu-O-based material is known as a material that causes this high-temperature superconductivity. This Y-Ba-Cu-O-based superconducting material is
For example, as shown in Fig. 4, Y 2 O 3 (purity 99.9%), Ba
CO 3 (purity 99%) and CuO (purity 90% or more) powders are mixed in a desired ratio, compressed at a pressure of 2t / cm 2 , and then 916 ℃ in air.
It is manufactured by firing for 4 hours, pulverizing and mixing, compressing at a pressure of 2 t / cm 2 , and sintering in air at 916 ° C for 10 hours.
[発明が解決しようとする課題] しかしながら、このようにして所定の成分割合で混合
・焼成を行なっても、Y2 BaCuO5などの異相が形成され
るために超電導物質の粒界での組成は超電導物質の組成
とずれを生じていた。そのため臨界電流密度が低いとい
う問題があった。[Problems to be Solved by the Invention] However, even if mixing and firing are performed in the above-described predetermined component ratios, a different phase such as Y 2 BaCuO 5 is formed, so that the composition at the grain boundary of the superconducting substance is There was a deviation from the composition of the superconducting material. Therefore, there is a problem that the critical current density is low.
本発明は前記従来技術の問題点に鑑みなされたもので
あって、粒界での不純物をなくし臨界電流密度の高い超
電導体をうることのできる超電導物質の製法を提供する
ことを目的とする。The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a method for producing a superconducting material which can eliminate impurities at grain boundaries and obtain a superconductor having a high critical current density.
[課題を解決するための手段] 本発明の超電導物質の製法は、超電導物質を製造する
際、仕込み原料の組成をYxBayCu3(式中xおよびyは1
<x<1.5、2<y<2.1)の範囲で所望の超電導物質の
組成よりずらしたことを特徴としている。[Means for Solving the Problems] In the method for producing a superconducting substance of the present invention, when the superconducting substance is produced, the composition of the raw material to be charged is YxBayCu 3 (where x and y are 1
It is characterized in that it is deviated from the desired composition of the superconducting material in the range of <x <1.5, 2 <y <2.1).
[作 用] 本発明においては、超電導物質を製造する際、仕込み
原料の組成をYxBayCu3(式中xおよびyは1<x<1.
5、2<y<2.1)の範囲で所望の超電導物質の組成から
ずらしてあるので、Y2 BaCuO5の析出などによって粒界
に不純物が析出しても、該不純物と仕込原料が結晶化ア
ニールにより適宜反応し所望の超電導物質がえられる。[Operation] In the present invention, when a superconducting material is manufactured, the composition of the raw material is YxBayCu 3 (where x and y are 1 <x <1.
Since the composition of the desired superconducting material is deviated within the range of 5, 2 <y <2.1), even if impurities are deposited at the grain boundaries due to Y 2 BaCuO 5 precipitation or the like, the impurities and the starting material are annealed for crystallization. To give a desired superconducting substance.
[実施例] 以下、本発明を実施例に基づいて説明するが、本発明
はかかる実施例のみに限定されるものではない。[Examples] Hereinafter, the present invention will be described based on Examples, but the present invention is not limited to such Examples.
第1図は本発明の製法の一実施例のフローチャートで
ある。以下、フローチャートにしたがって説明する。FIG. 1 is a flow chart of an embodiment of the manufacturing method of the present invention. Hereinafter, description will be given according to the flowchart.
Y2O3、BaCO3、CuOの粉末を混合する。これらの粉末は
仕込原料が適宜反応し所望の超電導物質がえられる範囲
であれば、いかなる範囲のものも採用できる。Y2O3、Ba
CO3、CuOの粉末の粒径は、密度を向上させる見地より数
十ミクロン以下の範囲にあれば実用上問題はないが、
Y、Ba、Cuを均一に混合する見地より10ミクロン以下と
するのが好ましい。混合時間は、10分〜100時間の範囲
であれば実用上問題はないが、充分混合し混合容器など
からの不純の混入を防ぐ見地より1〜5時間の範囲とす
るのが好ましい。混合装置は従来この種の混合に使用さ
れているものならいかなるものをも使用しうるが、原料
を充分混合する見地よりボールミルを使用するのが好ま
しい。Y 2 O 3 , BaCO 3 , and CuO powders are mixed. These powders can be used in any range as long as the charged raw materials react appropriately to obtain a desired superconducting substance. Y 2 O 3 , Ba
From the viewpoint of improving the density, the particle size of the CO 3 and CuO powders is in the range of several tens of microns or less, but there is no practical problem, but
From the viewpoint of uniformly mixing Y, Ba and Cu, it is preferably 10 μm or less. The mixing time is practically no problem if it is in the range of 10 minutes to 100 hours, but it is preferably in the range of 1 to 5 hours from the viewpoint of sufficiently mixing and preventing contamination of impurities from a mixing container or the like. As the mixing device, any device conventionally used for this kind of mixing can be used, but it is preferable to use a ball mill from the viewpoint of sufficiently mixing the raw materials.
混合が終了したのち、該混合物をプレス金型に移し、
プレス装置により圧縮成形を行なう。圧縮成形時の圧力
は0.5〜3t/cm2の範囲であれば実用上問題はないが、圧
力が低すぎると密度が低く、また圧力が高すぎるとプレ
ス割れを起こすために1〜2t/cm2の範囲にあるのが好ま
しい。圧縮成形装置は、従来この種の圧縮成形に使用さ
れているものならいかなるものをも使用しうるが、充分
プレスするの見地より圧縮強度が強いもの(たとえばSU
S402J2)をも使用するのが好ましい。After the mixing is completed, the mixture is transferred to a press die,
Compression molding is performed with a press machine. There is no practical problem if the pressure during compression molding is in the range of 0.5 to 3 t / cm 2 , but if the pressure is too low, the density will be low, and if the pressure is too high, press cracking will occur, resulting in 1-2 t / cm. It is preferably in the range of 2 . As the compression molding device, any device conventionally used for this type of compression molding can be used, but a device having a higher compression strength than the viewpoint of sufficiently pressing (for example, SU
It is also preferred to use S402J2).
圧縮成形が終了したのち、仮焼結を行なう。焼結温度
は原料粉末を反応させほぼYBa2 Cu3O7−δとする見地
から850〜1000℃の範囲にあれば実用上問題はないが、Y
Ba2 Cu3O7−δ化合物ができやすくする見地より900〜9
50℃の範囲にあるのが好ましい。焼結時間は焼結温度と
の関係で適宜決定され、たとえば焼結温度が900℃、950
℃、1000℃であれば、焼結時間はそれぞれ5時間、2時
間、1時間とすることができる。ただし、850〜1000℃
の範囲であれば実用上問題を生じない。焼結装置は従来
この種の焼結に使用されているものならいかなるものを
も使用しうるが、温度分布が少ないという見地より電気
炉を使用するのが好ましい。After the compression molding is completed, temporary sintering is performed. From the viewpoint that the sintering temperature is approximately YBa 2 Cu 3 O 7-δ by reacting the raw material powder, there is no practical problem if it is in the range of 850 to 1000 ° C.
Ba 2 Cu 3 O 7-δ compound 900-9 from the viewpoint of facilitating formation
It is preferably in the range of 50 ° C. The sintering time is appropriately determined in relation to the sintering temperature. For example, if the sintering temperature is 900 ° C or 950
If the temperature is 1000C or 1000C, the sintering time can be 5 hours, 2 hours, and 1 hour, respectively. However, 850-1000 ℃
Within the range, there is no practical problem. As the sintering apparatus, any apparatus conventionally used for this type of sintering can be used, but it is preferable to use an electric furnace from the viewpoint that the temperature distribution is small.
仮焼結が終了したのち、高温溶融を行なう。溶融温度
は、結晶粒同士を結合させるためには1050℃以上あれば
よいが、結晶粒同士を充分結合させ、かつ基板との反応
を防ぐ見地から1150〜1250℃の範囲にあるのが好まし
い。溶融時間は溶融温度との関係で適宜決定され、たと
えば溶融温度が1200℃のときは1〜5分の範囲とするこ
とができる。ただし、1050〜1300℃の範囲であれば実用
上問題を生じない。高温溶融装置は温度分布が少ないと
いう見地からマッフル炉(箱型炉)、管状炉を用いるの
が好ましく、雰囲気を制御しやすいという見地から管状
炉を用いるのがとくに好ましい。After the calcination is completed, high temperature melting is performed. The melting temperature may be 1050 ° C. or higher in order to bond the crystal grains to each other, but it is preferably in the range of 1150 to 1250 ° C. from the viewpoint of sufficiently bonding the crystal grains to each other and preventing the reaction with the substrate. The melting time is appropriately determined in relation to the melting temperature, and can be in the range of 1 to 5 minutes when the melting temperature is 1200 ° C., for example. However, in the range of 1050 to 1300 ° C, there is no practical problem. The high-temperature melting apparatus preferably uses a muffle furnace (box furnace) or a tubular furnace from the viewpoint of a small temperature distribution, and particularly preferably a tubular furnace from the viewpoint of easily controlling the atmosphere.
高温溶融が終了したのち、炉内温度を低下させ、結晶
化アニールを行なう。該アニール温度は溶融したY−Ba
−Cu−Oの結晶化させるためには、850〜1000℃の範囲
にあればよいが、粒界を結合させたまま超電導化する見
地から900〜940℃の範囲にあるのが好ましい。アニール
時間はアニール温度との関係で適宜決定され、たとえば
900℃の温度であれば1〜100時間の範囲となる。結晶化
アニール温度および時間がこの範囲未満では均一に超電
導とはならず、またこの範囲を超えれば結合した粒界が
再び離れてしまい、いずれも所期の目的を達することが
できない。After the high temperature melting is completed, the temperature inside the furnace is lowered and the crystallization annealing is performed. The annealing temperature is the melting Y-Ba
In order to crystallize —Cu—O, the temperature may be in the range of 850 to 1000 ° C., but it is preferably in the range of 900 to 940 ° C. from the viewpoint of superconducting with grain boundaries bonded. The annealing time is appropriately determined in relation to the annealing temperature.
At a temperature of 900 ° C, the range is 1 to 100 hours. If the crystallization annealing temperature and time are less than this range, the superconductivity will not be uniform, and if it exceeds this range, the bonded grain boundaries will be separated again, and neither of them can achieve the intended purpose.
結晶化アニールが終了したのち、酸素雰囲気中で徐冷
を行なう。徐冷速度は酸素を結晶中に導入するという点
から200〜20℃/hとするのが好ましく、50℃/hとするの
がとくに好ましい。徐冷速度がこの範囲未満では酸素が
導入されず超電導とはならず、またこの範囲を超えれば
低融点化合物であるBaCuO2などの異相が析出し、いずれ
も問題を生じる。After the crystallization anneal is completed, it is gradually cooled in an oxygen atmosphere. From the viewpoint of introducing oxygen into the crystal, the slow cooling rate is preferably 200 to 20 ° C / h, and particularly preferably 50 ° C / h. If the slow cooling rate is less than this range, oxygen is not introduced and superconductivity does not occur, and if it exceeds this range, a heterogeneous phase such as BaCuO 2 which is a low-melting point compound is deposited, which causes problems.
第2図はこのようにしてえられた超電導物質の概略構
成図である。第2図において、(1)および(2)は式
(I): YBa2 Cu3 O7 (I) で表わされる超電導体であり、(5)および(6)は、
式(II): Y2 BaCuO5 (II) で示される酸化物である。FIG. 2 is a schematic configuration diagram of the superconducting substance thus obtained. In FIG. 2, (1) and (2) are superconductors represented by the formula (I): YBa 2 Cu 3 O 7 (I), and (5) and (6) are
Formula (II): An oxide represented by Y 2 BaCuO 5 (II).
実施例1〜3および比較例 超電導物質の組成割合を第1表に示すように種々変化
させた実施例1〜3につきアニール時間と臨界電流密度
(Jc)との関係を調べ、その結果を第3図に示す。また
比較例として第1表に示す超電導物質につきアニール時
間と臨界電流密度との関係を調べその結果を第3図に併
せて示す。Examples 1 to 3 and Comparative Examples For Examples 1 to 3 in which the composition ratio of the superconducting material was variously changed as shown in Table 1, the relationship between the annealing time and the critical current density (Jc) was examined, and the results are shown in Table 1. It is shown in FIG. As a comparative example, the relationship between the annealing time and the critical current density was investigated for the superconducting materials shown in Table 1 and the results are also shown in FIG.
第3図より、実施例1〜3はアニール時間が長くなる
と比較例に比して臨界電流密度が向上しているのがわか
る。 It can be seen from FIG. 3 that the critical current densities of Examples 1 to 3 are improved as the annealing time becomes longer than that of Comparative Example.
以上、本発明の製法をY−Ba−Cu−O系超電導物質に
よる実施例に基づき説明したが、本発明の製法は他の酸
化物系超電導物質、たとえばBi−Sr−Ca−Cu−O系およ
びTl−Ba−Sr−Cu−O系超電導物質についても好適に用
いることができる。Although the manufacturing method of the present invention has been described based on the examples using the Y-Ba-Cu-O-based superconducting material, the manufacturing method of the present invention is not limited to other oxide-based superconducting materials such as Bi-Sr-Ca-Cu-O-based material. Also, it can be suitably used for a Tl-Ba-Sr-Cu-O-based superconducting substance.
[発明の効果] 以上説明したように、本発明の製法によれば高い臨界
電流密度を有する超電導物質をえることができる。[Effects of the Invention] As described above, according to the production method of the present invention, a superconducting substance having a high critical current density can be obtained.
第1図は本発明の製法の一実施例を示すフローチャー
ト、第2図は第1図の製法にしたがって製造された超電
導物の概略構成図、第3図は臨界電流密度(Jc)とアニ
ール時間との関係を示すグラフ、第4図は従来の製法例
のフローチャートである。 (図面の符号) (1)、(2):超電導体 (5)、(6):酸化物FIG. 1 is a flow chart showing an embodiment of the manufacturing method of the present invention, FIG. 2 is a schematic block diagram of a superconductor manufactured according to the manufacturing method of FIG. 1, and FIG. 3 is a critical current density (Jc) and annealing time. FIG. 4 is a flow chart of a conventional manufacturing method example, which shows the relationship with. (Symbols in Drawings) (1), (2): Superconductor (5), (6): Oxide
Claims (1)
成をYxBayCu3(式中xおよびyは1<x<1.5、2≦y
<2.1)の範囲で所望の超電導物質の組成よりずらし、
高温溶融を行ったのち結晶化アニールを施すことを特徴
とする超電導物質の製法。1. When manufacturing a superconducting material, the composition of the raw material is YxBayCu 3 (where x and y are 1 <x <1.5, 2 ≦ y.
In the range of <2.1), shift from the composition of the desired superconducting substance,
A method for producing a superconducting material, characterized by performing high temperature melting and then performing crystallization annealing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1189645A JP2555734B2 (en) | 1989-07-21 | 1989-07-21 | Production method of superconducting material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1189645A JP2555734B2 (en) | 1989-07-21 | 1989-07-21 | Production method of superconducting material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0354113A JPH0354113A (en) | 1991-03-08 |
JP2555734B2 true JP2555734B2 (en) | 1996-11-20 |
Family
ID=16244780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1189645A Expired - Fee Related JP2555734B2 (en) | 1989-07-21 | 1989-07-21 | Production method of superconducting material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2555734B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8584283B2 (en) | 2010-05-17 | 2013-11-19 | Robert Mabry | Portable sleeping device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0791055B2 (en) * | 1987-07-31 | 1995-10-04 | 三菱マテリアル株式会社 | Manufacturing method of complex metal oxide |
-
1989
- 1989-07-21 JP JP1189645A patent/JP2555734B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0354113A (en) | 1991-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0562640B1 (en) | Production of oxide superconductors having large magnetic levitation force | |
JP2555734B2 (en) | Production method of superconducting material | |
EP0659704B1 (en) | Method of manufacturing oxide superconductor | |
JP3157183B2 (en) | Manufacturing method of oxide superconductor | |
EP1411154B1 (en) | Oxide high-critical temperature superconductor acicular crystal and its production method | |
JPH0687611A (en) | Oxide superconductor and production thereof and wire rod thereof | |
JP4215180B2 (en) | The manufacturing method of calcining powder used for Bi type 2223 oxide superconductor manufacture, and the manufacturing method of Bi type 2223 oxide superconductor. | |
JPH02229722A (en) | Method for synthesizing oxide fine particle by spray drying | |
JP2545443B2 (en) | Method for manufacturing oxide superconductor | |
JP2634187B2 (en) | Method for producing thallium-based oxide superconductor | |
JP3115357B2 (en) | Manufacturing method of oxide superconducting material | |
JPH05229823A (en) | Production of oxide superconducting material | |
JP3073996B2 (en) | Method for producing sintered body of Y1Ba2Cu3O7-x-based oxide superconductor and Y1Ba2Cu3O7-x-based oxide superconductor | |
JP2969221B2 (en) | Manufacturing method of oxide superconductor | |
JP2540639B2 (en) | Method for manufacturing bismuth-based superconductor | |
JP3157184B2 (en) | Manufacturing method of high-density oxide superconductor | |
JPS63307156A (en) | Method for synthesizing superconducting ceramics | |
JPH07115872B2 (en) | Oxide superconductor and method for manufacturing the same | |
JPH01119555A (en) | Production of ceramic superconducting material | |
JPH06321621A (en) | Production of oxide superconductor | |
JPH11139824A (en) | Calcined powder for bi-containing high temperature phase superconductor and polycrystalline body | |
JPH05246713A (en) | Production of oxide superconductor bulk | |
JPH01157455A (en) | Production of oxide superconducting sintered body | |
JPH10226569A (en) | Calcined powder for producing bi-containing oxide superconductor and bi-2223 phase polycrystalline body obtained by sintering same | |
JPH0551215A (en) | Calcined powder composition for bi-containing oxide superconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |