JP2920001B2 - Method for producing rare earth oxide superconductor - Google Patents

Method for producing rare earth oxide superconductor

Info

Publication number
JP2920001B2
JP2920001B2 JP3200027A JP20002791A JP2920001B2 JP 2920001 B2 JP2920001 B2 JP 2920001B2 JP 3200027 A JP3200027 A JP 3200027A JP 20002791 A JP20002791 A JP 20002791A JP 2920001 B2 JP2920001 B2 JP 2920001B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
phase
oxide
reba
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3200027A
Other languages
Japanese (ja)
Other versions
JPH0524828A (en
Inventor
均 吉田
均 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP3200027A priority Critical patent/JP2920001B2/en
Publication of JPH0524828A publication Critical patent/JPH0524828A/en
Application granted granted Critical
Publication of JP2920001B2 publication Critical patent/JP2920001B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、希土類系酸化物超電導
の製造方法に関し、更に詳しくは、Rh、Pt及びR
uの少なくとも1種の元素成分をサブミクロン粒子とし
て均一に分散してなる高磁場下でも高い臨界電流密度を
示すREBa2Cu3y(REは、Y、Gd、Dy、Ho、
ErまたはYbを表す。)酸化物超電導体の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth oxide superconductor, and more particularly to Rh, Pt and Rt.
REBa 2 Cu 3 O y (RE is Y, Gd, Dy, Ho, etc.) exhibiting a high critical current density even under a high magnetic field in which at least one elemental component of u is uniformly dispersed as submicron particles.
Represents Er or Yb. ) Relates <br/> the manufacture how the oxide superconductor.

【0002】[0002]

【従来の技術】酸化物超電導体は臨界温度が高いことか
ら実用化への研究が盛んに行われている。これら酸化物
超電導体をバルク材として得る方法としては、従来、焼
結法が一般的であった。焼結法により製造した酸化物超
電導体は、結晶粒が小さく内部に多数の粒界が存在する
微細結晶構造を有する。このような焼結法による酸化物
超電導バルク体では、個々の超電導粒子は弱結合で連結
されており、臨界電流密度(Jc)はこの弱結合に支配され
ることになり高いJcが得られていない。
2. Description of the Related Art Oxide superconductors have been actively studied for practical use because of their high critical temperature. As a method for obtaining these oxide superconductors as a bulk material, a sintering method has conventionally been generally used. The oxide superconductor manufactured by the sintering method has a fine crystal structure in which crystal grains are small and many grain boundaries exist inside. In such an oxide superconducting bulk material by the sintering method, the individual superconducting particles are connected by weak bonds, and the critical current density (Jc) is governed by this weak bond, and a high Jc is obtained. Absent.

【0003】一方、単結晶の超電導体においては上記し
た粒界の問題が無く、高磁場においても高いJcを示すこ
とが知られており、上記焼結法により得られる微細構造
の超電導体を単結晶構造に近似させる試みが検討され、
また、非超電導相の微細構造粒子を超電導相中に分散さ
せ、侵入した磁束線を固定させるいわゆるピンニングセ
ンターの導入が提案されている。例えば、MTG法(Me
lt Textured Growth法)に代表される溶融法が提案され
ている。このMTG法は、酸化物超電導体において、一
般に123相(YBa2Cu3y 、但しYはYを含む希
土類元素)の分解溶融温度から徐冷することにより、2
11相(Y2BaCuO5)と液相との包晶反応を起こさ
せ結晶成長させるもので、成長した結晶内部には211
相が存在しピンニングセンターとして作用する。このた
め、得られた酸化物超電導体は磁場中でも高いJcを示
す。しかし、この溶融法で得られる酸化物超電導体は、
211の粒径が大きく、且つその分布が不均一であり
結晶成長方向に沿ったクラックが存在する等の不都合が
あった。
On the other hand, it is known that single crystal superconductors do not have the above-described problem of grain boundaries and exhibit high Jc even in a high magnetic field. Attempts to approximate the crystal structure were considered,
It has also been proposed to introduce a so-called pinning center for dispersing fine particles of the non-superconducting phase in the superconducting phase and fixing the invading magnetic flux lines. For example, the MTG method (Me
lt Textured Growth method) has been proposed. In the MTG method, the oxide superconductor is gradually cooled from the decomposition melting temperature of 123 phase (YBa 2 Cu 3 O y , where Y is a rare earth element containing Y).
A peritectic reaction between the 11 phase (Y 2 BaCuO 5 ) and the liquid phase is caused to cause crystal growth, and 211 g
A phase exists and acts as a pinning center. Therefore, the obtained oxide superconductor shows a high Jc even in a magnetic field. However, the oxide superconductor obtained by this melting method,
There were inconveniences such as a large grain size of the 211 phase, a nonuniform distribution thereof, and cracks along the crystal growth direction.

【0004】また、211相の粒径を小さく且つ均一に
分散させ、バルク体のクラック等の欠陥を防止する方法
も提案されている。例えば、特開平2−153803号
公報にはQMG法(Quench and Melt Growth法) が提案
され、更にまた、QMG法における成形性を向上させる
方法のMPMG法(Melt Powder and Melt Growth 法)
も提案されている。これらは、極めて強力なピン止め効
果を発揮し高磁場中で優れたJcを示すことが開示されて
いる。
[0004] A method has also been proposed in which the particle size of the 211 phase is made small and uniform to prevent defects such as cracks in the bulk body. For example, Japanese Patent Application Laid-Open No. 2-153803 proposes a QMG method (Quench and Melt Growth method), and furthermore, a MPMG method (Melt Powder and Melt Growth method) for improving formability in the QMG method.
Has also been proposed. It is disclosed that these exhibit an extremely strong pinning effect and exhibit excellent Jc in a high magnetic field.

【0005】[0005]

【発明が解決しようとする課題】しかし、特開平2−1
53803号公報で提案されたQMG法は、上記211
相が比較的均一に分散された123相の結晶を得ること
ができるが、酸化物超電導体原料の溶融急冷凝固により
BaCu酸化物相中に50μm以下のY23 相等を均
質に分散させた中間体を得た後、またはY23 とBa
Cu酸化物とを混合して厚さ5mm以下の板状または線状
の成形体とし、更に、上記123相の分解溶融温度で半
溶融状態に加熱して、その温度から所定の冷却速度で徐
冷することで内部に20μm以下の211相が微細で均
質に分散存在する123相を結晶成長させるもので、特
定形状に成形するか、または、溶融−急冷凝固−半溶融
−徐冷と溶融状態を2段階で行う必要があり操作が煩雑
となる。更にまた、Y2 BaCuO5 相の凝集を防止し
微細分散組織とさせるための急冷凝固を経由する場合に
は、白金ルツボが必須となり、白金と希土類系酸化物超
電導体との反応による超電導特性の低下または特性のば
らつきのおそれ、高速急冷のための手段等の問題もあ
る。そのため工業的には簡単な操作で大きな結晶を成長
させ、同様な効果が得られる酸化物超電導体の製造方法
が望まれている。
However, Japanese Patent Laid-Open No. 2-1
The QMG method proposed in US Pat.
Although it is possible to obtain a 123-phase crystal in which the phases are relatively uniformly dispersed, the Y 2 O 3 phase of 50 μm or less is uniformly dispersed in the BaCu oxide phase by melting and quenching and solidifying the oxide superconductor raw material. After obtaining the intermediate, or Y 2 O 3 and Ba
It is mixed with Cu oxide to form a plate-like or linear shaped body having a thickness of 5 mm or less, and is further heated to a semi-molten state at the decomposition melting temperature of the above-mentioned 123 phase, and is gradually cooled from that temperature at a predetermined cooling rate. Cooling is to grow the 123 phase in which 211 phases of 20 μm or less are finely and homogeneously dispersed by cooling, and it is formed into a specific shape, or is melted and quenched solidification-semi-molten-slow cooling and molten state Must be performed in two stages, and the operation becomes complicated. Furthermore, when passing through rapid solidification to prevent agglomeration of the Y 2 BaCuO 5 phase and to form a finely dispersed structure, a platinum crucible becomes indispensable, and the superconducting characteristics due to the reaction between platinum and the rare-earth oxide superconductor are reduced. There are also problems such as a possibility of deterioration or variation in characteristics, and a means for rapid quenching. Therefore, industrially, there is a demand for a method for producing an oxide superconductor in which a large crystal can be grown by a simple operation and a similar effect can be obtained.

【0006】本発明は、溶融法の操作上の簡便さを生か
し、且つQMG法やMPMG法で得られる酸化物超電導
体と同様、あるいはそれ以上に強力なピン止め効果を発
揮し高磁場中で優れたJcを示すように、123超電導相
に微細な211相が極めて均一に分散するREBa2 Cu
3y (REは、Y、Gd、Dy、Ho、ErまたはYb
を表す。)酸化物超電導体を得る方法について鋭意研究
した結果、本発明を完成した。
The present invention makes use of the simplicity of the operation of the melting method, and exhibits a pinning effect that is as strong as or higher than that of the oxide superconductor obtained by the QMG method or the MPMG method, and REBa 2 Cu, in which fine 211 phase is dispersed very uniformly in 123 superconducting phase so as to show excellent Jc
3 O y (RE is Y, Gd, Dy, Ho, Er or Yb
Represents As a result of intensive studies on a method for obtaining an oxide superconductor, the present invention was completed.

【0007】[0007]

【課題を解決するための手段】本発明によれば、REBa
2 Cu 3 y (REは、Y、Gd、Dy、Ho、Erまたは
Ybを表す。)酸化物超電導体を構成するRE、Ba及び
Cu成分を含む硝酸塩または酢酸塩と、Rh、Pt及び
Ruの少なくとも1種の元素成分が元素基準で0.01
〜5重量%とが溶解された溶液を噴霧・熱分解して得た
原料混合微粉末を用いて成形し、該成形体を該酸化物超
電導体の分解溶融温度以上の温度に加熱処理して、徐
冷、熱処理して、REBa 2 Cu 3 y 相中にRE 2 BaCuO
5 相が微細に分散した酸化物超電導体を得ることを特徴
とする希土類系酸化物超電導体の製造方法が提供され
る。
According to the present invention, REBa is provided.
2 Cu 3 O y (RE is Y, Gd, Dy, Ho, Er or
Represents Yb. ) RE, Ba and oxide constituting oxide superconductor
Nitrate or acetate containing Cu component, Rh, Pt and
At least one elemental component of Ru is 0.01% on an elemental basis;
Obtained by spraying and pyrolyzing a solution in which about 5% by weight was dissolved.
Molded using the raw material mixed fine powder,
Heat to a temperature above the decomposition melting temperature of the conductor,
Cold, heat treated, RE 2 BaCuO in REBa 2 Cu 3 O y phase
It is characterized by obtaining an oxide superconductor in which five phases are finely dispersed.
The method for producing a rare earth oxide superconductor described above is provided.

【0008】[0008]

【0009】[0009]

【0010】[0010]

【作用】本発明により製造される希土類系酸化物超電導
は、REBa2Cu3y酸化物超電導体にRh、Pt及
びRuの少なくとも1種の元素成分(以下、単にPt等
成分とする。)が、1μm以下のサブミクロンオーダー
の粒子として均一に分散含有されることにより、ピン止
め効果を発揮するRE2BaCuO5の211相がREBa2
Cu3yの123相中に微細且つ均一に分散され全体と
して均質で優れた超電導特性を示し、QMG法やMPM
G法と同様に高いJcを有する。また、サブミクロンオー
ダーのPt等の粒子を均一分散するためには、REBa2
Cu3y酸化物超電導体を構成する原料のRE、Ba及び
Cu成分を含む硝酸塩または酢酸塩とPt等成分を溶解
含有させた溶液を噴霧・熱分解して得た混合微粉末を原
料として用いることにより、目的のサブミクロンのPt
等成分の粒子を均一に分散させることができる。
The rare earth oxide superconductor produced according to the present invention comprises at least one elemental component of Rh, Pt and Ru (hereinafter simply referred to as Pt or the like) in a REBa 2 Cu 3 O y oxide superconductor. ) Are uniformly dispersed and contained as submicron-order particles of 1 μm or less, so that the 211 phase of RE 2 BaCuO 5 exhibiting a pinning effect becomes REBa 2
It is finely and uniformly dispersed in the 123 phase of Cu 3 O y , and exhibits superconductivity that is uniform and excellent as a whole.
It has a high Jc as in the G method. In order to uniformly disperse particles such as Pt on the order of submicrons, REBa 2
RE of the raw materials constituting the Cu 3 O y oxide superconductor, a mixed powder obtained by solution spray-pyrolysis which contains dissolved nitrates or acetates and Pt or the like component containing Ba and Cu component as a raw material By using, the desired submicron Pt
Equi-component particles can be uniformly dispersed.

【0011】以下、本発明について更に詳しく説明す
る。本発明のREBa2 Cu3y 酸化物超電導体は、RE
が、Y、Gd、Dy、Ho、ErまたはYbである希土
類元素を含む多層ペロブスカイト構造を有する、例え
ば、YBa2 Cu37 等の希土類系酸化物超電導体で
ある。本発明の希土類系酸化物超電導体は、REBa2
3y 酸化物を構成するための原料のRE即ちY、G
d、Dy、Ho、ErまたはYbの酸化物、Baの炭酸
塩、酸化物あるいは過酸化物、及びCuの酸化物を混合
した酸化物混合粉末、その酸化物混合粉末の仮焼粉末、
その酸化物混合粉末のフリット粉末等を、焼成後REBa
2 Cu3y とRE2BaCuO5 を構成するように配合
されたものに予めサブミクロンの粒子として調製された
Pt等成分を添加し、均一に分散混合された混合微粉末
を用いて、成形、溶融分解、徐冷、熱処理等の一連の工
程を経て得ることができる。この場合、Pt等成分を除
いたRE、Ba及びCu成分の原料粉末の粒径は、特に制
限されるものでないが、一般的には、20μm以下、特
に1〜5μmの微粉が好ましい。20μmを超える原料
粉末は、分解溶融温度時に組成の不均一が生じるため好
ましくない。
Hereinafter, the present invention will be described in more detail. REBa 2 Cu 3 O y oxide superconductor of the present invention, RE
Is a rare earth-based oxide superconductor such as YBa 2 Cu 3 O 7 having a multilayered perovskite structure containing a rare earth element of Y, Gd, Dy, Ho, Er or Yb. The rare earth oxide superconductor of the present invention is made of REBa 2 C
RE, a raw material for forming u 3 O y oxide, that is, Y, G
an oxide mixed powder obtained by mixing an oxide of d, Dy, Ho, Er or Yb, a carbonate, an oxide or a peroxide of Ba, and an oxide of Cu; a calcined powder of the oxide mixed powder;
After firing the frit powder of the oxide mixed powder,
Add components such as Pt prepared as submicron particles in advance to those blended to constitute 2 Cu 3 O y and RE 2 BaCuO 5 , and mold using a mixed fine powder uniformly dispersed and mixed. , Melt decomposition, slow cooling, heat treatment and the like. In this case, the particle size of the raw material powder of the RE, Ba, and Cu components excluding components such as Pt is not particularly limited, but is generally 20 μm or less, particularly preferably 1 to 5 μm. Raw material powders having a diameter of more than 20 μm are not preferred because the composition becomes non-uniform at the time of decomposition and melting.

【0012】また、本発明においては、各成分原料を1
μm以下のサブミクロン粒子の混合微粉末として用いる
のが特に好ましい。例えば、共沈法で生成された粉末等
を使用することができ、特に好ましくは、上記したREB
2Cu3y 酸化物を構成するための原料のRE、Ba
及びCu成分の硝酸塩または酢酸塩と所定量のPt等成
分を溶解含有した溶液を高温の反応器中に適宜噴霧して
熱分解することにより得られる混合微粉末を用いること
ができる。
In the present invention, each component material is
It is particularly preferable to use as a mixed fine powder of submicron particles of μm or less. For example, a powder or the like produced by a coprecipitation method can be used, and particularly preferably, the above-described REB is used.
RE, Ba as raw materials for forming a 2 Cu 3 O y oxide
A mixed fine powder obtained by appropriately spraying a solution containing a nitrate or acetate of a Cu component and a predetermined amount of a component such as Pt in a high-temperature reactor and thermally decomposing the solution is used.

【0013】本発明において、好ましい混合微粉末を得
る上記噴霧・熱分解は、一般に、原料の各成分を配合し
た硝酸塩または酢酸塩の混合物に、Rh、Pt及びRu
うちの1種以上の元素成分を添加混合して溶解した溶
液、または、原料の各成分を配合した硝酸塩または酢酸
塩溶液にPt等成分を溶解・含有させた溶液を用いて、
高温の反応器内にノズル等から噴霧すると同時に酸素ま
たは空気を噴出したり、酸素や空気と共に噴霧して行う
ことができる。この場合、噴霧・熱分解に供する溶液に
用いられる各成分原料としては、REの硝酸塩、酸化物等
の化合物、Baの硝酸塩、炭酸塩、酸化物等の化合物、
Cuの硝酸塩、酸化物等の化合物を用いることができ、
また、Pt等成分は該当する水溶性のPt等成分化合
物、例えば、塩化白金(IV)や塩化ルテニウム(RuCl3)等
を用いることができる。各化合物は用いられる溶媒に溶
解するものを適宜選択することができる。
In the present invention, the above-mentioned spray / pyrolysis to obtain a preferred mixed fine powder is generally carried out by adding a mixture of nitrates or acetates containing the components of the raw materials to a mixture of Rh, Pt and Ru.
The solution were mixed and dissolved in adding one or more elemental constituents of, or, using a solution obtained by dissolving-containing Pt or the like component in the nitrate or acetate solution was blended each component of the raw material,
Spraying can be performed by spraying oxygen or air at the same time as spraying from a nozzle or the like into a high-temperature reactor, or by spraying with oxygen or air. In this case, as each component raw material used in the solution to be subjected to spraying / pyrolysis, a compound such as nitrate or oxide of RE, a compound such as nitrate, carbonate or oxide of Ba,
Compounds such as nitrates and oxides of Cu can be used,
Further, as the Pt component, a corresponding water-soluble Pt component compound, for example, platinum (IV) chloride or ruthenium chloride (RuCl 3 ) can be used. Each compound can be appropriately selected from ones that dissolve in the solvent used.

【0014】また、上記の噴霧・熱分解の条件により得
られる混合微粉末の性状、粒度分布等が異なる。本発明
においては、通常、反応温度600〜1000℃、滞留
時間10〜120秒で行うのが好ましい。また、溶液濃
度も得られる混合微粉末粒子に影響する。本発明では、
Pt等成分粒子を約1μm以下のサブミクロンオーダー
とするため、約0.001〜0.5モル/リットル、好
ましくは0.05モル/リットルの溶液を用いて行うの
が好ましい。上記噴霧・熱分解により得られる混合微粉
末は、一般に、焼成後にREBa2 Cu3y とRE2 Ba
CuO5 を構成するような成分比で配合されたREの酸化
物、Baの酸化物及びCuの酸化物とPt等成分が1 μ
m以下のサブミクロンオーダーの粒子で均一に分散混合
されたものと推定される。
Further, the properties, particle size distribution, etc. of the mixed fine powder obtained differ depending on the conditions of the above-mentioned spraying and thermal decomposition. In the present invention, it is usually preferable to carry out the reaction at a reaction temperature of 600 to 1000 ° C. and a residence time of 10 to 120 seconds. The solution concentration also affects the resulting mixed fine powder particles. In the present invention,
It is preferable to use a solution of about 0.001 to 0.5 mol / liter, preferably 0.05 mol / liter, in order to make the component particles such as Pt into a submicron order of about 1 μm or less. The fine powder obtained by the spray-pyrolysis, generally, REBa after firing 2 Cu 3 O y and RE 2 Ba
The oxide of RE, the oxide of Ba, the oxide of Cu and the component such as Pt, which are mixed at a component ratio so as to constitute CuO 5 , have a concentration of 1 μm.
It is estimated that particles of submicron order of m or less were uniformly dispersed and mixed.

【0015】本発明において、Pt等成分の添加量は、
最終的に得られる希土類系酸化物超電導体において元素
基準でそれぞれ0.01〜5重量%含有されるようにす
る。添加量が0.01重量%未満では本発明の目的とす
る形態の酸化物超電導体を得ることできず、また、5重
量%を超える場合はREBa2Cu3y 結晶相以外の結
晶相の析出量が多くなり好ましくない。本発明におい
て、上記のサブミクロン粒子としてのPt等成分が均一
に分散混合された混合微粉末を用いることは、成形後の
溶融分解処理時にPt等成分をサブミクロン粒子として
存在させることにより、得られるREBa2 Cu3y
超電導特性を顕著に向上させることができる。この理由
は、明らかでないがPt等成分のサブミクロン粒子が上
記211相の生成の核として作用し、123相中に21
1相を極めて均一且つ微細に分散させることができるも
のと推定される。
In the present invention, the amount of the component such as Pt is
The rare earth oxide superconductor finally obtained is contained in an amount of 0.01 to 5% by weight on an element basis. Can not be the addition amount is obtained an oxide superconductor in the form of interest of the present invention is less than 0.01 wt%, and when it exceeds 5 wt% of REBa 2 Cu 3 O y crystal phase other than the crystalline phase The amount of precipitation is undesirably increased. In the present invention, the use of the mixed fine powder in which the components such as Pt as submicron particles are uniformly dispersed and mixed is achieved by causing the components such as Pt to exist as submicron particles at the time of melt decomposition treatment after molding. The superconducting characteristics of the obtained REBa 2 Cu 3 O y can be remarkably improved. Although the reason is not clear, the submicron particles such as Pt act as nuclei for the formation of the 211 phase, and 21
It is presumed that one phase can be dispersed very uniformly and finely.

【0016】本発明においては、上記した混合微粉末を
を用いて所定の形状に成形した後、対応するREBa2
3y 酸化物超電導体の分解溶融温度以上の温度に加
熱処理し、公知の溶融法と同様に徐冷、酸素雰囲気下で
熱処理することにより得ることができる。成形方法は、
ドクターブレード法、プレス成形法、鋳込成形法等公知
の成形方法を用い希土類系酸化物超電導体のバルク体と
して得ることができる。また、金属、セラミックス等の
基板上に上記混合微粉末によりスプレー塗布、パウダー
塗布等で成形体層を形成した成形体として得ることもで
きる。
In the present invention, after the above-mentioned mixed fine powder is molded into a predetermined shape, the corresponding REBa 2 C
It can be obtained by heat treatment at a temperature equal to or higher than the decomposition melting temperature of the u 3 O y oxide superconductor, followed by slow cooling and heat treatment in an oxygen atmosphere as in a known melting method. The molding method is
Using a known molding method such as a doctor blade method, a press molding method, a cast molding method, etc., the rare earth oxide superconductor can be obtained as a bulk body. Further, it can be obtained as a molded body in which a molded body layer is formed on a substrate of metal, ceramics or the like by spray coating, powder coating or the like using the above-mentioned mixed fine powder.

【0017】本発明における分解溶融温度以上の温度
は、RE成分がY、Gd、Dy、Ho、Er、Ybのいず
れかにより異なり、Yであれば約1000〜1200
℃、Gdは約1050〜1250℃、Dyは約1000
〜1200℃、Hoは約1000〜1150℃、Erは
約950〜1100℃、Ybは約900〜1100℃の
範囲の温度で、RE成分により上記範囲内の温度で、加熱
条件や成形体の大きさ等より適宜選択すればよい。ま
た、加熱処理は上記温度範囲に所定時間保持することに
より行う。保持時間はとくに制限されるものでなく、上
記の温度範囲と同様に加熱条件等により適宜選択するこ
とができ、通常は、20分〜2時間である。上記加熱処
理後は、通常の溶融法と同様に徐冷して、酸素雰囲気
下、所定温度で保持して熱処理することによりREBa2
Cu3y 酸化物超電導体を得ることができる。この場
合、徐冷は降温速度約1〜5℃/時間で行うのが好まし
い。また、熱処理は酸素雰囲気下、通常650〜400
℃で、約10〜50時間保持するのが好ましい。
In the present invention, the temperature not lower than the decomposition melting temperature is different depending on whether the RE component is Y, Gd, Dy, Ho, Er, or Yb.
° C, Gd is about 1050 to 1250 ° C, Dy is about 1000
~ 1200 ° C, Ho is about 1000-1150 ° C, Er is about 950-1100 ° C, Yb is a temperature in the range of about 900-1100 ° C. What is necessary is just to select suitably from the etc. In addition, the heat treatment is performed by maintaining the above temperature range for a predetermined time. The holding time is not particularly limited, and can be appropriately selected depending on the heating conditions and the like as in the above temperature range, and is usually 20 minutes to 2 hours. After the above heat treatment, the material is gradually cooled in the same manner as in a normal melting method, and is heated at a predetermined temperature under an oxygen atmosphere to thereby obtain REBa 2.
A Cu 3 O y oxide superconductor can be obtained. In this case, the slow cooling is preferably performed at a temperature lowering rate of about 1 to 5 ° C./hour. The heat treatment is usually performed in an oxygen atmosphere at 650 to 400.
It is preferable to hold at about 10 ° C. for about 10 to 50 hours.

【0018】[0018]

【実施例】以下、本発明を実施例により詳細に説明す
る。但し、本発明は下記実施例により制限されるもので
ない。 実施例1 Y(NO33・6H2O、Ba(NO32、Cu(N
32・3H2Oを原子比でY:Ba:Cu=1.8:
2.4:3.4となるように秤量して蒸留水に溶解混合
した。得られた溶液をYBa2Cu3y濃度が0.05
モル/リットルとなるように希釈し、更にYBa2Cu3
6.8に対し、表1に示した比率でPtCl4・5H2
を添加溶解した。次いで、800℃に加熱した反応管中
に、得られた溶液を超音波発振子で霧化導入し、同時に
キャリアーガスとして毎分5リットルの酸素ガスを噴出
して、溶液中の各原料成分の熱分解を行った。フィルタ
ーで排ガスを濾過しつつ熱分解により生成した微粒子を
して、原料の混合微粉末を得た。上記で得られた各
混合微粉末をそれぞれプレス成形により厚さ7mmで、直
径20mmφのペレットに成形した。得られたペレットと
大気雰囲気の電気炉内に設置して、1150℃で1時間
保持し分解溶融し、次いで、1000℃から950℃ま
で1℃/時間で徐冷した。その後、更に、炉内雰囲気を
酸素雰囲気として450℃で100時間熱処理してペレ
ット状の酸化物超電導体を得た。得られた各酸化物超電
導体のペレットから切り出した各試料について、それぞ
れ磁化ヒステリシスをSQUID磁計を用いて測定
し、温度77K、磁場1TにおけるJc(A/cm2)を
算出した。その結果を表1に示した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. However, the present invention is not limited by the following examples. Example 1 Y (NO 3 ) 3 .6H 2 O, Ba (NO 3 ) 2 , Cu (N
O 3 ) 2 .3H 2 O in atomic ratio Y: Ba: Cu = 1.8:
It was weighed to 2.4: 3.4 and dissolved and mixed in distilled water. The obtained solution was adjusted to a YBa 2 Cu 3 O y concentration of 0.05.
Diluted to a mole / liter, and further diluted with YBa 2 Cu 3
To O 6.8, PtCl 4 · 5H 2 O in the proportions shown in Table 1
Was added and dissolved. Next, into the reaction tube heated to 800 ° C., the obtained solution was atomized and introduced with an ultrasonic oscillator, and at the same time, 5 liters of oxygen gas per minute was jetted out as a carrier gas, to thereby obtain the raw material components in the solution. Pyrolysis was performed. Exhaust gases by collecting capturing the generated microparticles by pyrolysis while filtered through a filter to obtain a mixed powder of the raw materials. Each of the mixed fine powders obtained above was formed into a pellet having a thickness of 7 mm and a diameter of 20 mm by press molding. The obtained pellets were placed in an electric furnace in an air atmosphere, kept at 1150 ° C. for 1 hour to decompose and melt, and then gradually cooled from 1000 ° C. to 950 ° C. at 1 ° C./hour. Thereafter, the furnace was further heat-treated at 450 ° C. for 100 hours in an oxygen atmosphere to obtain a pellet-shaped oxide superconductor. Each sample cut from the pellets of the oxide superconductor obtained, respectively magnetization hysteresis was measured using a SQUID flux meter, calculated temperatures 77K, the Jc (A / cm 2) in a magnetic field 1T. The results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】実施例2 PtCl4 ・5H2 Oの替わりにRhCl3 ・3H2
を用い表2に示した比率で混合添加した以外は、実施例
1と同様にして各混合微粉末を調製し、更に実施例1と
同様にしてペレット状の各酸化物超電導体を得た。得ら
れた各酸化物超電導体のペレットから切り出した各試料
について、それぞれ実施例1と同様にしてJcを算出し、
その結果を表2に示した。
The RhCl 3 · 3H 2 O Example 2 PtCl 4 · 5H 2 O instead of
, And mixed fine powders were prepared in the same manner as in Example 1 except that they were mixed and added at the ratios shown in Table 2, and pelletized oxide superconductors were obtained in the same manner as in Example 1. For each sample cut out from the obtained pellets of each oxide superconductor, Jc was calculated in the same manner as in Example 1, respectively.
The results are shown in Table 2.

【0021】[0021]

【表2】 [Table 2]

【0022】 実施例3 Y、Ba、及びCuの酢酸塩を原子比でY:Ba:Cu
=1.8:2.4:3.4となるように秤量して蒸留水
に溶解混合して、実施例1と同様にして各混合微粉末を
調製し、更に実施例と同様にしてペレット状の各酸化
物超電導体を得た。得られた各酸化物超電導体のペレッ
トから切り出した各試料について、それぞれ実施例1と
同様にしてJcを算出し、その結果を表3に示した。
Example 3 Acetates of Y, Ba, and Cu are combined in an atomic ratio of Y: Ba: Cu
= 1.8: 2.4: 3.4, dissolved and mixed in distilled water to prepare each mixed fine powder in the same manner as in Example 1, and further in the same manner as in Example 1. Each pellet-shaped oxide superconductor was obtained. Jc was calculated for each sample cut out from the obtained pellets of each oxide superconductor in the same manner as in Example 1, and the results are shown in Table 3.

【0023】[0023]

【表3】 [Table 3]

【0024】実施例4 Y(NO3)3 ・6H2 Oの替わりにGd(NO3)3 ・5
2 Oを用いた以外は実施例1と同様にして各混合微粉
末を調製し、更に同様にペレット状に成形し、各成形体
を大気中、1200℃で1時間保持し分解溶融し、次い
で、1070℃から960℃まで1℃/時間で徐冷した
以外は、実施例1と同様にしてペレット状の各酸化物超
電導体を得た。得られた各酸化物超電導体のペレットか
ら切り出した各試料について、それぞれ実施例1と同様
にしてJcを算出し、その結果を表4に示した。
[0024] Example 4 Y (NO 3) 3 · 6H 2 O in place to Gd (NO 3) 3 · 5
Except that H 2 O was used, each mixed fine powder was prepared in the same manner as in Example 1, and further molded into pellets, and each molded product was decomposed and melted at 1200 ° C. for 1 hour in the air. Next, pellet-shaped oxide superconductors were obtained in the same manner as in Example 1 except that the temperature was gradually decreased from 1070 ° C. to 960 ° C. at 1 ° C./hour. Jc was calculated for each sample cut out from the obtained pellets of each oxide superconductor in the same manner as in Example 1, and the results are shown in Table 4.

【0025】[0025]

【表4】 [Table 4]

【0026】実施例5 Y(NO3)3 ・6H2 Oの替わりにDy(NO3)3 ・5
2 Oを用いた以外は実施例1と同様にして各混合微粉
末を調製し、更に同様にペレット状に成形し、各成形体
を大気中、1100℃で1時間保持し分解溶融し、次い
で980℃から900℃まで1.5℃/時間で徐冷した
以外は、実施例1と同様にしてペレット状の各酸化物超
電導体を得た。得られた各酸化物超電導体のペレットか
ら切り出した各試料について、それぞれ実施例1と同様
にしてJcを算出し、その結果を表5に示した。
[0026] Example 5 Y (NO 3) 3 · 6H 2 O in instead Dy (NO 3) 3 · 5
Except that H 2 O was used, each mixed fine powder was prepared in the same manner as in Example 1, and further formed into pellets, and each molded product was decomposed and melted at 1100 ° C. for 1 hour in the air. Next, pellet-shaped oxide superconductors were obtained in the same manner as in Example 1 except that the temperature was gradually cooled from 980 ° C. to 900 ° C. at 1.5 ° C./hour. Jc was calculated for each sample cut out from the obtained pellets of each oxide superconductor in the same manner as in Example 1, and the results are shown in Table 5.

【0027】[0027]

【表5】 [Table 5]

【0028】実施例6 Ho(NO3)3 ・5H2 O、Ba(NO3)2 、Cu(N
3)2 ・3H2 Oを原子比でY:Ba:Cu=1.4:
2.2:3.2となるように秤量して蒸留水に溶解混合
した。得られた溶液をHoBa2 Cu3y 濃度が0.
05モル/リットルとなるように希釈し、更にHoBa
2 Cu36.8 に対し、表6に示した比率でPtCl4
・5H2 Oを添加溶解した。次いで、実施例1と同様に
して各混合微粉末を調製し、更に同様にペレット状に成
形し、各成形体を大気中、1050℃で2時間保持し分
解溶融し、次いで1000℃から920℃まで1.5℃
/時間で徐冷した以外は、実施例1と同様にしてペレッ
ト状の各酸化物超電導体を得た。得られた各酸化物超電
導体のペレットから切り出した各試料について、それぞ
れ実施例1と同様にしてJcを算出し、その結果を表6に
示した。
Example 6 Ho (NO 3 ) 3 .5H 2 O, Ba (NO 3 ) 2 , Cu (N
O 3 ) 2 .3H 2 O in atomic ratio Y: Ba: Cu = 1.4:
It was weighed to 2.2: 3.2 and dissolved and mixed in distilled water. The resulting solution was adjusted to a HoBa 2 Cu 3 O y concentration of 0.
Dilute to 0.05 mol / L and further add HoBa
2 Cu 3 O 6.8 and PtCl 4 at the ratio shown in Table 6.
· The 5H 2 O was dissolved added. Then, each mixed fine powder was prepared in the same manner as in Example 1, and further formed into pellets in the same manner. Up to 1.5 ° C
Each oxide superconductor in the form of pellets was obtained in the same manner as in Example 1 except that the temperature was slowly cooled per hour. Jc was calculated for each of the samples cut out from the obtained pellets of the oxide superconductor in the same manner as in Example 1, and the results are shown in Table 6.

【0029】[0029]

【表6】 [Table 6]

【0030】実施例7 Y(NO3)3 ・6H2 Oの替わりにEr(NO3)3 ・5
2 Oを用いた以外は実施例1と同様にして各混合微粉
末を調製し、更に同様にペレット状に成形し、各成形体
を大気中、1100℃で30分保持し分解溶融し、次い
で1000℃から850℃まで2℃/時間で徐冷した以
外は、実施例1と同様にしてペレット状の各酸化物超電
導体を得た。得られた各酸化物超電導体のペレットから
切り出した各試料について、それぞれ実施例1と同様に
してJcを算出し、その結果を表7に示した。
Example 7 Instead of Y (NO 3 ) 3 .6H 2 O, Er (NO 3 ) 3 .5
Except for using H 2 O, each mixed fine powder was prepared in the same manner as in Example 1, and further molded into pellets, and each molded product was held in the air at 1100 ° C. for 30 minutes and decomposed and melted. Next, pellet-shaped oxide superconductors were obtained in the same manner as in Example 1 except that the temperature was gradually cooled from 1000 ° C. to 850 ° C. at 2 ° C./hour. Jc was calculated for each sample cut out from the obtained pellets of each oxide superconductor in the same manner as in Example 1, and the results are shown in Table 7.

【0031】[0031]

【表7】 [Table 7]

【0032】実施例8 Y(NO3)3 ・6H2 Oの替わりにYb(NO3)3 ・5
2 Oを用いた以外は実施例1と同様にして各混合微粉
末を調製し、更に同様にペレット状に成形し、各成形体
を大気中、1050℃で30分保持し分解溶融し、次い
で950℃から850℃まで2℃/時間で徐冷した以外
は、実施例1と同様にしてペレット状の各酸化物超電導
体を得た。得られた各酸化物超電導体のペレットから切
り出した各試料について、それぞれ実施例1と同様にし
てJcを算出し、その結果を表8に示した。
Example 8 Instead of Y (NO 3 ) 3 .6H 2 O, Yb (NO 3 ) 3 .5
Except that H 2 O was used, each mixed fine powder was prepared in the same manner as in Example 1, and further molded into pellets, and each molded product was decomposed and melted at 1050 ° C. for 30 minutes in the air. Next, pellet-shaped oxide superconductors were obtained in the same manner as in Example 1 except that the temperature was gradually cooled from 950 ° C. to 850 ° C. at 2 ° C./hour. Jc was calculated for each sample cut out from the obtained pellets of each oxide superconductor in the same manner as in Example 1, and the results are shown in Table 8.

【0033】[0033]

【表8】 [Table 8]

【0034】上記実施例より、Pt等成分をサブミクロ
ン粒子として0.01〜0.5重量%添加した混合微粉
末を用いて得られた希土類系酸化物超電導体が、極めて
高Jcを示すことが分かる。
From the above examples, it can be seen that the rare-earth oxide superconductor obtained by using a mixed fine powder in which a component such as Pt is added as submicron particles in an amount of 0.01 to 0.5% by weight has an extremely high Jc. I understand.

【0035】[0035]

【発明の効果】本発明は、溶融法により磁束線を固定す
る211相が微細に且つ均一に分散するREBa2 Cu3
y 酸化物超電導体を得ることができ、得られる希土類
系酸化物超電導体はJcが高く、製造操作も極めて簡便で
あり、工業上有用である。
According to the present invention, REBa 2 Cu 3 in which 211 phases for fixing magnetic flux lines are finely and uniformly dispersed by a melting method.
An Oy oxide superconductor can be obtained, and the obtained rare earth oxide superconductor has a high Jc, is extremely easy to manufacture, and is industrially useful.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C01G 3/00 C01G 1/00 H01B 12/00 H01B 13/00 H01L 39/24 Continuation of the front page (58) Field surveyed (Int. Cl. 6 , DB name) C01G 3/00 C01G 1/00 H01B 12/00 H01B 13/00 H01L 39/24

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 REBa 2 Cu 3 y (REは、Y、Gd、D
y、Ho、ErまたはYbを表す。)酸化物超電導体を
構成するRE、Ba及びCu成分を含む硝酸塩または酢酸
塩と、Rh、Pt及びRuの少なくとも1種の元素成分
が元素基準で0.01〜5重量%とが溶解された溶液を
噴霧・熱分解して得た原料混合微粉末を用いて成形し、
該成形体を該酸化物超電導体の分解溶融温度以上の温度
に加熱処理して、徐冷、熱処理してREBa2Cu3y
相中にRE 2 BaCuO 5 相が微細に分散した酸化物超電導
体を得ることを特徴とする希土類系酸化物超電導体の製
造方法。
1. REBa 2 Cu 3 O y (RE is Y, Gd, D
represents y, Ho, Er or Yb. ) Oxide superconductor
Nitrate or acetic acid containing RE, Ba and Cu constituents
Salt and at least one elemental component of Rh, Pt and Ru
Is a solution in which 0.01 to 5% by weight based on the element is dissolved.
Molding using raw material mixed fine powder obtained by spraying and thermal decomposition ,
The molded body is heated to a temperature equal to or higher than the decomposition melting temperature of the oxide superconductor, gradually cooled, and heat-treated to obtain REBa 2 Cu 3 O y
A method for producing a rare-earth oxide superconductor, characterized in that an oxide superconductor in which a RE 2 BaCuO 5 phase is finely dispersed in a phase is obtained.
JP3200027A 1991-07-15 1991-07-15 Method for producing rare earth oxide superconductor Expired - Fee Related JP2920001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3200027A JP2920001B2 (en) 1991-07-15 1991-07-15 Method for producing rare earth oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3200027A JP2920001B2 (en) 1991-07-15 1991-07-15 Method for producing rare earth oxide superconductor

Publications (2)

Publication Number Publication Date
JPH0524828A JPH0524828A (en) 1993-02-02
JP2920001B2 true JP2920001B2 (en) 1999-07-19

Family

ID=16417601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3200027A Expired - Fee Related JP2920001B2 (en) 1991-07-15 1991-07-15 Method for producing rare earth oxide superconductor

Country Status (1)

Country Link
JP (1) JP2920001B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10163125A1 (en) * 2001-12-20 2003-07-10 Nexans Superconductors Gmbh Process for the production of textured superconducting thick layers and biaxial textured superconductor structures obtainable therewith
CN102584250B (en) * 2012-02-08 2013-09-04 上海交通大学 Method for preparing REBa2Cu3Ox (REBCO) high-temperature superconducting block material

Also Published As

Publication number Publication date
JPH0524828A (en) 1993-02-02

Similar Documents

Publication Publication Date Title
JP2871258B2 (en) Oxide superconductor and manufacturing method thereof
JPH0672713A (en) Production of rare-earth superconducting composition
JP2688455B2 (en) Rare earth oxide superconductor and method for producing the same
US5324712A (en) Formation of the high TC 2223 phase in BI-SR-CA-CU-O by seeding
EP0364494A1 (en) Improved process for making 90 k superconductors
EP0347770B1 (en) Process of producing a bismuth system oxide superconductor
JP2920001B2 (en) Method for producing rare earth oxide superconductor
EP0800494B1 (en) LOW TEMPERATURE (T LOWER THAN 950 oC) PREPARATION OF MELT TEXTURE YBCO SUPERCONDUCTORS
KR100633671B1 (en) A pb-bi-sr-ca-cu-oxide powder mix with enhanced reactivity and process for its manufacture
EP1659104B1 (en) Precursor material for Bi-based oxide superconductor and process for preparing such material
JP2931446B2 (en) Method for producing rare earth oxide superconductor
JP3330962B2 (en) Manufacturing method of oxide superconductor
EP0366721A1 (en) Improved process for making 90 k superconductors
JP3394297B2 (en) Method for producing superconductive composition
JP3174847B2 (en) Superconducting whisker and manufacturing method thereof
JP3115915B2 (en) Method for producing rare earth oxide superconductor
JPH07106906B2 (en) Oxide superconducting material containing rare earth element and method for producing the same
JPH0416511A (en) Oxide superconductor and its production
AU634185B2 (en) Homogeneous high temperature superconductors and process for making them
Bautista The process synthesis of bulk superconductors
JPH04124032A (en) Superconductor and its synthesis
JPH10510799A (en) Improved superconductor
JP2709000B2 (en) Superconductor and method of manufacturing the same
JPH0193420A (en) Production of oxide superconductor powder
Morita et al. Process and Properties of QMG Crystals

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990413

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees