JP2931446B2 - Method for producing rare earth oxide superconductor - Google Patents
Method for producing rare earth oxide superconductorInfo
- Publication number
- JP2931446B2 JP2931446B2 JP3200028A JP20002891A JP2931446B2 JP 2931446 B2 JP2931446 B2 JP 2931446B2 JP 3200028 A JP3200028 A JP 3200028A JP 20002891 A JP20002891 A JP 20002891A JP 2931446 B2 JP2931446 B2 JP 2931446B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide superconductor
- powder
- oxide
- phase
- reba
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002887 superconductor Substances 0.000 title claims description 49
- 229910001404 rare earth metal oxide Inorganic materials 0.000 title claims description 9
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000000843 powder Substances 0.000 claims description 38
- 241000954177 Bangana ariza Species 0.000 claims description 20
- 238000002844 melting Methods 0.000 claims description 17
- 230000008018 melting Effects 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 12
- 239000002994 raw material Substances 0.000 claims description 10
- 238000000354 decomposition reaction Methods 0.000 claims description 9
- 229910052691 Erbium Inorganic materials 0.000 claims description 8
- 229910052689 Holmium Inorganic materials 0.000 claims description 8
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 7
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 229910052727 yttrium Inorganic materials 0.000 claims description 6
- 229910052703 rhodium Inorganic materials 0.000 claims description 4
- 238000000137 annealing Methods 0.000 claims description 2
- -1 D represents y Inorganic materials 0.000 claims 1
- 239000010949 copper Substances 0.000 description 29
- 238000000034 method Methods 0.000 description 29
- 239000012071 phase Substances 0.000 description 27
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 21
- 239000008188 pellet Substances 0.000 description 13
- 239000002245 particle Substances 0.000 description 12
- 239000013078 crystal Substances 0.000 description 10
- 238000001816 cooling Methods 0.000 description 8
- 229910052692 Dysprosium Inorganic materials 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000011812 mixed powder Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- 238000010583 slow cooling Methods 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000013590 bulk material Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、Rh、Pt及びRuの
少なくとも1種の元素成分を均一に分散してなる高磁場
下でも高い臨界電流密度を示すREBa2Cu3Oy(RE
は、Y、Gd、Dy、Ho、ErまたはYbを表す。)
酸化物超電導体の製造方法に関する。
【0002】
【従来の技術】酸化物超電導体は臨界温度が高いことか
ら実用化への研究が盛んに行われている。これら酸化物
超電導体をバルク材として得る方法としては、従来、焼
結法が一般的であった。焼結法により製造した酸化物超
電導体は、結晶粒が小さく内部に多数の粒界が存在する
微細結晶構造を有する。このような焼結法による酸化物
超電導バルク体では、個々の超電導粒子は弱結合で連結
されており、臨界電流密度(Jc)はこの弱結合に支配され
ることになり高いJcが得られていない。
【0003】一方、単結晶の超電導体においては上記し
た粒界の問題が無く、高磁場においても高いJcを示すこ
とが知られており、上記焼結法により得られる微細構造
の超電導体を単結晶構造に近似させる試みが検討され、
また、非超電導相の微細構造粒子を超電導相中に分散さ
せ、侵入した磁束線を固定させるいわゆるピンニングセ
ンターの導入が提案されている。例えば、MTG法(Me
lt Textured Growth法)に代表される溶融法が提案され
ている。このMTG法は、酸化物超電導体において、一
般に123相(YBa2Cu3Oy 、但しYはYを含む希
土類元素)の分解溶融温度から徐冷することにより、2
11相(Y2BaCuO5)と液相との包晶反応を起こさ
せ結晶成長させるもので、成長した結晶内部には211
相が存在しピンニングセンターとして作用する。このた
め、得られた酸化物超電導体は磁場中でも高いJcを示
す。しかし、この溶融法で得られる酸化物超電導体は、
211相の粒径が大きく、且つその分布が不均一であり
結晶成長方向に沿ったクラックが存在する等の不都合が
あった。
【0004】また、211相の粒径を小さく且つ均一に
分散させ、バルク体のクラック等の欠陥を防止する方法
も提案されている。例えば、特開平2−153803号
公報にはQMG法(Quench and Melt Growth法) が提案
され、更にまた、QMG法における成形性を向上させる
方法のMPMG法(Melt Powder and Melt Growth 法)
も提案されている。これらは、極めて強力なピン止め効
果を発揮し高磁場中で優れたJcを示すことが開示されて
いる。
【0005】
【発明が解決しようとする課題】しかし、特開平2−1
53803号公報で提案されたQMG法は、上記211
相が比較的均一に分散された123相の結晶を得ること
ができるが、酸化物超電導体原料の溶融急冷凝固により
BaCu酸化物相中に50μm以下のY2 O3 相等を均
質に分散させた中間体を得た後、またはY2 O3 とBa
Cu酸化物とを混合して厚さ5mm以下の板状または線状
の成形体とし、更に、上記123相の分解溶融温度で半
溶融状態に加熱して、その温度から所定の冷却速度で徐
冷することで内部に20μm以下の211相が微細で均
質に分散存在する123相を結晶成長させるもので、特
定形状に成形するか、または、溶融−急冷凝固−半溶融
−徐冷と溶融状態を2段階で行う必要があり操作が煩雑
となる。更にまた、Y2 BaCuO5 相の凝集を防止し
微細分散組織とさせるための急冷凝固を経由する場合に
は、白金ルツボが必須となり、白金と希土類系酸化物超
電導体との反応による超電導特性の低下または特性のば
らつきのおそれ、高速急冷のための手段等の問題もあ
る。そのため工業的には簡単な操作で大きな結晶を成長
させ、同様な効果が得られる酸化物超電導体の製造方法
が望まれている。
【0006】本発明は、溶融法の操作上の簡便さを生か
し、且つQMG法やMPMG法で得られる酸化物超電導
体と同様、あるいはそれ以上に強力なピン止め効果を発
揮し高磁場中で優れたJcを示すように、123超電導相
に微細な211相が極めて均一に分散するREBa2 Cu
3 Oy (REは、Y、Gd、Dy、Ho、ErまたはYb
を表す。)酸化物超電導体を得る方法について鋭意研究
した結果、本発明を完成した。
【0007】
【課題を解決するための手段】本発明によれば、REBa
2Cu3Oy(REは、Y、Gd、Dy、Ho、Erまたは
Ybを表す。)酸化物超電導体を構成するRE、Ba及び
Cu成分を含むと共に、Rh、Pt及びRuの少なくと
も1種の元素成分が元素基準で0.01〜5重量%含有
されて粉末状に溶融凝固してなる原料粉末を用いて成形
し、該成形体を該酸化物超電導体の分解溶融温度以上の
温度に加熱処理して、徐冷、熱処理して、REBa 2 Cu 3
O y 相中にRE 2 BaCuO 5 相が微細に分散した酸化物超
電導体を得ることを特徴とする希土類系酸化物超電導体
の製造方法が提供される。
【0008】
【0009】
【作用】本発明の希土類系酸化物超電導体は上記のよう
に構成されて、REBa2Cu3Oy 酸化物超電導体にR
h、Pt及びRuの少なくとも1種の元素成分(以下、
単にPt等成分とする。)が粒子として均一に分散含有
されることにより、ピン止め効果を発揮するRE2BaC
uO5の211相がREBa2Cu3Oyの123相中に微細
且つ均一に分散され全体として均質で優れた超電導特性
を示し、QMG法やMPMG法と同様に高いJcを有す
る。また、Pt等の粒子を均一分散するためには、REB
a2Cu3Oy酸化物超電導体を構成する原料のRE、Ba
及びCu成分を含むと共に、Rh、Pt及びRuの少な
くとも1種の元素成分を元素基準で0.01〜5重量%
分散含有されて粉末状に溶融凝固して得た粉末を原料と
して用いることにより、目的のPt等成分の粒子を均一
に分散させることができる。
【0010】以下、本発明について更に詳しく説明す
る。本発明のREBa2 Cu3 Oy 酸化物超電導体は、RE
が、Y、Gd、Dy、Ho、ErまたはYbである希土
類元素を含む多層ペロブスカイト構造を有する、例え
ば、YBa2 Cu3 O7 等の希土類系酸化物超電導体で
ある。本発明の希土類系酸化物超電導体は、REBa2 C
u3 Oy 酸化物を構成するための原料のRE即ちY、G
d、Dy、Ho、ErまたはYbの酸化物、Baの炭酸
塩及びCuの酸化物を混合した酸化物混合粉末、その酸
化物混合粉末の仮焼粉末、その酸化物混合粉末のフリッ
ト粉末等を、焼成後REBa2 Cu3 Oy とRE2 BaCu
O5 を構成するように配合されたものにPt等成分を添
加し、溶融凝固して得られる均一に分散混合された粉末
を用いて、成形、溶融分解、徐冷、熱処理等の一連の工
程を経て得ることができる。この場合、溶融凝固処理す
るRE、Ba及びCu成分、及びPt等成分の原料粉末の
粒径は、特に制限されるものでないが、一般的には、2
0μm以下、特に1〜5μmの微粉が好ましい。20μ
mを超える原料粉末は、分解溶融温度時に組成の不均一
が生じるため好ましくない。
【0011】また、本発明において、好ましくは、各成
分原料を粉末として用いるのがよく、特に好ましくは、
上記したREBa2 Cu3Oy 酸化物を構成するための原
料のRE、Ba及びCu成分と所定量のPt等成分を粉末
状に溶融凝固して得られる粉末を用いるのがよい。本発
明において、好ましい粉末を得る上記の溶融凝固法は、
通常、下記のような工程で行うことができる。即ち、先
ず、REBa2 Cu3 Oy 酸化物を構成する原料の各成分
を配合した混合物に、RE、Ba及びCuの各成分とほぼ
同様な粒径のPt等成分の1種以上の元素粉末を添加し
て混合して、粉砕し、更に、好ましくはスプレードライ
ヤー等により造粒し、2〜300μmに粒度を調整す
る。得られた造粒混合粉末を更に、例えば、酸素・水素
炎等の火炎溶融を利用した溶射法を用い、窒素等の不活
性ガス中に溶射することにより、全原料粉末が均一に分
散した溶融凝固粉末とする。この場合、溶射条件により
得られる粉末の性状、粒度分布等が異なるが、本発明に
おいては、通常、溶射量1〜50g/分で、溶射温度1
300〜1600℃で行うのが好ましい。
【0012】上記溶融・凝固により得られる粉末は、一
般に、焼成後にREBa2 Cu3 OyとRE2 BaCuO5
を構成するような成分比で配合されたREの酸化物、Ba
の酸化物及びCuの酸化物とPt等成分が均一に分散混
合されたものと推定される。本発明において、Pt等成
分の添加量は、最終的に得られる希土類系酸化物超電導
体において元素基準でそれぞれ0.01〜5重量%含有
されるようにする。添加量が0.01重量%未満では本
発明の目的とする形態の酸化物超電導体を得ることでき
ず、また、5重量%を超える場合はREBa2 Cu3 Oy
結晶相以外の結晶相の析出量が多くなり好ましくない。
本発明において、上記のPt等成分が均一に分散混合さ
れた粉末を用いることは、成形後の溶融分解処理時にP
t等成分を存在させることにより、得られるREBa2 C
u3 Oy の超電導特性を顕著に向上させることができ
る。この理由は、明らかでないが均一に分散したPt等
成分粒子が上記211相の生成の核として作用し、12
3相中に211相を極めて均一且つ微細に分散させるこ
とができるものと推定される。
【0013】本発明においては、上記した粉末をを用い
て所定の形状に成形した後、対応するREBa2 Cu3 O
y 酸化物超電導体の分解溶融温度以上の温度に加熱処理
し、公知の溶融法と同様に徐冷、酸素雰囲気下で熱処理
することにより得ることができる。成形方法は、ドクタ
ーブレード法、プレス成形法、鋳込成形法等公知の成形
方法を用い希土類系酸化物超電導体のバルク体として得
ることができる。また、金属、セラミックス等の基板上
に上記粉末によりスプレー塗布、パウダー塗布等で成形
体層を形成した成形体として得ることもできる。
【0014】本発明における分解溶融温度以上の温度
は、RE成分がY、Gd、Dy、Ho、Er、Ybのいず
れかにより異なり、Yであれば約1000〜1200
℃、Gdは約1050〜1250℃、Dyは約1000
〜1200℃、Hoは約1000〜1150℃、Erは
約950〜1100℃、Ybは約900〜1100℃の
範囲の温度で、RE成分により上記範囲内の温度で、加熱
条件や成形体の大きさ等より適宜選択すればよい。ま
た、加熱処理は上記温度範囲に所定時間保持することに
より行う。保持時間はとくに制限されるものでなく、上
記の温度範囲と同様に加熱条件等により適宜選択するこ
とができ、通常は、20分〜2時間である。上記加熱処
理後は、通常の溶融法と同様に徐冷して、酸素雰囲気
下、所定温度で保持して熱処理することによりREBa2
Cu3Oy酸化物超電導体を得ることができる。この場
合、徐冷は降温速度約1〜5℃/時間で行うのが好まし
い。また、熱処理は酸素雰囲気下、通常650〜400
℃で、約10〜50時間保持するのが好ましい。
【0015】
【実施例】以下、本発明を実施例により詳細に説明す
る。但し、本発明は下記実施例により制限されるもので
ない。
実施例1
Y2O3、BaCO3、CuOをモル比でY:Ba:Cu
=1.8:2.4:3.4となるように秤量し、更に表
1に示した添加量でPt粉末を添加して混合した後、9
00℃で10時間仮焼して、仮焼粉末を得た。得られた
仮焼粉末をエタノールを用いて湿式粉砕混合し、更にス
プレードライヤーで造粒して粒度を100〜300μm
に調整した。得られた造粒粉末を酸素−水素炎の溶射装
置を用い、窒素雰囲気中に噴射し、銅板上に溶融凝固粉
末を捕集した。得られた溶融凝固粉末をイソプロピルア
ルコール中でジルコニア玉石を用いた回転ミルにより粉
砕した。上記で得られた各粉砕粉末をそれぞれプレス成
形により厚さ10mmで、直径20mmφのペレットに成形
した。得られたペレットを大気雰囲気の電気炉内に設置
して、1150℃で1時間保持し分解溶融し、次いで、
980℃から920℃まで1℃/時間で徐冷した。その
後、更に、炉内雰囲気を酸素雰囲気として450℃で1
00時間熱処理してペレット状の酸化物超電導体を得
た。得られた各酸化物超電導体のペレットから切り出し
た各試料について、それぞれ磁化ヒステリシスをSQU
ID磁束計を用いて測定し、温度77K、磁場1Tにお
けるJc(A/cm2)を算出した。その結果を表1に示
した。
【0016】
【表1】【0017】実施例2
Y2 O3 の替わりにGd2 O3 を用いた以外は、実施例
1と同様にして各溶融凝固粉末を調製し、更に同様にペ
レット状に成形し、各成形体を大気中、1150℃で2
時間保持し分解溶融し、次いで、1050℃から950
℃まで2℃/時間で徐冷した以外は、実施例1と同様に
してペレット状の各酸化物超電導体を得た。得られた各
酸化物超電導体のペレットから切り出した各試料につい
て、それぞれ実施例1と同様にしてJcを算出し、その結
果を表2に示した。
【0018】
【表2】
【0019】実施例3
Y2 O3 の替わりにDy2 O3 を用いた以外は、実施例
1と同様にして各溶融凝固粉末を調製し、更に同様にペ
レット状に成形し、各成形体を大気中、1100℃で1
時間保持し分解溶融し、次いで980℃から900℃ま
で50時間で徐冷した以外は、実施例1と同様にしてペ
レット状の各酸化物超電導体を得た。得られた各酸化物
超電導体のペレットから切り出した各試料について、そ
れぞれ実施例1と同様にしてJcを算出し、その結果を表
3に示した。
【0020】
【表3】【0021】実施例4
Y2 O3 の替わりにHo2 O3 を用いた以外は、実施例
1と同様にして各溶融凝固粉末を調製し、更に同様にペ
レット状に成形し、各成形体を大気中、1100℃で1
時間保持し分解溶融し、次いで、1000℃から900
℃まで1℃/時間で徐冷した以外は、実施例1と同様に
してペレット状の各酸化物超電導体を得た。得られた各
酸化物超電導体のペレットから切り出した各試料につい
て、それぞれ実施例1と同様にしてJcを算出し、その結
果を表4に示した。
【0022】
【表4】
【0023】実施例5
Y2 O3 の替わりにEr2 O3 を用いた以外は、実施例
1と同様にして各溶融凝固粉末を調製し、更に、同様に
ペレット状に成形し、各成形体を大気中、1050℃で
2時間保持し分解溶融し、次いで、950℃から870
℃まで1℃/時間で徐冷した以外は、実施例1と同様に
してペレット状の各酸化物超電導体を得た。得られた各
酸化物超電導体のペレットから切り出した各試料につい
て、それぞれ実施例1と同様にしてJcを算出し、その結
果を表5に示した。
【0024】
【表5】
【0025】実施例6
Y2 O3 の替わりにYb2 O3 を用いた以外は、実施例
1と同様にして各溶融凝固粉末を調製し、更に、同様に
ペレット状に成形し、各成形体を大気中、1050℃で
1時間保持し分解溶融し、次いで、950℃から900
℃まで2℃/時間で徐冷した以外は、実施例1と同様に
してペレット状の各酸化物超電導体を得た。得られた各
酸化物超電導体のペレットから切り出した各試料につい
て、それぞれ実施例1と同様にしてJcを算出し、その結
果を表6に示した。
【0026】
【表6】
【0027】上記実施例より、REBa2 Cu3 Oy 酸化
物超電導体を構成する粒子と共にPt等成分を0.01
〜0.5重量%分散含有させた溶融凝固粉末を用いて得
られた希土類系酸化物超電導体が、極めて高Jcを示すこ
とが分かる。
【0028】
【発明の効果】本発明は、特定の溶融凝固粉末を用い従
来の溶融法により、磁束線を固定する211相が微細に
且つ均一に分散するREBa2 Cu3 Oy 酸化物超電導体
を得ることができ、得られる希土類系酸化物超電導体は
Jcが高く、製造操作も極めて簡便であり、工業上有用で
ある。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a high critical current density even under a high magnetic field in which at least one element component of Rh, Pt and Ru is uniformly dispersed. REBa 2 Cu 3 O y shown (RE
Represents Y, Gd, Dy, Ho, Er or Yb. )
About the production how of the oxide superconductor. 2. Description of the Related Art Oxide superconductors have been actively studied for practical use because of their high critical temperature. As a method for obtaining these oxide superconductors as a bulk material, a sintering method has conventionally been generally used. The oxide superconductor manufactured by the sintering method has a fine crystal structure in which crystal grains are small and many grain boundaries exist inside. In such an oxide superconducting bulk material by the sintering method, the individual superconducting particles are connected by weak bonds, and the critical current density (Jc) is governed by this weak bond, and a high Jc is obtained. Absent. On the other hand, it is known that single crystal superconductors do not have the above-described problem of grain boundaries and exhibit high Jc even in a high magnetic field. Attempts to approximate the crystal structure were considered,
It has also been proposed to introduce a so-called pinning center for dispersing fine particles of the non-superconducting phase in the superconducting phase and fixing the invading magnetic flux lines. For example, the MTG method (Me
lt Textured Growth method) has been proposed. In the MTG method, the oxide superconductor is gradually cooled from the decomposition melting temperature of 123 phase (YBa 2 Cu 3 O y , where Y is a rare earth element containing Y).
A peritectic reaction between the 11 phase (Y 2 BaCuO 5 ) and the liquid phase is caused to cause crystal growth, and 211 g
A phase exists and acts as a pinning center. Therefore, the obtained oxide superconductor shows a high Jc even in a magnetic field. However, the oxide superconductor obtained by this melting method,
There were inconveniences such as a large grain size of the 211 phase, a nonuniform distribution thereof, and cracks along the crystal growth direction. [0004] A method has also been proposed in which the particle size of the 211 phase is made small and uniform to prevent defects such as cracks in the bulk body. For example, Japanese Patent Application Laid-Open No. 2-153803 proposes a QMG method (Quench and Melt Growth method), and furthermore, a MPMG method (Melt Powder and Melt Growth method) for improving formability in the QMG method.
Has also been proposed. It is disclosed that these exhibit an extremely strong pinning effect and exhibit excellent Jc in a high magnetic field. [0005] However, Japanese Patent Laid-Open Publication No.
The QMG method proposed in US Pat.
Although it is possible to obtain a 123-phase crystal in which the phases are relatively uniformly dispersed, the Y 2 O 3 phase of 50 μm or less is uniformly dispersed in the BaCu oxide phase by melting and quenching and solidifying the oxide superconductor raw material. After obtaining the intermediate, or Y 2 O 3 and Ba
It is mixed with Cu oxide to form a plate-like or linear shaped body having a thickness of 5 mm or less, and is further heated to a semi-molten state at the decomposition melting temperature of the above-mentioned 123 phase, and is gradually cooled from that temperature at a predetermined cooling rate. Cooling is to grow the 123 phase in which 211 phases of 20 μm or less are finely and homogeneously dispersed by cooling, and it is formed into a specific shape, or is melted and quenched solidification-semi-molten-slow cooling and molten state Must be performed in two stages, and the operation becomes complicated. Furthermore, when passing through rapid solidification to prevent agglomeration of the Y 2 BaCuO 5 phase and to form a finely dispersed structure, a platinum crucible becomes indispensable, and the superconducting characteristics due to the reaction between platinum and the rare-earth oxide superconductor are reduced. There are also problems such as a possibility of deterioration or variation in characteristics, and a means for rapid quenching. Therefore, industrially, there is a demand for a method for producing an oxide superconductor in which a large crystal can be grown by a simple operation and a similar effect can be obtained. The present invention makes use of the simplicity of the operation of the melting method, and exhibits a pinning effect that is as strong as or higher than that of the oxide superconductor obtained by the QMG method or the MPMG method, and REBa 2 Cu, in which fine 211 phase is dispersed very uniformly in 123 superconducting phase so as to show excellent Jc
3 O y (RE is Y, Gd, Dy, Ho, Er or Yb
Represents As a result of intensive studies on a method for obtaining an oxide superconductor, the present invention was completed. According to the present invention, REBa is provided.
2 Cu 3 O y (RE represents Y, Gd, Dy, Ho, Er or Yb.) In addition to the RE, Ba and Cu components constituting the oxide superconductor, at least one of Rh, Pt and Ru molding using a raw material powder elements ingredient is to be 0.01 to 5 wt% containing organic on an elemental basis melt solidified to powdery
And, the molded body is not less than the decomposition melting temperature of the oxide superconductor
Heat treatment to temperature, slow cooling, heat treatment, REBa 2 Cu 3
Oxide with RE 2 BaCuO 5 phase finely dispersed in O y phase
Rare earth oxide superconductor characterized by obtaining an electric conductor
The method of manufacturing is provided. The rare-earth oxide superconductor of the present invention is constituted as described above, and the REBa 2 Cu 3 O y oxide superconductor has an R superconductor.
h, at least one element component of the Pt and Ru (hereinafter,
It is simply a component such as Pt. ) By is uniformly dispersed and contained as particles, RE 2 Bac to exert pinning effect
The 211 phase of uO 5 is finely and uniformly dispersed in the 123 phase of REBa 2 Cu 3 O y , exhibiting superconductivity that is uniform and excellent as a whole, and has a high Jc as in the case of the QMG method and the MPMG method. In order to uniformly disperse particles such as Pt, REB
a 2 Cu 3 O y RE ingredients for constituting the oxide superconductor, Ba
And at least one elemental component of Rh, Pt, and Ru in an amount of 0.01 to 5% by weight on an elemental basis.
By using as a raw material a powder obtained by dispersing and being melted and solidified into a powder, particles of the target component such as Pt can be uniformly dispersed. Hereinafter, the present invention will be described in more detail. REBa 2 Cu 3 O y oxide superconductor of the present invention, RE
Is a rare earth-based oxide superconductor such as YBa 2 Cu 3 O 7 having a multilayered perovskite structure containing a rare earth element of Y, Gd, Dy, Ho, Er or Yb. The rare earth oxide superconductor of the present invention is made of REBa 2 C
RE, a raw material for forming u 3 O y oxide, that is, Y, G
An oxide mixed powder obtained by mixing an oxide of d, Dy, Ho, Er or Yb, a carbonate of Ba and an oxide of Cu, a calcined powder of the oxide mixed powder, a frit powder of the oxide mixed powder, etc. , after firing REBa 2 Cu 3 O y and RE 2 BaCu
A series of steps such as molding, melt decomposition, slow cooling, heat treatment, etc., using a uniformly dispersed and mixed powder obtained by adding a component such as Pt to a compound blended to constitute O 5 and then melt-solidifying. Can be obtained through In this case, the particle diameters of the raw material powders of components such as RE, Ba and Cu components and Pt to be melt-solidified are not particularly limited.
Fine powder of 0 μm or less, particularly 1 to 5 μm, is preferred. 20μ
Raw material powders exceeding m are not preferred because the composition becomes non-uniform at the time of decomposition and melting. In the present invention, preferably, each component material is used as a powder, and particularly preferably,
It is preferable to use a powder obtained by melting and solidifying RE, Ba, and Cu components as raw materials for forming the above-mentioned REBa 2 Cu 3 O y oxide and a predetermined amount of components such as Pt. In the present invention, the above-mentioned melt-solidification method for obtaining a preferable powder includes:
Usually, it can be performed in the following steps. That is, first, one or more elemental powders of components such as Pt and the like having substantially the same particle diameter as each of RE, Ba and Cu are added to a mixture obtained by mixing the respective components of the raw materials constituting the REBa 2 Cu 3 O y oxide. Is added, mixed and pulverized, and further preferably granulated by a spray drier or the like, and the particle size is adjusted to 2 to 300 μm. The obtained granulated mixed powder is further sprayed into an inert gas such as nitrogen by using a spraying method utilizing flame melting such as an oxygen / hydrogen flame, so that the entire raw material powder is uniformly dispersed. Coagulated powder. In this case, the properties and particle size distribution of the powder obtained vary depending on the spraying conditions. However, in the present invention, the spraying amount is usually 1 to 50 g / min, and the spraying temperature is 1.
It is preferably performed at 300 to 1600 ° C. [0012] powder obtained by the melt-solidification, generally, REBa 2 after firing Cu 3 O y and RE 2 BaCuO 5
An oxide of RE compounded in a composition ratio such that
It is presumed that the oxide of Cu and the oxide of Cu and the components such as Pt are uniformly dispersed and mixed. In the present invention, the added amount of the component such as Pt is such that the rare earth oxide superconductor finally obtained contains 0.01 to 5% by weight on an element basis. If the addition amount is less than 0.01% by weight, the oxide superconductor in the form intended by the present invention cannot be obtained, and if it exceeds 5% by weight, REBa 2 Cu 3 O y
The amount of precipitation of a crystal phase other than the crystal phase increases, which is not preferable.
In the present invention, the use of a powder in which the above-mentioned components such as Pt are uniformly dispersed and mixed is not required during melting and decomposition treatment after molding.
REBa 2 C obtained by the presence of components such as t
The superconducting properties of u 3 O y can be significantly improved. The reason for this is not clear, but the uniformly dispersed Pt and other component particles act as nuclei for the formation of the 211 phase,
It is estimated that 211 phases can be very uniformly and finely dispersed in the three phases. In the present invention, after the above powder is formed into a predetermined shape using the powder, the corresponding REBa 2 Cu 3 O
heat treatment to the decomposition temperature above the melting temperature of the y oxide superconductor, annealing in the same manner as in a known melting method, can be obtained by heat treatment in an oxygen atmosphere. As a molding method, a known molding method such as a doctor blade method, a press molding method, a casting method, or the like can be used to obtain a rare earth oxide superconductor as a bulk body. Alternatively, a molded article can be obtained by forming a molded article layer on a substrate of metal, ceramics, or the like by spray coating, powder coating, or the like using the above powder. In the present invention, the temperature not lower than the decomposition melting temperature depends on whether the RE component is Y, Gd, Dy, Ho, Er, or Yb.
° C, Gd is about 1050 to 1250 ° C, Dy is about 1000
~ 1200 ° C, Ho is about 1000-1150 ° C, Er is about 950-1100 ° C, Yb is a temperature in the range of about 900-1100 ° C. What is necessary is just to select suitably from the etc. In addition, the heat treatment is performed by maintaining the above temperature range for a predetermined time. The holding time is not particularly limited, and can be appropriately selected depending on the heating conditions and the like as in the above temperature range, and is usually 20 minutes to 2 hours. After the above heat treatment, the material is gradually cooled in the same manner as in a normal melting method, and is heated at a predetermined temperature under an oxygen atmosphere to thereby obtain REBa 2.
A Cu 3 O y oxide superconductor can be obtained. In this case, slow cooling is preferably carried out at a cooling rate of about 1 to 5 ° C. / hour. The heat treatment is usually performed in an oxygen atmosphere at 650 to 400.
It is preferable to hold at about 10 ° C. for about 10 to 50 hours. Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited by the following examples. Example 1 Y: Ba: Cu in a molar ratio of Y 2 O 3 , BaCO 3 , and CuO
= 1.8: 2.4: 3.4, and after adding and mixing Pt powder in the amount shown in Table 1, 9
Calcination was performed at 00 ° C. for 10 hours to obtain a calcined powder. The obtained calcined powder is wet-pulverized and mixed using ethanol, and further granulated with a spray dryer to a particle size of 100 to 300 μm.
Was adjusted. The obtained granulated powder was injected into a nitrogen atmosphere using an oxygen-hydrogen flame spraying apparatus, and the molten and solidified powder was collected on a copper plate. The obtained melt-solidified powder was pulverized in isopropyl alcohol by a rotary mill using zirconia balls. Each of the pulverized powders obtained above was formed into a pellet having a thickness of 10 mm and a diameter of 20 mm by press molding. The obtained pellets were placed in an electric furnace in an air atmosphere, held at 1150 ° C. for 1 hour, decomposed and melted,
It was gradually cooled at a rate of 1 ° C./hour from 980 ° C. to 920 ° C. Thereafter, the atmosphere in the furnace was further changed to an oxygen atmosphere at 450 ° C. for 1 hour.
Heat treatment was performed for 00 hours to obtain a pellet-shaped oxide superconductor. The magnetization hysteresis of each sample cut out from the obtained pellet of each oxide superconductor was determined by SQUA.
Was measured using an ID flux meter, calculated temperatures 77K, the Jc (A / cm 2) in a magnetic field 1T. The results are shown in Table 1. [Table 1] Example 2 Except that Gd 2 O 3 was used in place of Y 2 O 3 , each melt-solidified powder was prepared in the same manner as in Example 1, and further molded into pellets. In air at 1150 ° C for 2
Hold for time to decompose and melt, then 1050 ° C to 950
Except for slowly cooling to 2 ° C./hour at 2 ° C., pellet-shaped oxide superconductors were obtained in the same manner as in Example 1. Jc was calculated for each sample cut out from the obtained pellets of each oxide superconductor in the same manner as in Example 1, and the results are shown in Table 2. [Table 2] Example 3 Except that Dy 2 O 3 was used in place of Y 2 O 3 , each melt-solidified powder was prepared in the same manner as in Example 1, and further molded into pellets. In air at 1100 ° C
Pellet-shaped oxide superconductors were obtained in the same manner as in Example 1 except that the mixture was decomposed and melted for a period of time, and then slowly cooled from 980 ° C. to 900 ° C. for 50 hours. Jc was calculated for each sample cut out from the obtained pellets of each oxide superconductor in the same manner as in Example 1, and the results are shown in Table 3. [Table 3] Example 4 Except that Ho 2 O 3 was used in place of Y 2 O 3 , each of the melt-solidified powders was prepared in the same manner as in Example 1 and further formed into pellets. In air at 1100 ° C
Hold for a time to decompose and melt, then from 1000 ° C to 900
Except for slowly cooling to 1 ° C./hour at 1 ° C., pellet-shaped oxide superconductors were obtained in the same manner as in Example 1. Jc was calculated for each sample cut out from the obtained pellets of each oxide superconductor in the same manner as in Example 1, and the results are shown in Table 4. [Table 4] Example 5 Except that Er 2 O 3 was used in place of Y 2 O 3 , each melt-solidified powder was prepared in the same manner as in Example 1, and further molded into pellets. The body is held in air at 1050 ° C. for 2 hours to decompose and melt, and then from 950 ° C. to 870 ° C.
Except for slowly cooling to 1 ° C./hour at 1 ° C., pellet-shaped oxide superconductors were obtained in the same manner as in Example 1. Jc was calculated for each sample cut out from the obtained pellets of each oxide superconductor in the same manner as in Example 1, and the results are shown in Table 5. [Table 5] Example 6 Except that Yb 2 O 3 was used in place of Y 2 O 3 , each melt-solidified powder was prepared in the same manner as in Example 1, and was further formed into pellets in the same manner. The body is held in air at 1050 ° C. for 1 hour to decompose and melt, and then from 950 ° C. to 900
Except for slowly cooling to 2 ° C./hour at 2 ° C., pellet-shaped oxide superconductors were obtained in the same manner as in Example 1. Jc was calculated for each of the samples cut out from the obtained pellets of the oxide superconductor in the same manner as in Example 1, and the results are shown in Table 6. [Table 6] [0027] From the above examples, the Pt and the like components with particles of the REBa 2 Cu 3 O y oxide superconductor 0.01
It can be seen that the rare earth-based oxide superconductor obtained using the melt-solidified powder dispersed and contained by 0.5% by weight exhibits an extremely high Jc. [0028] According to the present invention, by conventional melting method using a specific melting and solidification powder, REBa 2 Cu 3 O y oxide superconductor 211 phase to fix the magnetic flux lines are finely and uniformly dispersed And the resulting rare earth oxide superconductor is
It has a high Jc, is extremely easy to manufacture, and is industrially useful.
フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C01G 3/00 C01G 1/00 H01B 12/00 H01B 13/00 H01L 39/24 ZAA Continuation of the front page (58) Field surveyed (Int. Cl. 6 , DB name) C01G 3/00 C01G 1/00 H01B 12/00 H01B 13/00 H01L 39/24 ZAA
Claims (1)
y、Ho、ErまたはYbを表す。)酸化物超電導体を
構成するRE、Ba及びCu成分を含むと共に、Rh、P
t及びRuの少なくとも1種の元素成分が元素基準で
0.01〜5重量%含有されて粉末状に溶融凝固してな
る原料粉末を用いて成形し、該成形体を該酸化物超電導
体の分解溶融温度以上の温度に加熱処理して、徐冷、熱
処理して、REBa2Cu3Oy 相中にRE 2 BaCuO 5 相が
微細に分散した酸化物超電導体を得ることを特徴とする
希土類系酸化物超電導体の製造方法。(57) [Claims 1 ] REBa 2 Cu 3 O y (RE is Y, Gd, D
represents y, Ho, Er or Yb. ) Oxide superconductor
Containing RE, Ba and Cu components, and Rh, P
At least one element component of t and Ru is based on the element.
0.01 to 5% by weight and melted and solidified into powder
That the raw material powder is molded using, by heating the shaped article to a decomposition temperature above the melting temperature of the oxide superconductor, annealing, and heat treatment, RE 2 BaCuO in REBa 2 Cu 3 O y phase 5 phases
A method for producing a rare earth oxide superconductor, characterized in that a finely dispersed oxide superconductor is obtained.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3200028A JP2931446B2 (en) | 1991-07-15 | 1991-07-15 | Method for producing rare earth oxide superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3200028A JP2931446B2 (en) | 1991-07-15 | 1991-07-15 | Method for producing rare earth oxide superconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0524825A JPH0524825A (en) | 1993-02-02 |
JP2931446B2 true JP2931446B2 (en) | 1999-08-09 |
Family
ID=16417619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3200028A Expired - Fee Related JP2931446B2 (en) | 1991-07-15 | 1991-07-15 | Method for producing rare earth oxide superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2931446B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5297148B2 (en) * | 2008-10-24 | 2013-09-25 | 公益財団法人鉄道総合技術研究所 | Manufacturing method of oxide superconducting bulk body and oxide superconducting bulk body |
-
1991
- 1991-07-15 JP JP3200028A patent/JP2931446B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0524825A (en) | 1993-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2871258B2 (en) | Oxide superconductor and manufacturing method thereof | |
JP2839415B2 (en) | Method for producing rare earth superconducting composition | |
US5508253A (en) | REBa2 Cu3 O7-y type oxide superconductive material having high critical current density and process for preparation thereof | |
JP2688455B2 (en) | Rare earth oxide superconductor and method for producing the same | |
Yoshida et al. | Effects of the platinum group element addition on preparation of YBCO superconductor by melt growth method | |
EP0347770B1 (en) | Process of producing a bismuth system oxide superconductor | |
EP0800494B1 (en) | LOW TEMPERATURE (T LOWER THAN 950 oC) PREPARATION OF MELT TEXTURE YBCO SUPERCONDUCTORS | |
JP2931446B2 (en) | Method for producing rare earth oxide superconductor | |
JP2920001B2 (en) | Method for producing rare earth oxide superconductor | |
JP3330962B2 (en) | Manufacturing method of oxide superconductor | |
US5079217A (en) | Process for preparing homogenous superconductors by heating in a nitrogen dioxide containing atmosphere | |
US5270292A (en) | Method for the formation of high temperature semiconductors | |
US5413981A (en) | Oxide superconductor and a method for manufacturing an oxide superconductor | |
JP3159764B2 (en) | Manufacturing method of rare earth superconductor | |
JP4794145B2 (en) | Method for producing RE-Ba-Cu-O oxide superconductor | |
JP3115915B2 (en) | Method for producing rare earth oxide superconductor | |
JPH0416511A (en) | Oxide superconductor and its production | |
JP3174847B2 (en) | Superconducting whisker and manufacturing method thereof | |
EP0445138B1 (en) | Process for preparing homogeneous high temperature superconductors | |
JP3394297B2 (en) | Method for producing superconductive composition | |
JP2004203727A (en) | Oxide superconductor having high critical current density | |
JP2914799B2 (en) | Manufacturing method of oxide superconducting bulk material | |
JP3155334B2 (en) | Oxide superconductor having high magnetic levitation force and method of manufacturing the same | |
Morita et al. | Process and Properties of QMG Crystals | |
WO1990009961A1 (en) | Process for making superconducting metal oxide compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990427 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080521 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090521 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090521 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090521 Year of fee payment: 10 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090521 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090521 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100521 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100521 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110521 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |