JPH02229722A - Method for synthesizing oxide fine particle by spray drying - Google Patents

Method for synthesizing oxide fine particle by spray drying

Info

Publication number
JPH02229722A
JPH02229722A JP1050622A JP5062289A JPH02229722A JP H02229722 A JPH02229722 A JP H02229722A JP 1050622 A JP1050622 A JP 1050622A JP 5062289 A JP5062289 A JP 5062289A JP H02229722 A JPH02229722 A JP H02229722A
Authority
JP
Japan
Prior art keywords
phase
temperature
bismuth
fine particles
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1050622A
Other languages
Japanese (ja)
Other versions
JPH08699B2 (en
Inventor
Masanobu Tanno
正信 淡野
Hiroyoshi Takagi
弘義 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1050622A priority Critical patent/JPH08699B2/en
Publication of JPH02229722A publication Critical patent/JPH02229722A/en
Publication of JPH08699B2 publication Critical patent/JPH08699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain Bi-based high-temp. superconducting ceramic fine particles consisting of a crystal structure of a high-Tc phase by spray-drying a nitrate soln., directly charging the obtained Bi-based superconductor starting material into a reaction furnace and heat-treating the material under specified conditions. CONSTITUTION:A nitrate soln. having a cationic composition shown by the general formula, BiuPbvSrwCaxCuyOz, is prepared (where u=1.4-1.9, v=0.1-0.8, w=1.8-2, x=1.95-2.3 and y=3-3.3). The soln. is spray-dried, and the dried powder is charged directly into the reaction furnace. The powder is heated at the rate of >=15 deg.C/sec, and then heat-treated in the atmosphere at 835-845 deg.C for 1-2 hr. Consequently, the fine particles of the micron order in the ratio of about (Bi, Pb):Sr:Ca:Cu=2:2:2:3 consisting of a crystal structure of a high-Tc crystal phase having >=110K Tc is obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、ビスマス系超電導体の微粒子原料合成法に間
するものである. 「従来技術及びその問題点」 ビスマス系超電導体はイットリウム系などに比べて臨界
温度Tcが約110Kと高く、例えば寒剤に液体窒素を
用いる場合の温度差を大きくとれることや、イットリウ
ム系が水分を含む雰囲気下では容易に分解してしま゛う
のに対して化学的安定性が高いなどの利点を有し、実用
化研究が進められている。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for synthesizing fine particle raw materials for bismuth-based superconductors. "Prior art and its problems" Bismuth-based superconductors have a higher critical temperature Tc of about 110 K than yttrium-based superconductors, and for example, when liquid nitrogen is used as a cryogen, a large temperature difference can be maintained, and yttrium-based superconductors can absorb moisture. It has advantages such as high chemical stability, whereas it easily decomposes in atmospheres containing it, and research on practical application is progressing.

しかし、ビスマス系の超電導相には現在分かっていると
ころで、実用化が期待されるTc=約110Kを示すい
わゆる高Tc相以外にも低Tc相(同80K)等があり
、通常の合成プロセスでは先ず低Tc相が生成し、これ
が分解した後に、高Tc相が生成するとされており、一
旦低Tc相の結晶構造を強固なものにしてしまうと、高
Tc相合成までに大気中で数10〜数100時間を要し
、高Tc相生成温度領域が広がる低酸素分圧下(P02
=1/5〜1/13)でも10数〜数10時間を要して
いた.また反応中間過程での液相生成に伴う分相による
組成の不均一化が生じやすく、一方、高Tc相の生成の
ためには液相成分の関与した拡散反応が伴っており、結
晶粒成長が著しく、粒子径が数10〜数μmの粗大な結
晶粒子しか得られていなかった。このため焼結体作成時
の緻密化が困難で、加圧焼結等の方法により焼結体密度
を上げざるを得なかった。
However, it is currently known that bismuth-based superconducting phases include, in addition to the so-called high Tc phase with a Tc of approximately 110K, which is expected to be put into practical use, there are also low Tc phases (80K), which cannot be achieved through normal synthesis processes. It is said that a low Tc phase is formed first, and then a high Tc phase is formed after this decomposes. It takes ~ several hundred hours under low oxygen partial pressure (P02
= 1/5 to 1/13), it took 10 to several 10 hours. In addition, the composition tends to become non-uniform due to phase separation accompanying liquid phase formation in the intermediate reaction process, while the formation of a high Tc phase is accompanied by a diffusion reaction involving liquid phase components, resulting in grain growth. was remarkable, and only coarse crystal grains with particle diameters of several tens to several micrometers were obtained. For this reason, it is difficult to make the sintered body dense when producing it, and it is necessary to increase the density of the sintered body by methods such as pressure sintering.

また固相法や蓚酸塩共沈法なとこれまで広く用いられて
いる方法によると、低Tc相生成以前の段階で炭酸塩な
どが生成し、または残存し易く、これが超電導相合成温
度以下で液相を生成し、上述した組成の不均一化による
難分解性化合物の生成や粒成長を引き起こす原因となっ
ていた. これらの理由により、高Tc相よりなり、かつ数μm以
下の粒子径を有する微粒子を合成することは不可能であ
った。このため、通常のセラミックス製造過程で必要と
される易焼結性の均質微粒子原料が得られず、常圧焼結
法によるバルクの密度向上並びに均質化が難しく、臨界
電流密度の向上に大きな障害となっていた. 「発明の概要」 本発明は、この問題を克服し、ビスマス系の高Tc相に
おいて、易焼結性の均質な微粒子原料を合成することを
目的とする. 本発明者は、噴霧乾燥法によるビスマス系超電導体の均
質微粒子の合成研究を行う過程で、生成した前駆体粉末
を低温から次第に温度を上げて仮焼していく通常の方法
では、800℃付近で複酸化物や炭酸塩に分相し易く、
これがさらに温度を上げると液相を生成するため、急激
な粒子成長や絹成の不均一化を生じ、噴霧乾燥法により
調製した均質微粒子乾燥粉体の特性を損なう点や、80
0〜835℃(大気中で)の温度範囲では低Tc相の結
晶性が高くなり、高Tc相が生成しにくくなる点に注目
し、これらの現象が生じる温度域を極めて短時閏に通過
し、高Tc相安定領域で熱分解〜結晶化を行うことによ
り分相や粒成長などを生じることなく高Tc相が合成可
能であることを見いだした.また、均質性が高い前駆体
から出発することにより、途中過程での固相拡散による
熱分解一結晶化反応が容易に起こることを併せて検討す
ることにより、本発明に到達した. すなわち本発明は、硝酸塩溶液の噴霧乾燥法により均質
性の高い前駆体の乾燥微粒子を調製し、これを所定の温
度に保った反応炉中ヘの直接投入等の方法により,数1
0秒〜1分程度の間に試料温度を835〜845℃(大
気中)の温度域に設定することにより、高Tc相を速や
かに結晶成長させ,組成の不均一化や粒成長を防いで、
ビスマス系超電導体高Tc相の均質微粒子を生成するこ
とを特徴とする。以下に本発明を詳細に説明する。
Furthermore, according to the solid-phase method and the oxalate coprecipitation method that have been widely used, carbonates are likely to be generated or remain at a stage before the formation of the low Tc phase, and this is likely to occur below the superconducting phase synthesis temperature. This produced a liquid phase, which caused the formation of refractory compounds and grain growth due to the non-uniform composition mentioned above. For these reasons, it has been impossible to synthesize fine particles consisting of a high Tc phase and having a particle size of several μm or less. For this reason, it is not possible to obtain homogeneous fine particle raw materials that are easy to sinter, which is required in the normal ceramic manufacturing process, and it is difficult to improve bulk density and homogenize by pressureless sintering, which is a major obstacle to improving critical current density. It became. ``Summary of the Invention'' The purpose of the present invention is to overcome this problem and synthesize a homogeneous fine particle raw material that is easily sinterable in a bismuth-based high Tc phase. In the process of conducting research on the synthesis of homogeneous fine particles of bismuth-based superconductors using a spray drying method, the present inventor discovered that the normal method of calcining the generated precursor powder by gradually increasing the temperature from a low temperature to around 800℃. It is easy to phase separate into double oxides and carbonates,
When the temperature is further increased, a liquid phase is generated, resulting in rapid particle growth and uneven silk formation, which impairs the properties of the homogeneous fine dry powder prepared by the spray drying method.
We focused on the fact that in the temperature range of 0 to 835°C (in the atmosphere), the crystallinity of the low Tc phase becomes high, making it difficult to form a high Tc phase, and we passed through the temperature range where these phenomena occur in an extremely short period of time. We also found that a high Tc phase can be synthesized without phase separation or grain growth by performing thermal decomposition and crystallization in the high Tc phase stability region. The present invention was also achieved by considering that by starting from a highly homogeneous precursor, thermal decomposition and crystallization reactions occur easily due to solid-phase diffusion during the process. That is, in the present invention, highly homogeneous dry fine particles of a precursor are prepared by spray drying a nitrate solution, and then the particles are directly introduced into a reactor kept at a predetermined temperature.
By setting the sample temperature in the temperature range of 835 to 845 °C (in the atmosphere) for about 0 seconds to 1 minute, the high Tc phase can be rapidly grown into crystals, preventing compositional non-uniformity and grain growth. ,
It is characterized by producing homogeneous fine particles of bismuth-based superconductor high Tc phase. The present invention will be explained in detail below.

■まず、ビスマス系で高Tc相が単一相として生成する
前述の組成範囲に、ビスマス、鉛、ストロンチウム、カ
ルシウム、銅各元素の組成比を調整した、硝酸塩溶液を
調製する。
(1) First, a nitrate solution is prepared in which the composition ratios of the elements bismuth, lead, strontium, calcium, and copper are adjusted to the above-mentioned composition range in which a bismuth-based high-Tc phase is generated as a single phase.

■これを2流体ノズルなどを用いて200℃程度の高温
空気中に圧縮空気により噴霧し、瞬時に乾燥させて溶液
中における各成分元素の均質性を保持した、ミクロンオ
ーダーの乾燥微粒子を作製する。
■This is sprayed with compressed air into high-temperature air at around 200°C using a two-fluid nozzle, etc., and dried instantly to produce dry fine particles on the order of microns that maintain the homogeneity of each component element in the solution. .

■これを白金ルツボなとの容器に入れ、速やかに835
〜845゜Cに設定した反応炉に設置するか、またはイ
メージ加熱等の方法を用いて少なくとも約15℃/秒以
上の昇温速度で上記の温度域に設定する。そのまま1〜
2時間焼成することにより、図1に示すように低Tc相
や絶縁体相等のピークが殆どない、高Tc相より構成さ
れる粉体が得られる。なお酸素分圧(P02)が大気中
より低い(P02=1/5〜1/13)場合、焼成温度
は5〜15℃低下し、最適温度範囲は若干拡大する。溶
液濃度が0.01mol/Iの時、粒子は図2に示すよ
うに平均粒子径1〜3μm程度であり、さらに溶液濃度
を減少させることにより、lμm以下の粒子を得ること
も可能である。
■Put this in a platinum crucible container and immediately add 835
The reactor is placed in a reactor set at ~845°C, or the temperature is set in the above temperature range at a heating rate of at least about 15°C/second using a method such as image heating. 1~
By firing for 2 hours, as shown in FIG. 1, a powder consisting of a high Tc phase with almost no peaks of the low Tc phase or the insulating phase can be obtained. Note that when the oxygen partial pressure (P02) is lower than that in the atmosphere (P02 = 1/5 to 1/13), the firing temperature is lowered by 5 to 15°C, and the optimum temperature range is slightly expanded. When the solution concentration is 0.01 mol/I, the particles have an average particle diameter of about 1 to 3 μm, as shown in FIG. 2, and by further decreasing the solution concentration, it is also possible to obtain particles of 1 μm or less.

以下、各プロセスにおける要点を説明する.■の硝酸塩
溶液の組成範囲は、現在のところビスマス系超電導体高
Tc相の単〒相を得られるとされる前述の組成とする。
The main points in each process are explained below. The composition range of the nitrate solution in (2) is the above-mentioned composition that is currently believed to be able to obtain a single phase of bismuth-based superconductor high Tc phase.

ただし焼成条件の変化により、鉛等の揮発成分の挙動に
よる仕込組成比からの変化など不明確な点も存在する。
However, due to changes in firing conditions, there are some unclear points such as changes in the composition ratio due to the behavior of volatile components such as lead.

試料溶液としては硝酸塩溶液の他にクエン酸塩等の有機
酸塩溶液や蓚酸塩等の共沈澱スラリー溶液等も考えられ
るが、噴霧乾燥後の熱分解過程で炭酸塩等の中間化合物
を生成しやすくなるので、ここでは硝酸塩溶液に限定し
た。■のプロセスでは、硝酸塩の乾燥粒子は室温では非
常ζビ吸湿性に富むことを考慮して、噴霧乾燥中は捕集
チャンバーをヒーターで加熱する必要がある。得られた
乾燥粒子は速やかに次のプロセスで処理するかまたは真
空デシケータ等で保存する必要がある。
In addition to nitrate solutions, sample solutions may include solutions of organic acid salts such as citrate, co-precipitation slurry solutions such as oxalate, etc., but intermediate compounds such as carbonates are generated during the thermal decomposition process after spray drying. Here, we limited ourselves to nitrate solutions because they are easier to use. In process (2), it is necessary to heat the collection chamber with a heater during spray drying, taking into account that dried nitrate particles are highly hygroscopic at room temperature. The obtained dry particles must be immediately processed in the next process or stored in a vacuum desiccator or the like.

■では、試料をできるだけ急速に835〜845℃(大
気中)の温度域に保つ必要があるので、例えば容量の大
きな電気炉を用い、白金ルツボなと熱伝導性が高く試料
との反応性の小さい容器に粉体のまま設置し、これを上
記の温度域に速やかに設置する。数10秒で所定の温度
に達するのでそのまま熱分解一結晶化を行わせる。この
系は高Tc相の結晶化温度と融点が近いので、液相生成
による粒成長を抑制するため温度制御は高精度を要求さ
れる。1〜2時間の保持により図1に示す結晶相の状態
となる。冷却過程は高Tc相の分解を抑制するため、炉
中冷却よりも急速な降温条件で行うことが望ましい。
In case ①, it is necessary to keep the sample in the temperature range of 835-845℃ (in the atmosphere) as quickly as possible, so for example, use a large-capacity electric furnace and use a platinum crucible, which has high thermal conductivity and is less reactive with the sample. Place the powder in a small container and place it in the above temperature range immediately. Since the predetermined temperature is reached in several tens of seconds, thermal decomposition and crystallization are carried out as is. Since the crystallization temperature and melting point of this system are close to the crystallization temperature of the high Tc phase, high precision temperature control is required to suppress grain growth due to liquid phase formation. By holding for 1 to 2 hours, the crystal phase shown in FIG. 1 is obtained. In order to suppress the decomposition of the high Tc phase, the cooling process is desirably carried out under conditions where the temperature is lowered more rapidly than in the furnace cooling.

「実施例」 次に実施例を挙げて本発明を説明する。"Example" Next, the present invention will be explained with reference to Examples.

Bi:Pb:Sr:Ca:Cu= 184:0,34:
1.91:2.03:3.06の組成比に調製した硝酸
塩溶液(溶液濃度=0.01mol/I)を次の条件で
噴霧乾燥した。乾燥チャンバ一人口温度195℃、出口
温度90℃、噴霧圧力1 .2kgf/cm’、サイク
ロン吸引量0.45n+3/min,  試料供給量1
0cm3/IIIin.  得られた乾燥粉体を真空中
で24時間乾燥した後、白金ルツボに封入し。842℃
の大型管状炉中に設置し,90分焼成後炉外へ取り出し
た。得られた粉体はほぼ高Tc相単相のX線回折パター
ンを示し、平均粒子径約1.8μmの板状粒子となった
。この原料微粒子を用いて2t/c++2の圧力で成形
体を作成し、845℃12時間焼結(途中で再度冷間ブ
レスを行う)させることにより、Tc=t05Kの焼結
体が得られた。焼結体の密度は5.95g/cII13
で理論密度の90%以上であった。
Bi:Pb:Sr:Ca:Cu=184:0,34:
A nitrate solution prepared to have a composition ratio of 1.91:2.03:3.06 (solution concentration=0.01 mol/I) was spray-dried under the following conditions. Drying chamber temperature: 195°C, outlet temperature: 90°C, spray pressure: 1. 2kgf/cm', cyclone suction amount 0.45n+3/min, sample supply amount 1
0cm3/IIIin. The obtained dry powder was dried in vacuum for 24 hours and then sealed in a platinum crucible. 842℃
It was placed in a large tubular furnace, and after firing for 90 minutes, it was taken out of the furnace. The obtained powder showed an X-ray diffraction pattern of almost a single high Tc phase, and was plate-shaped particles with an average particle diameter of about 1.8 μm. A molded body was prepared using the raw material fine particles at a pressure of 2t/c++2, and sintered at 845°C for 12 hours (cold pressing was performed again in the middle) to obtain a sintered body with Tc=t05K. The density of the sintered body is 5.95g/cII13
The density was 90% or more of the theoretical density.

【図面の簡単な説明】[Brief explanation of the drawing]

図l: 本発明により得られた、高Tc相を示すビスマ
ス系超電導体微粒子のX線回折パターン(大気中で84
2℃90分焼成。図中の″’ (0011)”などは高
Tc相で指数付けされた各ピークの面指数を示す). 図2二本発明により得られた、ビスマス系超電導体高T
ea微粒子の、走査電子顕微鏡像による粒子構造の写真
(溶液濃度0.01mol/I,  842℃90分焼
成)。 図2
Figure 1: X-ray diffraction pattern of bismuth-based superconductor fine particles exhibiting a high Tc phase obtained by the present invention (84
Bake at 2℃ for 90 minutes. ``'' (0011) etc. in the figure indicate the surface index of each peak indexed in the high Tc phase). Figure 22 Bismuth-based superconductor high T obtained by the present invention
A photograph of the particle structure of EA fine particles obtained by scanning electron microscopy (solution concentration 0.01 mol/I, calcination at 842°C for 90 minutes). Figure 2

Claims (1)

【特許請求の範囲】 ビスマス、鉛、ストロンチウム、カルシウ ム、銅よりなるビスマス系超電導体において、(Bi,
Pb):Sr:Ca:Cu:=2:2:2:3前後の,
臨界温度Tc=約110Kの結晶相(いわゆる高Tc相
)を得られるとされる所定の組成比、すなわち一般式B
i_uPb_vSr_wCa_xCu_yO_zにおい
て、1.4≦u≦1.9 0.1≦v≦0.8 1.8≦w≦2.0 1.95≦x≦2.3 3.0≦y≦3.3 の陽イオン組成比よりなる硝酸塩溶液を噴霧乾燥し、得
られる乾燥粉体を約15℃/秒以上の昇温速度で急速に
加熱することにより、大気中で835〜845℃まで試
料温度を急速に上昇させ、さらに同温度での1〜2時間
以内の熱処理によって、ほとんどTc=110K級の超
電導体(高Tc相)の結晶構造よりなり、かつ数μm〜
1μm以下の粒子径を示す粉体を得る、ビスマス系高温
超電導セラミックス微粒子の合成法。
[Claims] In a bismuth-based superconductor consisting of bismuth, lead, strontium, calcium, and copper, (Bi,
Pb):Sr:Ca:Cu:=2:2:2:3,
A predetermined composition ratio that is said to be able to obtain a crystal phase (so-called high Tc phase) with a critical temperature Tc = approximately 110K, that is, general formula B
In i_uPb_vSr_wCa_xCu_yO_z, positive of 1.4≦u≦1.9 0.1≦v≦0.8 1.8≦w≦2.0 1.95≦x≦2.3 3.0≦y≦3.3 By spray-drying a nitrate solution with an ionic composition ratio and rapidly heating the resulting dry powder at a heating rate of approximately 15°C/second or more, the sample temperature is rapidly raised to 835-845°C in the atmosphere. Then, by further heat treatment at the same temperature for 1 to 2 hours, the crystal structure becomes almost Tc = 110K class superconductor (high Tc phase), and the crystal structure is reduced to several μm ~
A method for synthesizing bismuth-based high-temperature superconducting ceramic fine particles to obtain powder having a particle size of 1 μm or less.
JP1050622A 1989-03-02 1989-03-02 Synthesis of oxide fine particles by spray drying Expired - Lifetime JPH08699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1050622A JPH08699B2 (en) 1989-03-02 1989-03-02 Synthesis of oxide fine particles by spray drying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1050622A JPH08699B2 (en) 1989-03-02 1989-03-02 Synthesis of oxide fine particles by spray drying

Publications (2)

Publication Number Publication Date
JPH02229722A true JPH02229722A (en) 1990-09-12
JPH08699B2 JPH08699B2 (en) 1996-01-10

Family

ID=12864078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1050622A Expired - Lifetime JPH08699B2 (en) 1989-03-02 1989-03-02 Synthesis of oxide fine particles by spray drying

Country Status (1)

Country Link
JP (1) JPH08699B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04292812A (en) * 1991-03-20 1992-10-16 Sumitomo Electric Ind Ltd Manufacture of bismuth-based oxide superconductive wire
US5395821A (en) * 1992-10-30 1995-03-07 Martin Marietta Energy Systems, Inc. Method of producing Pb-stabilized superconductor precursors and method of producing superconductor articles therefrom
JP2009170695A (en) * 2008-01-17 2009-07-30 Seiko Epson Corp Method for manufacturing ferroeletric memory

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04292812A (en) * 1991-03-20 1992-10-16 Sumitomo Electric Ind Ltd Manufacture of bismuth-based oxide superconductive wire
US5395821A (en) * 1992-10-30 1995-03-07 Martin Marietta Energy Systems, Inc. Method of producing Pb-stabilized superconductor precursors and method of producing superconductor articles therefrom
JP2009170695A (en) * 2008-01-17 2009-07-30 Seiko Epson Corp Method for manufacturing ferroeletric memory

Also Published As

Publication number Publication date
JPH08699B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
US5086034A (en) Calcination and solid state reaction of ceramic-forming components to provide single-phase superconducting materials having fine particle size
KR100633671B1 (en) A pb-bi-sr-ca-cu-oxide powder mix with enhanced reactivity and process for its manufacture
JPH02229722A (en) Method for synthesizing oxide fine particle by spray drying
JP2609944B2 (en) Oxide material showing superconductivity and method for producing the same
JP2555734B2 (en) Production method of superconducting material
KR960000500B1 (en) Improved method for preparing yba2cu3o7-x superconductor
JP2920001B2 (en) Method for producing rare earth oxide superconductor
JPH026304A (en) Production of compound oxide
Braun et al. Phase formation and thermal stability of YBa2Cu3O7− x from coprecipitated powders
JP2685951B2 (en) Method for manufacturing bismuth-based superconductor
JP2540639B2 (en) Method for manufacturing bismuth-based superconductor
Alconchel et al. Processing and properties of superconducting La1. 85Sr0. 15CuO4 powder by double-step calcining
JPH02196023A (en) Production of oxide-based superconductor
JP3444930B2 (en) Manufacturing method of oxide superconductor
JPH02196022A (en) Production of oxide-based superconducting powder
Tang et al. Carbon-Free Bi2223: Synthesis
Yoshizawa et al. Preparation of Precursor Powders
Alconchel et al. Structural and morphological evolution from a freeze-dried precursor to the La 1.85 Sr 0.15 CuO 4 superconductor during thermal processing
JPH01119555A (en) Production of ceramic superconducting material
Vajpei et al. Preparation of Powders
JPS63303851A (en) Sintered body of superconducting ceramic
JPH02225368A (en) Production of superconducting ceramics
JPH0524825A (en) Production of rare earth-based oxide us superconductor and raw material powder therefor
ROUTE PREPARATION OF DENSE Pb, Sb-SUBSTITUTED HTSC Bi-2223
Okuyama et al. Preparation of Fine Particles of Superconducting Oxide by Aerosol Reactor [Translated]

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term