JP2914799B2 - Manufacturing method of oxide superconducting bulk material - Google Patents

Manufacturing method of oxide superconducting bulk material

Info

Publication number
JP2914799B2
JP2914799B2 JP3289605A JP28960591A JP2914799B2 JP 2914799 B2 JP2914799 B2 JP 2914799B2 JP 3289605 A JP3289605 A JP 3289605A JP 28960591 A JP28960591 A JP 28960591A JP 2914799 B2 JP2914799 B2 JP 2914799B2
Authority
JP
Japan
Prior art keywords
phase
powder
bacuo
current density
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3289605A
Other languages
Japanese (ja)
Other versions
JPH0517205A (en
Inventor
圭一 木村
勝良 宮本
清志 澤野
操 橋本
将元 田中
充 森田
聖記 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3289605A priority Critical patent/JP2914799B2/en
Publication of JPH0517205A publication Critical patent/JPH0517205A/en
Application granted granted Critical
Publication of JP2914799B2 publication Critical patent/JP2914799B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は高い臨界電流密度およ
び磁場特性を有するRE−Ba−Cu−O系酸化物超電
導バルク材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a RE-Ba-Cu-O-based oxide superconducting bulk material having high critical current density and high magnetic field characteristics.

【0002】酸化物超電導体は種々の形態のバルクに成
形され、超電導ベアリング、超電導磁石、磁気遮蔽など
に用いられる。
[0002] Oxide superconductors are formed into various forms of bulk and used for superconducting bearings, superconducting magnets, magnetic shields and the like.

【0003】[0003]

【従来の技術】超電導の応用にとって、臨界温度が高い
というのは大きな利点となる。特に、液体窒素温度を超
えるRE−Ba−Cu−OやBi系、Tl系酸化物超電
導体の発見は、冷却コストの低下およびヘリウムと比べ
て資源的に豊富な窒素の利用ができるなどの点で超電導
の利用分野を大きく拡大する可能性を与えている。
2. Description of the Related Art A high critical temperature is a great advantage for superconducting applications. In particular, the discovery of RE-Ba-Cu-O and Bi-based and Tl-based oxide superconductors exceeding the temperature of liquid nitrogen has led to the reduction of cooling costs and the availability of nitrogen, which is more resource-rich than helium. This has the potential to greatly expand the field of superconductivity.

【0004】しかし、超電導の応用にとっては、臨界温
度よりはむしろ使用温度における臨界電流の大きさが重
要となる。液体窒素での応用を目指すためには、この温
度での臨界電流密度の改善が必須となる。臨界電流密度
は材料固有の特性ではなく、材料の組織を変えることに
よって向上させることが可能となる。たとえば、溶融法
によって結晶配向させることで、超電導電流の妨げとな
る欠陥を除去でき、焼結法などで作製した材料に比べて
高い臨界電流密度が達成される。溶融法として、QMG
法(新日鐵)、MPMG法(ISTEC)あるいはMT
G法(AT&T)などがある。QMG法は、溶融−急
冷、部分溶融−徐冷工程からなっている。MPMG法
は、溶融−急冷−粉砕−成形、部分溶融−徐冷工程から
なっている。また、MTG法は成形−溶融−徐冷工程か
らなっている。
However, for superconductivity applications, the magnitude of the critical current at the operating temperature is more important than the critical temperature. In order to aim at application in liquid nitrogen, it is essential to improve the critical current density at this temperature. The critical current density is not a characteristic inherent to the material, but can be improved by changing the structure of the material. For example, by performing crystal orientation by a melting method, defects that hinder superconducting current can be removed, and a higher critical current density can be achieved as compared with a material manufactured by a sintering method or the like. As the melting method, QMG
Method (Nippon Steel), MPMG method (ISTEC) or MT
G method (AT & T) and the like. The QMG method includes a melting-rapid cooling step and a partial melting-gradual cooling step. The MPMG method is composed of a melt-quenching-pulverization-molding and a partial melting-slow cooling step. Further, the MTG method includes a molding-melting-gradual cooling step.

【0005】しかし、臨界電流密度そのものは実用レベ
ルよりもまだ低い(T=77K、He=数Tで104
/cm2 程度まで特性の向上が必要である)。これは、高
い臨界電流密度を得るためには超電導電流の妨げとなる
欠陥の除去だけではなく、磁束の運動を抑えるピン止め
点の導入が必要であるためである。単に溶融法で作製し
た場合、このようなピン止めを自然に導入される点欠陥
や転位などに頼らざるを得ないため高い臨界電流密度が
得られない。この磁束の運動を抑えるために、RE−B
a−Cu−O系では非超電導相であるRE2 BaCuO
5 相(211相)を超電導相であるREBa2 Cu3
7-x 相(123相)内に微細に分散させるようにしてい
る。
However, the critical current density itself is still lower than the practical level (T = 77 K, He = 10 4 A at several T).
/ Cm 2 ). This is because in order to obtain a high critical current density, it is necessary to not only remove defects that hinder the superconducting current but also to introduce pinning points for suppressing the movement of magnetic flux. When the pinning is simply performed by a melting method, a high critical current density cannot be obtained because such pinning has to rely on point defects or dislocations which are naturally introduced. In order to suppress the movement of this magnetic flux, RE-B
RE 2 BaCuO which is a non-superconducting phase in a-Cu-O system
5 phase (211 phase) is REBa 2 Cu 3 O which is a superconducting phase
Finely dispersed in the 7-x phase (123 phase).

【0006】[0006]

【発明が解決しようとする課題】前記QMG法およびM
TG法では、溶融前には各成分とも均一に分散している
が、溶融されるとRE酸化物が生成し、この酸化物が粗
大化するとともに偏析を生ずる。RE2 BaCuO5
は、この酸化物を核として生成する。このために、微細
なRE2 BaCuO5 相をREBa2 Cu3 7-x 相中
に均一に分散することが困難である。MTG法では、
2 BaCuO 5 が粗大化する。これは、部分溶融処
理時間が長いために粗大化したものと考えられる。この
結果、RE2 BaCuO5 相による磁束のピン止め効果
が十分でなく、またREBa2 Cu3 7-x 相に割れが
発生し、高磁場において液体窒素温度で実用に耐える臨
界電流密度が得られないという問題があった。
The above-mentioned QMG method and M
In the TG method, each component is uniformly dispersed before melting, but when melted, an RE oxide is generated, which is coarsened and segregates. The RE 2 BaCuO 5 phase is generated with this oxide as a nucleus. For this reason, it is difficult to uniformly disperse the fine RE 2 BaCuO 5 phase in the REBa 2 Cu 3 O 7-x phase. In the MTG method, R
The E 2 BaCuO 5 phase becomes coarse. This is considered to be due to coarsening due to a long partial melting treatment time. As a result, the pinning effect of the magnetic flux by the RE 2 BaCuO 5 phase is not sufficient, and cracks occur in the REBa 2 Cu 3 O 7-x phase, and a critical current density that can withstand practical use at liquid nitrogen temperature in a high magnetic field is obtained. There was a problem that can not be.

【0007】そこで、この発明はREBa2 Cu3
7-x 相中にRE2 BaCuO5 相が微細かつ均一に分散
し、高い臨界電流密度を得ることができる酸化物超電導
バルク材の製造方法を提供しようとするものである。
[0007] Therefore, the present invention relates to REBa 2 Cu 3 O
An object of the present invention is to provide a method for producing a bulk oxide superconducting material in which a RE 2 BaCuO 5 phase is finely and uniformly dispersed in a 7-x phase and a high critical current density can be obtained.

【0008】[0008]

【課題を解決するための手段】この発明の酸化物超電導
バルク材の製造方法は、Ba酸化物粉末とCu酸化物粉
末の混合粉末を溶融し、急冷し、粉砕してBa−Cu複
合酸化物粉末を作製する。ついで、上記Ba−Cu複合
酸化物粉末にRE2 3 またはRE2 3 ,RE2 Ba
CuO5 混合粉を添加して混練し、成形する。そして、
上記成形体を部分溶融し、引き続き結晶成長熱処理し、
酸素量調整熱処理する。ここで、REはY,Sm,E
u,Gd,Dy,Ho,Er,Tm,Yb,Luからな
る群から選ばれた1種以上の元素をいう。
According to the present invention, there is provided a method of manufacturing a bulk oxide superconducting material, which comprises melting a mixed powder of a Ba oxide powder and a Cu oxide powder, quenching and pulverizing the mixed powder. Make powder. Then, RE 2 O 3 or RE 2 O 3 , RE 2 Ba is added to the Ba—Cu composite oxide powder.
A mixed powder of CuO 5 is added, kneaded and molded. And
Partially melt the molded body, and then heat-treated for crystal growth,
The oxygen content adjustment heat treatment is performed. Here, RE is Y, Sm, E
It refers to at least one element selected from the group consisting of u, Gd, Dy, Ho, Er, Tm, Yb, and Lu.

【0009】図1および図2に従って、この発明を詳細
に説明する。図では1例として原料としてBaCO3
CuO,Y2 3 を用いた場合を示している。
The present invention will be described in detail with reference to FIGS. In the figure, as an example, BaCO 3 ,
The case where CuO, Y 2 O 3 is used is shown.

【0010】BaCO3 粉末およびCuO粉末の混合比
は、Ba:Cu=(1.5〜2.5):(2.5〜3.
5)程度が好ましい。混合粉末の溶融加熱温度は110
0℃以上であり、加熱保持時間は3〜30min程度であ
る。BaCO3 粉末とCuO粉末との混合粉末を溶融、
急冷することによって、凝固した塊状のBa−Cu複合
酸化物が得られる。なお、混合粉末の溶融により、Ba
CO3 中のCO3 は消失する。BaとCuとの分離を避
けるために、急冷速度は−10℃/sec以上であること
が望ましい。
The mixing ratio of BaCO 3 powder and CuO powder is as follows: Ba: Cu = (1.5-2.5) :( 2.5-3.
5) is preferable. Melt heating temperature of mixed powder is 110
0 ° C. or higher, and the heating and holding time is about 3 to 30 min. Melting the mixed powder of BaCO 3 powder and CuO powder,
By rapid cooling, a solidified massive Ba-Cu composite oxide is obtained. The melting of the mixed powder causes Ba
CO 3 in CO 3 disappears. In order to avoid separation of Ba and Cu, the quenching rate is desirably -10 ° C / sec or more.

【0011】また、Ba−Cu複合酸化物を粉砕して得
た粉末の粒径は0.2mm以下であることが好ましい。
The particle diameter of the powder obtained by pulverizing the Ba—Cu composite oxide is preferably 0.2 mm or less.

【0012】上記Ba−Cu複合酸化物粉末にY2 3
またはY2 3 ,Y2 BaCuO5 混合粉を添加し、そ
の後成形する。この組成はY:Ba:Cu=1:(1〜
2):(1〜3)であることが望ましい。
[0012] Y 2 O 3 is added to the Ba-Cu composite oxide powder.
Alternatively, a mixed powder of Y 2 O 3 and Y 2 BaCuO 5 is added, and then molded. This composition is Y: Ba: Cu = 1: (1 to 1
2): Desirably (1-3).

【0013】成形体の部分溶融熱処理では、成形体を1
000〜1350℃に加熱し、0.1〜2hr程度保持す
る。成形体の加熱温度が1000℃未満では、部分溶融
はするが量的に少なく臨界電流密度は向上しない。逆
に、成形体の加熱温度が1350℃を超えると、微細な
2 BaCuO5 相が得られない。また、成形体が完全
に溶融して原型をとどめない状態となり、所要の形状の
バルク材が得られない。ついで、1050〜1000℃
まで比較的高い冷却速度(たとえば、−50〜1℃/mi
n)で冷却する。
In the partial melting heat treatment of the compact, the compact is
Heat to 000 to 1350 ° C and hold for about 0.1 to 2 hours. If the heating temperature of the molded body is lower than 1000 ° C., partial melting occurs, but the amount is small and the critical current density is not improved. Conversely, if the heating temperature of the molded body exceeds 1350 ° C., a fine Y 2 BaCuO 5 phase cannot be obtained. In addition, the molded body is completely melted and cannot remain in the original form, and a bulk material having a required shape cannot be obtained. Then, 1050-1000 ° C
Relatively high cooling rate (eg, -50 to 1 ° C./mi)
Cool in n).

【0014】結晶成長熱処理は、成形体を上記温度10
50〜1000℃から960〜940℃に至るまで徐冷
する。冷却速度は−200℃/hr以下である。徐冷速度
が、−200℃/hrを超えると、YBa2 Cu3 7-x
相の結晶粒が充分成長しないため、粒界が多くなり臨界
電流密度が低下する。このような熱処理によって、超電
導相の中には細かなY2 BaCuO5 相が含まれている
ため組織が細かく機械的強度も改善される。
In the crystal growth heat treatment, the compact is heated to the temperature of 10 ° C.
Slowly cool from 50-1000 ° C to 960-940 ° C. The cooling rate is -200 ° C / hr or less. When the slow cooling rate exceeds -200 ° C / hr, YBa 2 Cu 3 O 7-x
Since the phase crystal grains do not grow sufficiently, the number of grain boundaries increases and the critical current density decreases. By such a heat treatment, since the superconducting phase contains a fine Y 2 BaCuO 5 phase, the structure is fine and the mechanical strength is improved.

【0015】酸素量調整熱処理は、成形体を酸素雰囲気
中または空気中で冷却する。冷却速度は−10〜1℃/
hr程度である。酸素量調整熱処理では、YBa2 Cu3
7- x 中の酸素量O7-x を調整する。
In the oxygen content adjusting heat treatment, the compact is cooled in an oxygen atmosphere or air. Cooling rate is -10-1 ° C /
hr. In the oxygen amount adjusting heat treatment, YBa 2 Cu 3
Adjusting the amount of oxygen O 7-x in O 7- x.

【0016】[0016]

【作用】成形体は1000〜1350℃に加熱すると半
溶融状態となり、RE2 3 と液相(BaCu酸化物)
が反応し、RE2 3 を核として針状の細かいRE2
aCuO5 相が成長する。このRE2 BaCuO5 相は
分断されて微細な相となる。半溶融状態では、繊維状R
2 BaCuO5相が液相を吸収するため、成形体の形
はほぼ維持される。
When the molded body is heated to 1000-1350 ° C., it becomes a semi-molten state, and RE 2 O 3 and a liquid phase (BaCu oxide)
Reacts to form fine needle-like RE 2 B with RE 2 O 3 as the core.
The aCuO 5 phase grows. This RE 2 BaCuO 5 phase is divided into fine phases. In the semi-molten state, fibrous R
Since the E 2 BaCuO 5 phase absorbs the liquid phase, the shape of the compact is almost maintained.

【0017】半溶融状態の成形体を徐冷すると、RE2
BaCuO5 相と液相との包晶反応によりREBa2
3 7-x 相が析出する。この状態からさらに徐冷を行
なうことによって核生成を抑制し、結晶を成長律速にす
ることによって粒界の少ない大きな結晶粒が得られる。
このときできる組織はREBa2 Cu3 7-x 相中に細
かいRE2 BaCuO5 相を含んでおり、このRE2
aCuO5 相の存在は結晶生成過程を含む熱処理中に生
じる応力を分散させることによって粒界および割れが少
なく、方位のそろった数ミリ以上の結晶粒の集合体とな
る。
When the molded body in a semi-molten state is gradually cooled, RE 2
REBa 2 C by peritectic reaction between BaCuO 5 phase and liquid phase
u 3 O 7-x phase is precipitated. The nucleation is suppressed by further slow cooling from this state, and large crystal grains with few grain boundaries can be obtained by controlling the crystal growth.
The structure formed at this time contains a fine RE 2 BaCuO 5 phase in the REBa 2 Cu 3 O 7-x phase, and this RE 2 B
The presence of the aCuO 5 phase disperses the stress generated during the heat treatment including the crystal formation process, thereby reducing the grain boundaries and cracks, and forming an aggregate of crystal grains of several millimeters or more with uniform orientation.

【0018】1350℃を超える高温でREを含むBa
Cu組成のものを溶融処理することはないので、RE2
3 の凝集や粗大化がないためにRE2 BaCuO5
は微細となる。また、REBa2 Cu3 7-x 相中のR
2 BaCuO5 相の量は、主にRE2 3 ,RE2
aCuO5 相の添加量で調整する。
Ba containing RE at a high temperature exceeding 1350 ° C.
Since the Cu composition is not melted, RE 2
Since there is no aggregation or coarsening of O 3 , the RE 2 BaCuO 5 phase becomes fine. Further, R in the REBa 2 Cu 3 O 7-x phase
The amount of the E 2 BaCuO 5 phase mainly depends on RE 2 O 3 and RE 2 B
It is adjusted by the addition amount of the aCuO 5 phase.

【0019】RE2 BaCuO5 相が微細であると、超
電導体を貫通する磁束がRE2 BaCuO5 相と鎖交す
る点が増し、ピン止め効果は高くなる。また、割れも少
なくなる。この結果、臨界電流密度は向上する。
If the RE 2 BaCuO 5 phase is fine, the number of points at which the magnetic flux penetrating through the superconductor interlinks with the RE 2 BaCuO 5 phase increases, and the pinning effect is enhanced. Also, cracking is reduced. As a result, the critical current density improves.

【0020】[0020]

【実施例】【Example】

[実施例1]BaCO3 粉末およびCuO粉末をモル比
で2:3となるように混合した粉末を白金るつぼ内で1
400℃で3分間加熱溶融後、銅ハース上で急冷した
(凝固までの冷却速度は約−10℃/sec)。得られた成
形体を粉砕して100メッシュ以下の粉末にし、これに
2 3およびY2 BaCuO5 混合粉末を加えて、
Y:Ba:Cuの混合比がモル比でそれぞれ1:2:
3,1.2:2:3および1.5:2:3になるように
した混合粉末を金型に充填し、油圧プレスで成形、さら
にCIPして充填密度を上げた直径3cm、厚さ1.5cm
のペレットを成形した。
[Example 1] A powder obtained by mixing BaCO 3 powder and CuO powder in a molar ratio of 2: 3 was mixed in a platinum crucible for 1 hour.
After heating and melting at 400 ° C. for 3 minutes, it was quenched on a copper hearth (the cooling rate until solidification was about −10 ° C./sec). The obtained molded body was pulverized to a powder of 100 mesh or less, and a mixed powder of Y 2 O 3 and Y 2 BaCuO 5 was added thereto.
The mixing ratio of Y: Ba: Cu is 1: 2:
A mixed powder having a ratio of 3, 1.2: 2: 3 and 1.5: 2: 3 was filled in a mold, molded by a hydraulic press, and further subjected to CIP to increase the packing density to a diameter of 3 cm and a thickness. 1.5cm
Was molded.

【0021】上記ペレットを1100℃に加熱し、30
min保持して、成形体を部分溶融させる。この状態か
ら、1000℃まで−200℃/hrで冷却した。100
0℃近傍から超電導体のYBa2 Cu3 7-x 結晶が成
長をはじめる。結晶成長は960〜940℃程度で停止
する。この間の温度域で結晶を大きく成長させるために
結晶核の生成を抑制し、成長律速にするために徐冷(−
1℃/hr)を行った。さらに、この温度が常温まで−1
00℃/hrで冷却した。この後に酸素量調整熱処理を酸
素気流中で温度600℃まで再加熱をし、600℃に8
hr保持後、200℃まで−10℃/hrで冷却した。
The above pellets are heated to 1100 ° C.
Hold for min and partially melt the molded body. From this state, it was cooled to 1000 ° C. at −200 ° C./hr. 100
From around 0 ° C., the superconductor YBa 2 Cu 3 O 7-x crystal starts to grow. Crystal growth stops at about 960 to 940 ° C. In the temperature range during this period, the generation of crystal nuclei is suppressed in order to grow the crystal largely, and the crystal is gradually cooled (−
(1 ° C./hr). In addition, this temperature is -1 until normal temperature.
Cooled at 00 ° C / hr. Thereafter, heat treatment for adjusting the amount of oxygen is performed by reheating to a temperature of 600 ° C.
After holding for hr, it was cooled at -10 ° C / hr to 200 ° C.

【0022】この熱処理によって得られたY系酸化物超
電導体のミクロ組織を図3に示す。図3(a)は1:
2:3、図3(b)は1.2:2:3の混合比のミクロ
組織を示す。いずれのミクロ組織もYBa2 Cu3
7-x 結晶体の中にY2 BaCuO5 結晶が平均2μm以
下に微細に分散し、さらに微細な割れもほとんど見られ
ず、良質な酸化物超電導体バルク材が得られた。
FIG. 3 shows the microstructure of the Y-based oxide superconductor obtained by this heat treatment. FIG.
2: 3, FIG. 3 (b) shows a microstructure with a mixing ratio of 1.2: 2: 3. Both microstructures are YBa 2 Cu 3 O
In the 7-x crystal, Y 2 BaCuO 5 crystals were finely dispersed to an average of 2 μm or less, and further fine cracks were hardly observed, and a good quality oxide superconductor bulk material was obtained.

【0023】この結晶は、いずれの組成比のものも超電
導状態になる臨界温度は、図4に示すように92Kを示
した。
The critical temperature at which the crystals of any composition ratio enter the superconducting state was 92 K as shown in FIG.

【0024】また、77Kにおいて、試料振動型磁力計
を用いて測定した磁化ヒステリシス曲線から臨界電流密
度を換算した結果では、臨界電流密度は磁場強度が1T
においてY:Ba:Cuの混合比が1:2:3のとき
2.3×104 A/cm2 (図5参照)、1.5:2:3
の混合比のときは3.7×104 A/cm2 を示し、極め
て高い臨界電流密度を示した。
At 77K, the critical current density was converted from the magnetization hysteresis curve measured using a sample vibrating magnetometer.
When the mixture ratio of Y: Ba: Cu is 1: 2: 3, 2.3 × 10 4 A / cm 2 (see FIG. 5), 1.5: 2: 3
At a mixing ratio of 3.7 × 10 4 A / cm 2 , indicating an extremely high critical current density.

【0025】[実施例2]次に、原料粉およびその組成
比を変化させて、実施例1と同様な熱処理を施しREB
2 Cu3 7-x バルク超電導体を作製した。ただしR
Eによって、REBa2 Cu3 7-x の生成開始温度が
変化するため、徐冷開始温度はこれに応じて変化させ
た。徐冷速度は実施例1と同様−1℃/hrである。この
ようにして作製された試料に対し、組織観察と77Kで
の磁化測定を行った。この結果、実施したいずれの場合
においても、生成したREBa2 Cu3 7-x 内のRE
2 BaCuO5 相は平均2μm以下に微細分散している
ことがわかった。また、磁化測定から見積られた臨界電
流密度は77K,1Tの条件で1×104 A/cm2 以上
の高い値を有することが確認された。実施した系の組
成、REBa2 Cu3 7- x を成長させるための徐冷温
度域および77K,1Tでの臨界電流密度を表1に示
す。また、一例として、上記の手法で作製したGdBa
2 Cu3 7-x バルク超電導体の磁化曲線とこれから見
積った臨界電流密度の磁場依存性を図6に示す。以上に
示したような高い臨界電流密度は、溶融法による弱結合
の除去およびREBa2 Cu3 7-x 相内のRE2 Ba
CuO5 相の微細分散により実現したものである。
Example 2 Next, the same heat treatment as in Example 1 was performed by changing the raw material powder and the composition ratio thereof, and
An a 2 Cu 3 O 7-x bulk superconductor was prepared. Where R
Since E changes the temperature at which REBa 2 Cu 3 O 7-x is generated, the temperature at which slow cooling is started is changed accordingly. The slow cooling rate is -1 ° C / hr as in Example 1. The sample thus produced was subjected to a structure observation and a magnetization measurement at 77K. As a result, in each case, the RE in the generated REBa 2 Cu 3 O 7-x
The 2 BaCuO 5 phase was found to be finely dispersed to an average of 2 μm or less. It was also confirmed that the critical current density estimated from the magnetization measurement had a high value of 1 × 10 4 A / cm 2 or more under the conditions of 77 K and 1 T. Table 1 shows the composition of the implemented system, the annealing temperature range for growing REBa 2 Cu 3 O 7 -x , and the critical current density at 77 K and 1 T. Also, as an example, GdBa manufactured by the above-described method is used.
FIG. 6 shows the magnetization curve of the 2 Cu 3 O 7-x bulk superconductor and the magnetic field dependence of the critical current density estimated from the curve. The high critical current density as shown above is due to the elimination of weak bonds by the melting method and the RE 2 Ba in the REBa 2 Cu 3 O 7-x phase.
This is realized by fine dispersion of CuO 5 phase.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】この発明によれば、REBa2 Cu3
7-x 相中に微細なRE2 BaCuO5 相が均一に分布し
た超電導バルク材を得ることができる。また、得られた
REBa2 Cu3 7-x 相は、一つの粒径が数ミリと大
きく、粒界および割れも少ない。この結果、微細なRE
2 BaCuO5 相による磁束のピン止め効果が向上し、
高磁場中でも従来法と比較して高い臨界電流密度を得る
ことができる。
According to the present invention, REBa 2 Cu 3 O
A superconducting bulk material in which a fine RE 2 BaCuO 5 phase is uniformly distributed in the 7-x phase can be obtained. In the obtained REBa 2 Cu 3 O 7-x phase, one particle size is as large as several millimeters, and there are few grain boundaries and cracks. As a result, fine RE
2 BaCuO 5 phase improves the pinning effect of magnetic flux,
Even in a high magnetic field, a higher critical current density can be obtained as compared with the conventional method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の工程を示すフローチャートである。FIG. 1 is a flowchart showing the steps of the present invention.

【図2】この発明の工程を示す線図である。FIG. 2 is a diagram showing the steps of the present invention.

【図3】RE系酸化物超電導体の結晶構造を示す写真で
ある。
FIG. 3 is a photograph showing a crystal structure of an RE-based oxide superconductor.

【図4】この発明のRE系酸化物超電導体の臨界温度を
示すグラフである。
FIG. 4 is a graph showing a critical temperature of the RE-based oxide superconductor of the present invention.

【図5】この発明のRE系酸化物超電導体の磁化ヒステ
リシス曲線である。
FIG. 5 is a magnetization hysteresis curve of the RE-based oxide superconductor of the present invention.

【図6】Gd系酸化物超電導体の磁化ヒステリシス曲線
および磁場と臨界電流密度との関係を示すグラフであ
る。
FIG. 6 is a graph showing a magnetization hysteresis curve of a Gd-based oxide superconductor and a relationship between a magnetic field and a critical current density.

フロントページの続き (72)発明者 橋本 操 神奈川県川崎市中原区井田1618番地 新 日本製鐵株式会社 先端技術研究所内 (72)発明者 田中 将元 神奈川県川崎市中原区井田1618番地 新 日本製鐵株式会社 先端技術研究所内 (72)発明者 森田 充 神奈川県川崎市中原区井田1618番地 新 日本製鐵株式会社 先端技術研究所内 (72)発明者 竹林 聖記 神奈川県川崎市中原区井田1618番地 新 日本製鐵株式会社 先端技術研究所内 (56)参考文献 特開 平2−204322(JP,A) 特開 平4−119968(JP,A) (58)調査した分野(Int.Cl.6,DB名) C01G 3/00 C01G 1/00 H01B 13/00 H01L 39/12 H01B 12/00 Continued on the front page (72) Inventor Misao Hashimoto 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture New Nippon Steel Corporation Advanced Technology Research Laboratory (72) Inventor Masamoto Tanaka 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa New Japan (72) Inventor Mitsuru Morita 1618 Ida, Nakahara-ku, Kawasaki City, Kanagawa Prefecture New Nippon Steel Corporation Advanced Technology Research Laboratory (72) 1618 Inventor Seiki Takebayashi 1618 Ida, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Nippon Steel Corporation Advanced Technology Research Laboratories (56) References JP-A-2-204322 (JP, A) JP-A-4-119968 (JP, A) (58) Fields investigated (Int. Cl. 6 , (DB name) C01G 3/00 C01G 1/00 H01B 13/00 H01L 39/12 H01B 12/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Ba酸化物粉末とCu酸化物粉末との混
合粉末を溶融し、急冷し、粉砕してBa−Cu複合酸化
物粉末を作製し、前記Ba−Cu複合酸化物粉末にRE
2 3 (ここでREはY,Sm,Eu,Gd,Dy,H
o,Er,Tm,Yb,Luからなる群から選ばれた1
種以上の元素をいう)またはRE2 3 ,RE2 BaC
uO5混合粉を添加して混練し、成形し、前記成形体を
部分溶融熱処理し、引き続き結晶成長熱処理し、酸素量
調整熱処理することを特徴とする酸化物超電導バルク材
の製造方法。
1. A mixed powder of a Ba oxide powder and a Cu oxide powder is melted, quenched, and pulverized to produce a Ba—Cu composite oxide powder.
2 O 3 (where RE is Y, Sm, Eu, Gd, Dy, H
1 selected from the group consisting of o, Er, Tm, Yb, and Lu
Or more elements) or RE 2 O 3 , RE 2 BaC
A method for producing a bulk oxide superconducting material, comprising adding a kneaded uO 5 powder, kneading and shaping, subjecting the formed body to a partial melting heat treatment, a subsequent crystal growth heat treatment, and an oxygen content adjustment heat treatment.
JP3289605A 1990-11-06 1991-11-06 Manufacturing method of oxide superconducting bulk material Expired - Lifetime JP2914799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3289605A JP2914799B2 (en) 1990-11-06 1991-11-06 Manufacturing method of oxide superconducting bulk material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29902290 1990-11-06
JP2-299022 1990-11-06
JP3289605A JP2914799B2 (en) 1990-11-06 1991-11-06 Manufacturing method of oxide superconducting bulk material

Publications (2)

Publication Number Publication Date
JPH0517205A JPH0517205A (en) 1993-01-26
JP2914799B2 true JP2914799B2 (en) 1999-07-05

Family

ID=26557655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3289605A Expired - Lifetime JP2914799B2 (en) 1990-11-06 1991-11-06 Manufacturing method of oxide superconducting bulk material

Country Status (1)

Country Link
JP (1) JP2914799B2 (en)

Also Published As

Publication number Publication date
JPH0517205A (en) 1993-01-26

Similar Documents

Publication Publication Date Title
JPH04212215A (en) Manufacture of bismuthal oxide superconductor
JP2839415B2 (en) Method for producing rare earth superconducting composition
JP2871258B2 (en) Oxide superconductor and manufacturing method thereof
WO2003002483A1 (en) Method of joining oxide superconductor and oxide superconductor joiner
EP0493007B1 (en) Rare earth oxide superconducting material and process for producing the same
JP2914799B2 (en) Manufacturing method of oxide superconducting bulk material
JPH05201729A (en) Production of yttrium superconductor
JP3155333B2 (en) Method for producing oxide superconductor having high critical current density
JP3159764B2 (en) Manufacturing method of rare earth superconductor
JP3160900B2 (en) Manufacturing method of superconducting material
JP3195041B2 (en) Oxide superconductor and manufacturing method thereof
JP4628042B2 (en) Oxide superconducting material and manufacturing method thereof
JPH0751463B2 (en) Method for manufacturing oxide superconductor
JPH04240115A (en) Production of oxide superconducting bulk material
JP2931446B2 (en) Method for producing rare earth oxide superconductor
JP2006036574A (en) METHOD FOR MANUFACTURING RE-Ba-Cu-O-BASED OXIDE SUPERCONDUCTOR
JP3242350B2 (en) Oxide superconductor and manufacturing method thereof
JP2828396B2 (en) Oxide superconductor and manufacturing method thereof
JP4019132B2 (en) RE-Ba-Cu-O-based oxide superconductor and method for producing the same
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JPH03187902A (en) Manufacture of high temperature, superconducting substance
JP2001114595A (en) High temperature oxide superconductive material and method for producing the same
Zhou et al. Synthesis of bulk YBa2Cu3O7-x by melt-spun texture growth (MSTG)
JPH03265570A (en) Production of oxide superconductor
JP2001180932A (en) Oxide superconductor and its production method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 13