JP4153651B2 - Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same - Google Patents

Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same Download PDF

Info

Publication number
JP4153651B2
JP4153651B2 JP2000213263A JP2000213263A JP4153651B2 JP 4153651 B2 JP4153651 B2 JP 4153651B2 JP 2000213263 A JP2000213263 A JP 2000213263A JP 2000213263 A JP2000213263 A JP 2000213263A JP 4153651 B2 JP4153651 B2 JP 4153651B2
Authority
JP
Japan
Prior art keywords
seed crystal
crystal
temperature
oxide superconducting
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000213263A
Other languages
Japanese (ja)
Other versions
JP2001233696A (en
Inventor
充 澤村
充 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000213263A priority Critical patent/JP4153651B2/en
Publication of JP2001233696A publication Critical patent/JP2001233696A/en
Application granted granted Critical
Publication of JP4153651B2 publication Critical patent/JP4153651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、90K級の臨界温度を有する希土類系酸化物超電導体の種結晶およびこれを用いた酸化物超電導体の製造方法に関する。
【0002】
【従来の技術】
RE2BaCuO5相がREBa2Cu3O7-x(ここでREはYを含む希土類元素の1種類又はその組み合わせ) 中に微細分散した希土類系酸化物超電導体は、他の酸化物超電導体に比較して磁束ピンニング力が大きく、特に液体窒素温度(77K)に近い高 温でも臨界電流密度が高いため、その利用が期待されている。通常溶融法で作製されるバルク材料には、微量のPt、Rh、Ceなどが添加され、1μm程度のRE2BaCuO5相の微細化が行われている。しかしながら、この超電導体は、結晶粒界 が著しく臨界電流密度を低下させるため、結晶粒が高度に配向している必要がある。
【0003】
QMG(Quench and Melt Growth)法(特開平2-153803号公報、特開平5-193938号公報、等)に代表される溶融法は、一度RE2BaCuO5相又はRE4Ba2Cu2O10相とBa-Cu-Oを主成分とした液相が共存する温度領域まで昇温し、これをREBa2Cu3O7-xが生成する包晶温度直上まで冷却し、その温度から徐冷を行なうことにより結晶成長させ、核生成と結晶方位の制御を行い、単一の結晶粒からなる大型のバルク材を得る手法である。
【0004】
特開平5-193938号公報に開示した包晶温度が高い種結晶を使用して結晶成長させるシーディング法では、種結晶は製造しようとするREIBa2Cu3O7-x系酸化物超電導体より融点(包晶温度)の高いREIIBa2Cu3O7-x単結晶状試料を使用する。REIBa2Cu3O7-x系酸化物超電導体の原料前駆体を、REIBa2Cu3O7-xの包晶温度とREIIBa2Cu3O7-xの包晶温度の中間温度まで加熱し、REIBa2Cu3O7-xが分解してREI 2BaCuO5相又はREI 4Ba2Cu2O10相とBa-Cu-Oを主成分とする液相の共存状態とし、その前駆体にREIIBa2Cu3O7-x結晶の一面を接触させる。その後、REIBa2Cu3O7-xの包晶温度まで冷却しREIBa2Cu3O7-xを生成させるが、包晶温度近傍で徐冷を行なうことによって、REIIBa2Cu3O7-xの接触面の結晶方位と同じ方位に結晶成長させる方法である。
【0005】
特開平9-156925号公報に開示したRE-Ba-Cu-O系酸化物超電導体の製造方法は、RE(Ba1-ySry)2Cu3O7-x相(ここでyは0.01〜1の値をとる)を含む配向した種結晶を用いる方法であり、Ba元素をSr元素に置換している点が異なるものの、RE:Ba+Sr:Cuの比が1:2:3であり、酸化物超電導相REBa2Cu3O7-xと同じ組成比である。
【0006】
また、特開平10-310498号公報に開示した酸化物超電導バルク材料の製造方法は、原料成形体の表面にREBa2Cu3O7-xの包晶温度を低下させる物質(金、銀、希土類元素、等)をコーティングした後、加熱溶融してから冷却過程でシーディング操作を行うものである。
【0007】
このように、従来の溶融法では、原料成形体(前駆体)と種結晶の僅かな融点の違いを利用しており、種結晶に融点の高い希土類系酸化物超電導体の結晶を用いたり、原料成形体の融点を下げることにより、原料成形体と種結晶との融点の温度差を確保して、種付けを行なっている。
【0008】
しかしながら、比較的高い融点の希土類(Nd,Sm,Eu)系酸化物超電導体のバルク材の製造には、最も融点の高いNd系又はNd-Sm系の酸化物超電導体の結晶を用い、さらにバルク材中に銀等を添加してバルク材の融点を下げて、種結晶とバルク材の融点の温度差を確保しているものの、その温度差は僅か数十℃程度であるため、1000℃以上の加熱炉内の温度分布の僅かな不均一性によって、種結晶まで溶融してしまったり、種結晶から多結晶化することが多数見られ、良好なバルク材を安定して製造することが難しかった。
【0009】
また、1000℃程度の比較的低い融点の希土類(Dy,Y,Ho,Er)系酸化物超電導体のバルク材の製造では、大量生産のために、大型の加熱炉内に多数の原料成形体を配置し、これを加熱処理することで量産化を図っているものの、1000℃程度に加熱されている大型炉で炉内全体を数十℃以内の温度分布に制御することは困難であり、同一のバッチで処理したにもかかわらず、炉内の配置位置によって、種結晶が溶融してしまったり、原料成形体が溶融していないものが混在して、製品歩留りが低くなっていた。また、1000℃もの高温下での種結晶の接種を多数回繰り返さなければならず、作業性も必ずしも良くなかった。
【0010】
一方、比較的小型の酸化物超電導体の製造には、MgOの単結晶を種結晶に用いられている。しかしながら、この場合、酸化物超電導体の結晶方位を制御できる確率が1/3程度であり、製品歩留りが非常に低いものである。
このように、従来の酸化物超電導体の製造方法では、歩留り良く安定した超電導材料の大量製造ができないと言う問題点があった。
【0011】
【発明が解決しようとする課題】
そこで、本発明は、十分に高い融点を有し、かつ確実にバルク材の結晶方位の制御ができる種結晶を提供すると共に、これを用いた作業性の高い酸化物超電導材料の製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記の問題点を解決するために鋭意検討した結果、希土類系酸化物超電導体の結晶構造に類似した結晶構造を有する結晶を種結晶に用いても、希土類系酸化物超電導材料の結晶方位の制御ができることを見出し、本発明を完成させたものである。
【0013】
即ち、本発明は、
(1) RE1Ba2Cu3O7-x系超電導体(ここでRE1はYを含む希土類元素の1種類又はその組み合わせ)を製造するための種結晶が、Sr3Ti2O7型の結晶構造を有することを特徴とする酸化物超電導材料の種結晶、
(2) RE1Ba2Cu3O7-x系超電導体(ここでRE1はYを含む希土類元素の1種類又はその組み合わせ)を製造するための種結晶が、(RE2 1-yMy3Cu2O6-z(RE2はYを含む希土類元素の1種類またはその組み合わせ、またMはアルカリ土類金属から選ばれた1種類又はその組み合わせ)(但し0<y<1.0、1.35y-0.45<z<1.65y-0.55)であることを特徴とする酸化物超電導材料の種結晶、
(3) RE1Ba2Cu3O7-x系超電導体(ここでRE1はYを含む希土類元素の1種類又はその組み合わせ)を製造するための種結晶が、(Nd1-ySry3Cu2O6-z(但しyの範囲が0.3≦y≦0.4または0.5≦y≦0.7、1.35y-0.45<z<1.65y-0.55)であることを特徴とする酸化物超電導材料の種結晶、
(4) REBa2Cu3O7-x系超電導体(ここでREはYを含む希土類元素の1種類又はその組み合わせ)の原料成形体を溶融加熱処理し、これを冷却することによってREBa2Cu3O7-x相中にRE2BaCuO5相又はRE4Ba2Cu2O10相が分散した酸化物超電導体を製造する方法において、(1)〜(3)の何れかに記載の種結晶を用いることを特徴とする酸化物超電導材料の製造方法、(5) 前記原料成形体上に種結晶を載置してから溶融加熱処理を行うことを特徴とする(4)に記載の酸化物超電導材料の製造方法、である。
【0014】
【発明の実施の形態】
REBa2Cu3O7-x相(ここでREはYを含む希土類元素の1種類又はその組み合わせ)中に、RE2BaCuO5またはRE4Ba2Cu2O10が分散している酸化物超電導材料の製造において、これらの材料は大気中で1070℃から900℃程度の結晶成長温度を有している。これに対し、(Nd1-ySry)3Cu2O6-z等のSr3Ti2O7型の結晶構造を有する材料は、1160℃程度の結晶成長温度を有し、REBa2Cu3O7-x相にくらべ100〜200℃以上もの結晶成長温度差を有する。このことは、これらの系の種結晶は、従来のREBa2Cu3O7-x系の種結晶より100〜200℃以上の高温に耐えることを意味する。
【0015】
また、(Nd1-ySry)3Cu2O6-zは、希土類酸化物超電導体と構成元素もほぼ同じであるほか、それぞれの結晶構造中には、REBa2Cu3O7-xと同様に、1つのCuを4つの酸素が取り囲むことで形成されるCu-O面がある。このことにより、格子定数はa軸が3.8Å程度とREBa2Cu3O7-xと極めて近い値である。(Nd1-ySry)3Cu2O6-zの結晶構造を図1に示す。
【0017】
また、(RE1-ySry)3Cu2O6-z(ここでREはLa、Sm、Eu、Pr、Gd等の希土類元素)等のSr3Ti2O7型の結晶構造を有する材料は、大気中において1100℃程度の高温でも分解しないことが知られている。
【0018】
上記の理由から、RE1Ba2Cu3O7-x相(ここでRE1はYを含む希土類元素の1種類又はその組み合わせ)中に、RE1 2BaCuO5またはRE1 4Ba2Cu2O10が分散している酸化物超電導材料の製造において、(RE2 1-ySry)3Cu2O6-z(ここでRE2はYを含む希土類元素の1種類又はその組み合わせ)を種結晶として用いることにより、比較的高い結晶成長温度を有する系(Nd,Sm,Eu)のバルク材製造歩留まりは大きく向上し、さらにそれ以外の系の製造に関しても、量産化が容易になる。ここでRE1とRE2は同一であっても別の希土類元素であってもよい。
【0019】
また、(RE2 1-ySry)3Cu2O6-z以外にも、BaをSr,Ca,Mg等に、SrをBa,Ca,Mg等の元素で一部または完全置換したもの、さらにはCuおよびOを他の元素で一部置換したものについても、基本的にCuを含むSr3Ti2O7型の結晶構造を有するものは同様に種結晶として有効である。
【0020】
ここで、(RE2 1-yMy)3Cu2O6-z(ここでRE2はYを含む希土類元素の1種類又はその組み合わせ、またMはアルカリ土類金属から選ばれた1種類又はその組み合わせ)について0<y<1.0としたのは、希土類元素とアルカリ土類金属のイオン半径が、選択によってはほぼ同じ大きさを有する故、幅広く置換されても安定に結晶構造が保持できることによる。また、(RE2 1-yMy)3Cu2O6-zで1.35y-0.45<z<1.65y-0.55とした理由は、この範囲を超えた場合、安定に結晶構造が保持できないことによる。
【0021】
また、(Nd1-ySry)3Cu2O6-zについて0.3≦y≦0.4または0.5≦y≦0.7とした理由は、この範囲を超えた場合、安定に結晶構造が保持できないことによる。また、同様の理由で、(Nd1-ySry)3Cu2O6-zでは1.35y-0.45<z<1.65y-0.55としている。
【0022】
さらに、これらの元素をNd、Srとした点について下記に述べる。結晶成長中に種結晶の構成元素が、種結晶のごく近傍において、一部REBa2Cu3O7-x中に拡散する場合がある。このような現象が生じたとしても、NdやSrの元素であれば、種結晶近傍において、REBa2Cu3O7-xの包晶温度(結晶成長開始温度)を上げることがあっても、低下させることがない(REBa2Cu3O7-xの中で、最も包晶温度の高いのはNdBa2Cu3O7-xであり、これにSr元素が添加、置換されてもほとんど包晶温度は変化しないからである)。つまりNdやSrの元素で構成された種結晶であれば、構成元素がREBa2Cu3O7-x中に拡散したとしても結晶近傍での包晶温度が高く、種結晶から離れるに従いREBa2Cu3O7-xの包晶温度を下限として低下するため、種結晶から順次安定して結晶成長が進展することができ、種結晶としては、より好ましい。
【0023】
REBa2Cu3O7-x相中にRE2BaCuO5相又はRE4Ba2Cu2O10相が分散した酸化物超電導体を製造する方法において、原料成形体を溶融加熱処理し、上記の種結晶を用い結晶成長を行うことによって、比較的高温での種結晶の接種が可能となり、歩留り良く安定した超電導材料の大量製造が容易になる。種結晶が高温に耐えることから、原料成形体上に種結晶を載置してから溶融加熱処理を行うことが可能となり、さらに大量製造の作業性が向上する。
なお、原料成形体中に、 REBa2Cu3O7-x相中にRE2BaCuO5相又はRE4Ba2Cu2O10相をより分散させるために、Pt、Rh、Ce等を添加したり、REBa2Cu3O7-xの包晶温度を下げるために、Ag等を添加しても良い。
【0024】
【実施例】
(比較例)
Y2O3、BaO2とCuOの各原料粉末を各金属元素のモル比(Y:Ba:Cu)が(13:17:24)になるように混合し、さらにこの混合粉に0.2質量%のRhを添加し、混合した原料粉末を作製した。この原料粉末を870℃、酸素気流中で仮焼した。この仮焼粉をラバープレス機を用いて、2ton/cm2の圧力で直径50mm、厚さ20mmの円盤状成形体に50個成形した。
【0033】
これらを室温で炉内に配置した。しかる後、大気中で1120℃まで8時間で昇温し、1時間保持した。さらに1040℃まで30分で降温し30分間保持し、その間にNdBa2Cu3O7-x系種結晶を盤面の法線がc軸にほぼ一致するように配置した。さらに1010℃に30分で降温し、続いて960℃まで110時間かけて徐冷し結晶成長を行った。さらに室温まで24時間で冷却した。
【0034】
得られた50個の材料のうち13個は、種結晶が熔けた形跡があり、多結晶化していた。残り37個は、種結晶と同様にc軸が盤面の法線と一致していた単結晶状のものが得られた。これらについて、77Kにおいて磁場中冷却し、外部磁場を取り除いた後、捕捉磁束密度を測定したところ、最大値の平均が1.0Tであった。
【0035】
(実施例1)
Sm2O3、BaO2とCuOの各原料粉末を各金属元素のモル比(Sm:Ba:Cu)が(12:18:26)になるように混合し、さらにこの混合粉に0.5質量%のPtを添加し、混合した原料粉末を作製した。この原料粉末を900℃、酸素気流中で仮焼した。この仮焼粉を静水圧力2ton/cm2の圧力で直径30mm、厚さ20mmの円盤状成形体に成形した。
【0036】
これを大気中で1150℃まで8時間で昇温し、1時間保持した。その後、1080℃でNd1.92Sr1.08Cu2O5.96の種結晶を用い、盤面の法線がc軸にほぼ一致するように種結晶を配置した。しかる後1070℃に60分で降温し、さらに1045℃まで120時間かけて徐冷し、結晶成長を行った。続いて室温まで24時間で冷却した。
得られた円柱状バルク材について、両方の盤面を切断し、表層を取り除き、厚さ約10mmのバルクとした。続いて酸素富化処理を行った。酸素富化処理は、酸素気流中において、400℃まで24時間で昇温し、400℃から280℃まで100時間かけて徐冷した。さらに280℃から室温まで10時間かけて降温した。
【0037】
得られた結晶は、種結晶と同様に、c軸が盤面の法線と一致していた単結晶状のものが得られた。77Kにおいて磁場中冷却し、外部磁場を取り除いた後、捕捉磁束密度を測定したところ、最高0.75Tの良好な値が得られた。
【0038】
(実施例2)
Gd2O3、Sm2O3、BaO2とCuOの各原料粉末を各金属元素のモル比(Gd:Sm:Ba:Cu)が(7:7:17:24)になるように混合し、さらにこの混合粉に0.5質量%のPtおよび10質量%のAgを添加し、混合した原料粉末を作製した。この原料粉末を880℃、酸素気流中で仮焼した。この仮焼粉を静水圧力2ton/cm2の圧力で直径45mm、厚さ30mmの円盤状成形体に成形した。
【0039】
これを酸素1mol%の窒素中で1150℃まで8時間で昇温し、1時間保持した。その後、1080℃で数mm角のNd1.3Sr1.7Cu2O5.65の種結晶を用い、盤面の法線がc軸にほぼ一致するように種結晶を配置した。しかる後1010℃に120分で降温し、さらに970℃まで110時間かけて徐冷し結晶成長を行った。続いて、室温まで24時間で冷却した。得られた円柱状バルク材について、両方の盤面を切断し、表層を取り除き、厚さ12mmのバルクとした。続いて酸素富化処理を行った。酸素富化処理は酸素気流中において、500℃まで24時間で昇温し、500℃から300℃まで200時間かけて徐冷した。さらに300℃から室温まで10時間かけて降温した。
【0040】
得られた結晶は、種結晶と同様に、c軸が盤面の法線と一致していた単結晶状のものが得られた。77Kにおいて磁場中冷却し、外部磁場を取り除いた後、捕捉磁束密度を測定したところ、最高1.1Tの良好な値が得られた。
【0041】
(実施例3)
Y2O3、BaO2とCuOの各原料粉末を各金属元素のモル比(Y:Ba:Cu)が(13:17:24)になるように混合し、さらにこの混合粉に0.2質量%のRhを添加し、混合した原料粉末を作製した。この原料粉末を870℃、酸素気流中で仮焼した。この仮焼粉を静水圧力2ton/cm2の圧力で直径50mm、厚さ30mmの円盤状成形体に12個成形した。
【0042】
これらを室温で炉内に配置し、円盤状成形体の上にNd1.9Sr1.05Ba0.05Cu2O5.95系の種結晶を用い、盤面の法線がc軸にほぼ一致するように種結晶を配置した。しかる後、大気中で1120℃まで8時間で昇温し、1時間保持した。しかる後1010℃に30分で降温し、さらに960℃まで110時間かけて徐冷し、結晶成長を行った。この徐冷の間、炉内の最高温度と最低温度の差は40℃程度であった。続いて、室温まで24時間で冷却した。得られた12個の円柱状バルク材について、両方の盤面を切断し、表層を取り除き、厚さ約15mmのバルクとした。続いて、酸素富化処理を行った。酸素富化処理は、酸素気流中において、500℃まで24時間で昇温し、450℃から400℃まで100時間かけて徐冷した。さらに400℃から室温まで10時間かけて降温した。
【0043】
得られた12個の結晶はすべて、種結晶と同様に、c軸が盤面の法線と一致していた単結晶状のものが得られた。77Kにおいて磁場中冷却し、外部磁場を取り除いた後、捕捉磁束密度を測定したところ、最大値の平均が1.28Tの良好な材料が得られた。
【0044】
(実施例4)
Dy2O3、Er2O3、BaO2とCuOの各原料粉末を各金属元素のモル比(Y:Ba:Cu)が(7:7:17:24)になるように混合し、さらにこの混合粉に1.0質量%のCeを添加し、混合した原料粉末を作製した。この原料粉末を870℃、酸素気流中で仮焼した。この仮焼粉を静水圧力2ton/cm2の圧力で直径50mm、厚さ20mmの円盤状成形体に15個成形した。
【0045】
これらを室温で炉内に配置し、円盤状成形体の上にLa1.79Sr1.19Ba0.02Cu2O5.9系の種結晶を用い、盤面の法線がc軸にほぼ一致するように種結晶を配置した。しかる後、大気中で1120℃まで8時間で昇温し、1時間保持した。しかる後1005℃に30分で降温し、さらに970℃まで110時間かけて徐冷し、結晶成長を行った。続いて、室温まで24時間で冷却した。得られた15個の円柱状バルク材について、両方の盤面を切断し、表層を取り除き、厚さ約15mmのバルクとした。続いて、酸素富化処理を行った。酸素富化処理は、酸素気流中において、500℃まで24時間で昇温し、450℃から400℃まで100時間かけて徐冷した。さらに400℃から室温まで10時間かけて降温した。
【0046】
得られた15個の結晶は、すべて、種結晶と同様に、c軸が盤面の法線と一致していた単結晶状のものが得られた。77Kにおいて磁場中冷却し、外部磁場を取り除いた後、捕捉磁束密度を測定したところ、最大値の平均が1.2Tの良好な材料が得られた。
【0050】
【発明の効果】
本願発明は、高温の融点を有する種結晶および高温の融点を有する種結晶を用いた製造方法を提供するものであり、比較的高い結晶成長温度を有する系(Nd,Sm,Eu系、等)のバルク材製造歩留まりが大きく向上するとともに、さらにそれ以外の系の製造に関しても、温度分布の均一化が比較的難しい大型炉での高品質超電導バルク材の量産化を容易にするものであり、その工業的効果は甚大である。
【図面の簡単な説明】
【図1】(Nd1-ySry)3Cu2O6-zの結晶構造を示す図である。
【符号の説明】
3 Ndに一部置換したSr
4 Srに一部置換したNd
5 Cuの周りに5個の酸素が配位したピラミッド状のブロック
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seed crystal of a rare earth oxide superconductor having a critical temperature of 90K class and a method for producing an oxide superconductor using the seed crystal.
[0002]
[Prior art]
A rare earth oxide superconductor in which RE 2 BaCuO 5 phase is finely dispersed in REBa 2 Cu 3 O 7-x (where RE is one or a combination of rare earth elements including Y) is another oxide superconductor. Compared to the above, the magnetic flux pinning force is large, and the critical current density is high even at high temperatures close to the liquid nitrogen temperature (77K). A bulk material usually produced by the melting method is added with a small amount of Pt, Rh, Ce, etc., and the RE 2 BaCuO 5 phase of about 1 μm is refined. However, this superconductor requires crystal grains to be highly oriented because crystal grain boundaries significantly reduce the critical current density.
[0003]
The melting method represented by the QMG (Quench and Melt Growth) method (Japanese Patent Laid-Open No. 2-153803, Japanese Patent Laid-Open No. 5-93938, etc.) is used once for RE 2 BaCuO 5 phase or RE 4 Ba 2 Cu 2 O 10. The temperature is raised to the temperature range where the phase and the liquid phase containing Ba-Cu-O as the main component coexist, and this is cooled to just above the peritectic temperature where REBa 2 Cu 3 O 7-x is formed, and then gradually cooled from that temperature. Is a method for obtaining a large bulk material composed of a single crystal grain by performing crystal growth to control nucleation and crystal orientation.
[0004]
In the seeding method for crystal growth using a seed crystal having a high peritectic temperature disclosed in Japanese Patent Application Laid-Open No. 5-193938, the RE I Ba 2 Cu 3 O 7-x oxide superconductivity to be produced is to be produced. A RE II Ba 2 Cu 3 O 7-x single crystal sample having a higher melting point (peritectic temperature) than the body is used. The raw material precursor of the RE I Ba 2 Cu 3 O 7-x oxide superconductor is changed to the peritectic temperature of RE I Ba 2 Cu 3 O 7-x and the peritectic temperature of RE II Ba 2 Cu 3 O 7-x . To the intermediate temperature of RE I Ba 2 Cu 3 O 7-x decomposes and the liquid is composed mainly of RE I 2 BaCuO 5 phase or RE I 4 Ba 2 Cu 2 O 10 phase and Ba-Cu-O. The phase is made to coexist, and one surface of the RE II Ba 2 Cu 3 O 7-x crystal is brought into contact with the precursor. Thereafter, RE I Ba 2 Cu 3 O 7-x is cooled to the peritectic temperature to produce RE I Ba 2 Cu 3 O 7-x. By slowly cooling near the peritectic temperature, RE II Ba 2 In this method, crystals are grown in the same orientation as the crystal orientation of the contact surface of Cu 3 O 7-x .
[0005]
The manufacturing method of JP-A-RE-Ba-Cu-O system No. disclosed in Japanese 9-156925 oxide superconductor, the RE (Ba 1-y Sr y ) 2 Cu 3 O 7-x phase (here y 0.01 The ratio of RE: Ba + Sr: Cu is 1: 2: 3, except that the Ba element is replaced by the Sr element. Yes, the composition ratio is the same as that of the oxide superconducting phase REBa 2 Cu 3 O 7-x .
[0006]
In addition, the manufacturing method of an oxide superconducting bulk material disclosed in Japanese Patent Application Laid-Open No. 10-310498 discloses a material (gold, silver, rare earth) that lowers the peritectic temperature of REBa 2 Cu 3 O 7-x on the surface of a raw material compact. After coating with elements, etc., the seeding operation is performed in the cooling process after heating and melting.
[0007]
As described above, in the conventional melting method, a slight difference in melting point between the raw material molded body (precursor) and the seed crystal is used, and a rare-earth oxide superconductor crystal having a high melting point is used for the seed crystal. By lowering the melting point of the raw material molded body, a temperature difference between the melting points of the raw material molded body and the seed crystal is ensured to perform seeding.
[0008]
However, for the production of bulk materials of relatively high melting point rare earth (Nd, Sm, Eu) based oxide superconductors, the highest melting point Nd based or Nd-Sm based oxide superconductor crystals are used. Although silver or the like is added to the bulk material to lower the melting point of the bulk material to ensure a temperature difference between the melting point of the seed crystal and the bulk material, the temperature difference is only a few dozen degrees Celsius, so 1000 degrees Celsius Due to the slight non-uniformity of the temperature distribution in the heating furnace, many seed crystals are melted or polycrystallized from the seed crystals, and a good bulk material can be produced stably. was difficult.
[0009]
Also, in the production of bulk materials of rare earth (Dy, Y, Ho, Er) oxide superconductors with a relatively low melting point of about 1000 ° C, many raw material compacts are placed in a large heating furnace for mass production. However, it is difficult to control the entire furnace to a temperature distribution within several tens of degrees centigrade in a large furnace heated to about 1000 degrees centigrade, by heat treating this. In spite of processing in the same batch, depending on the arrangement position in the furnace, seed crystals may be melted, or raw material compacts may not be mixed, resulting in a low product yield. In addition, seed crystal inoculation at a high temperature of 1000 ° C. had to be repeated many times, and workability was not always good.
[0010]
On the other hand, for the production of relatively small oxide superconductors, MgO single crystals are used as seed crystals. However, in this case, the probability that the crystal orientation of the oxide superconductor can be controlled is about 1/3, and the product yield is very low.
As described above, the conventional oxide superconductor manufacturing method has a problem that it is impossible to mass-produce a superconducting material which is stable with a high yield.
[0011]
[Problems to be solved by the invention]
Therefore, the present invention provides a seed crystal having a sufficiently high melting point and capable of reliably controlling the crystal orientation of the bulk material, and a method for producing an oxide superconducting material having high workability using the seed crystal. The purpose is to do.
[0012]
[Means for Solving the Problems]
As a result of diligent studies to solve the above problems, the crystal orientation of the rare earth oxide superconducting material can be controlled even if a crystal having a crystal structure similar to that of the rare earth oxide superconductor is used as a seed crystal. The present invention has been completed by finding that it can be achieved.
[0013]
That is, the present invention
(1) RE 1 Ba 2 Cu 3 O 7-x series superconductor (where RE 1 is one or a combination of rare earth elements including Y) is a Sr 3 Ti 2 O 7 type A seed crystal of an oxide superconducting material characterized by having a crystal structure of
(2) RE 1 Ba 2 Cu 3 O 7-x- based superconductor (where RE 1 is one or a combination of rare earth elements including Y) is used as a seed crystal (RE 2 1-y M y ) 3 Cu 2 O 6-z (RE 2 is one or a combination of rare earth elements including Y, and M is one or a combination selected from alkaline earth metals) (where 0 <y <1.0, 1.35y-0.45 <z <1.65y-0.55), a seed crystal of an oxide superconducting material,
(3) A seed crystal for producing RE 1 Ba 2 Cu 3 O 7-x superconductor (where RE 1 is one or a combination of rare earth elements including Y) is (Nd 1-y Sr y ) 3 Cu 2 O 6-z (however, the range of y is 0.3 ≦ y ≦ 0.4 or 0.5 ≦ y ≦ 0.7, 1.35y-0.45 <z <1.65y-0.55) Seed crystals,
(4) REBa 2 Cu 3 O 7-x based superconductor (where RE is one or a combination of rare earth elements including Y) is melt-heated and cooled to cool the REBa 2 Cu In the method for producing an oxide superconductor in which the RE 2 BaCuO 5 phase or the RE 4 Ba 2 Cu 2 O 10 phase is dispersed in the 3 O 7-x phase, the seed according to any one of (1) to (3) (5) Oxidation according to (4), characterized in that a seed crystal is placed on the raw material compact and then melt heat treatment is performed. This is a manufacturing method of a superconducting material.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Oxide superconductivity in which RE 2 BaCuO 5 or RE 4 Ba 2 Cu 2 O 10 is dispersed in the REBa 2 Cu 3 O 7-x phase (where RE is one or a combination of rare earth elements including Y) In the production of materials, these materials have a crystal growth temperature of about 1070 ° C. to 900 ° C. in the atmosphere. In contrast, a material having a crystal structure of Sr 3 Ti 2 O 7 type such as (Nd 1-y Sr y ) 3 Cu 2 O 6-z has a crystal growth temperature of about 1160 ° C., and REBa 2 Cu It has a crystal growth temperature difference of 100-200 ° C or more compared to 3 O 7-x phase. This means that the seed crystals of these systems can withstand higher temperatures of 100 to 200 ° C. or more than the conventional REBa 2 Cu 3 O 7-x system seed crystals.
[0015]
In addition, (Nd 1-y Sr y ) 3 Cu 2 O 6-z has almost the same constituent elements as the rare earth oxide superconductor, and each crystal structure contains REBa 2 Cu 3 O 7-x Similar to, there is a Cu-O plane formed by four Cu surrounding one Cu. As a result, the lattice constant is about 3.8 mm on the a-axis, which is very close to REBa 2 Cu 3 O 7-x . The crystal structure of (Nd 1-y Sr y) 3 Cu 2 O 6-z shown in Figure 1.
[0017]
Also, it has Sr 3 Ti 2 O 7 type crystal structure such as (RE 1-y Sr y ) 3 Cu 2 O 6-z (where RE is a rare earth element such as La, Sm, Eu, Pr, Gd) It is known that the material does not decompose even at a high temperature of about 1100 ° C. in the atmosphere.
[0018]
For the above reasons, in the RE 1 Ba 2 Cu 3 O 7-x phase (where RE 1 is one or a combination of rare earth elements including Y), RE 1 2 BaCuO 5 or RE 1 4 Ba 2 Cu 2 In the production of an oxide superconducting material in which O 10 is dispersed, (RE 2 1-y Sr y ) 3 Cu 2 O 6-z (where RE 2 is one or a combination of rare earth elements including Y) By using it as a seed crystal, the bulk material production yield of a system (Nd, Sm, Eu) having a relatively high crystal growth temperature is greatly improved, and mass production is facilitated for the production of other systems. Here, RE 1 and RE 2 may be the same or different rare earth elements.
[0019]
In addition to (RE 2 1-y Sr y ) 3 Cu 2 O 6-z , Ba is partially or completely substituted with elements such as Sr, Ca, Mg, etc., and Sr with Ba, Ca, Mg, etc. Furthermore, with respect to those in which Cu and O are partially substituted with other elements, those having a crystal structure of Sr 3 Ti 2 O 7 type containing Cu are also effective as seed crystals.
[0020]
Where (RE 2 1-y M y ) 3 Cu 2 O 6-z (where RE 2 is one or a combination of rare earth elements including Y, and M is one selected from alkaline earth metals) (Or a combination thereof) 0 <y <1.0 because the ionic radii of the rare earth element and the alkaline earth metal have almost the same size depending on the selection, so that the crystal structure can be stably maintained even when widely substituted. by. In addition, (RE 2 1-y M y ) 3 Cu 2 O 6-z has 1.35y-0.45 <z <1.65y-0.55 because the crystal structure cannot be stably maintained beyond this range. by.
[0021]
Further, due to the reason that the (Nd 1-y Sr y) 3 Cu 2 O 6-z 0.3 ≦ y ≦ 0.4 or 0.5 ≦ y ≦ 0.7 for, if it exceeds this range, which can not be stably crystal structure held . For the same reason, and the (Nd 1-y Sr y) 3 Cu 2 O 6-z In 1.35y-0.45 <z <1.65y- 0.55.
[0022]
Furthermore, the point which made these elements Nd and Sr is described below. During crystal growth, the constituent elements of the seed crystal may partially diffuse into REBa 2 Cu 3 O 7-x in the very vicinity of the seed crystal. Even if such a phenomenon occurs, if it is an element of Nd or Sr, even if the peritectic temperature (crystal growth start temperature) of REBa 2 Cu 3 O 7-x is raised in the vicinity of the seed crystal, NdBa 2 Cu 3 O 7-x has the highest peritectic temperature among REBa 2 Cu 3 O 7-x. This is because the crystal temperature does not change). That is, if the Nd and Sr elements in composed a seed crystal, the constituent elements REBa 2 Cu 3 O 7-x as diffused in high peritectic temperature of the crystal near, REBa 2 with distance from the seed crystal Since the peritectic temperature of Cu 3 O 7-x is lowered with the lower limit, crystal growth can proceed stably and sequentially from the seed crystal, and the seed crystal is more preferable.
[0023]
In the method for producing an oxide superconductor in which the RE 2 BaCuO 5 phase or the RE 4 Ba 2 Cu 2 O 10 phase is dispersed in the REBa 2 Cu 3 O 7-x phase, the raw material compact is melt-heat treated, and the above-mentioned By crystal growth using a seed crystal, seed crystal seeding at a relatively high temperature is possible, and mass production of a stable superconducting material with a high yield is facilitated. Since the seed crystal can withstand high temperatures, it becomes possible to perform the melt heat treatment after placing the seed crystal on the raw material compact, and further improve the workability of mass production.
In addition, in order to disperse the RE 2 BaCuO 5 phase or the RE 4 Ba 2 Cu 2 O 10 phase in the REBa 2 Cu 3 O 7-x phase in the raw material molded body, Pt, Rh, Ce, etc. are added. In order to lower the peritectic temperature of REBa 2 Cu 3 O 7-x , Ag or the like may be added.
[0024]
【Example】
(Comparative example)
Each raw material powder of Y 2 O 3 , BaO 2 and CuO is mixed so that the molar ratio of each metal element (Y: Ba: Cu) is (13:17:24), and further 0.2 mass% in this mixed powder Rh was added to prepare a mixed raw material powder. This raw material powder was calcined in an oxygen stream at 870 ° C. Using a rubber press, 50 calcined powders were molded into a disk-shaped compact having a diameter of 50 mm and a thickness of 20 mm at a pressure of 2 ton / cm 2 .
[0033]
These were placed in a furnace at room temperature. Thereafter, the temperature was raised to 1120 ° C. in the atmosphere over 8 hours and held for 1 hour. Further, the temperature was lowered to 1040 ° C. in 30 minutes and held for 30 minutes, during which NdBa 2 Cu 3 O 7-x seed crystals were placed so that the normal of the board surface substantially coincided with the c axis. Further, the temperature was lowered to 1010 ° C. in 30 minutes, and then gradually cooled to 960 ° C. over 110 hours for crystal growth. Furthermore, it cooled to room temperature in 24 hours.
[0034]
Of the 50 materials obtained, 13 had evidence that the seed crystals had melted and were polycrystallized. The remaining 37 were obtained as single crystals in which the c-axis coincided with the normal of the board surface in the same manner as the seed crystal. When these were cooled in a magnetic field at 77 K and the external magnetic field was removed, and the trapped magnetic flux density was measured, the average of the maximum values was 1.0 T.
[0035]
(Example 1)
Each raw material powder of Sm 2 O 3 , BaO 2 and CuO is mixed so that the molar ratio of each metal element (Sm: Ba: Cu) is (12:18:26), and further 0.5% by mass in this mixed powder Pt was added to prepare a mixed raw material powder. This raw material powder was calcined at 900 ° C. in an oxygen stream. This calcined powder was molded into a disk-shaped molded body having a diameter of 30 mm and a thickness of 20 mm at a hydrostatic pressure of 2 ton / cm 2 .
[0036]
This was heated up to 1150 ° C. in the atmosphere over 8 hours and held for 1 hour. Thereafter, a seed crystal of Nd 1.92 Sr 1.08 Cu 2 O 5.96 was used at 1080 ° C., and the seed crystal was arranged so that the normal of the board surface substantially coincided with the c-axis. Thereafter, the temperature was lowered to 1070 ° C. over 60 minutes, and further cooled gradually to 1045 ° C. over 120 hours for crystal growth. Subsequently, it was cooled to room temperature in 24 hours.
About the obtained cylindrical bulk material, both board surfaces were cut | disconnected, the surface layer was removed, and it was set as the bulk of about 10 mm in thickness. Subsequently, oxygen enrichment treatment was performed. In the oxygen enrichment treatment, the temperature was raised to 400 ° C. in 24 hours in an oxygen stream, and then gradually cooled from 400 ° C. to 280 ° C. over 100 hours. The temperature was further lowered from 280 ° C. to room temperature over 10 hours.
[0037]
The obtained crystal was a single crystal having a c-axis coincident with the normal of the board surface, similar to the seed crystal. When the trapped magnetic flux density was measured after cooling in a magnetic field at 77K and removing the external magnetic field, a good value of up to 0.75T was obtained.
[0038]
(Example 2)
Gd 2 O 3 , Sm 2 O 3 , BaO 2 and CuO raw material powders are mixed so that the molar ratio of each metal element (Gd: Sm: Ba: Cu) is (7: 7: 17: 24). Further, 0.5% by mass of Pt and 10% by mass of Ag were added to this mixed powder to produce a mixed raw material powder. This raw material powder was calcined at 880 ° C. in an oxygen stream. This calcined powder was molded into a disk-shaped compact having a diameter of 45 mm and a thickness of 30 mm at a hydrostatic pressure of 2 ton / cm 2 .
[0039]
This was heated in 1 mol% nitrogen to 1150 ° C. over 8 hours and held for 1 hour. Thereafter, a seed crystal of Nd 1.3 Sr 1.7 Cu 2 O 5.65 of several mm square at 1080 ° C. was used, and the seed crystal was arranged so that the normal line of the board surface substantially coincided with the c-axis. Thereafter, the temperature was lowered to 1010 ° C. in 120 minutes and further cooled gradually to 970 ° C. over 110 hours for crystal growth. Subsequently, it was cooled to room temperature in 24 hours. About the obtained cylindrical bulk material, both board surfaces were cut | disconnected, the surface layer was removed, and it was set as the bulk of 12 mm in thickness. Subsequently, oxygen enrichment treatment was performed. In the oxygen enrichment treatment, the temperature was raised to 500 ° C. in 24 hours in an oxygen stream, and then gradually cooled from 500 ° C. to 300 ° C. over 200 hours. The temperature was further lowered from 300 ° C. to room temperature over 10 hours.
[0040]
The obtained crystal was a single crystal having a c-axis coincident with the normal of the board surface, similar to the seed crystal. When the trapped magnetic flux density was measured after cooling in a magnetic field at 77K and removing the external magnetic field, a good value of up to 1.1T was obtained.
[0041]
(Example 3)
Each raw material powder of Y 2 O 3 , BaO 2 and CuO is mixed so that the molar ratio of each metal element (Y: Ba: Cu) is (13:17:24), and further 0.2 mass% in this mixed powder Rh was added to prepare a mixed raw material powder. This raw material powder was calcined in an oxygen stream at 870 ° C. Twelve of the calcined powders were molded into a disk-shaped compact having a diameter of 50 mm and a thickness of 30 mm at a hydrostatic pressure of 2 ton / cm 2 .
[0042]
These are placed in a furnace at room temperature, and a seed crystal of Nd 1.9 Sr 1.05 Ba 0.05 Cu 2 O 5.95 is used on the disk-shaped compact, and the seed crystal is aligned so that the normal of the surface of the disk approximately matches the c-axis. Arranged. Thereafter, the temperature was raised to 1120 ° C. in the atmosphere over 8 hours and held for 1 hour. Thereafter, the temperature was lowered to 1010 ° C. in 30 minutes, and further cooled gradually to 960 ° C. over 110 hours to carry out crystal growth. During this slow cooling, the difference between the maximum temperature and the minimum temperature in the furnace was about 40 ° C. Subsequently, it was cooled to room temperature in 24 hours. About the obtained 12 cylindrical bulk materials, both board surfaces were cut | disconnected, the surface layer was removed, and it was set as the bulk of thickness about 15mm. Subsequently, oxygen enrichment treatment was performed. In the oxygen enrichment treatment, the temperature was raised to 500 ° C. in 24 hours in an oxygen stream, and then gradually cooled from 450 ° C. to 400 ° C. over 100 hours. The temperature was further lowered from 400 ° C. to room temperature over 10 hours.
[0043]
All of the 12 crystals obtained were in the form of a single crystal having the c-axis coincident with the normal of the board surface, similar to the seed crystal. When the trapped magnetic flux density was measured after cooling in a magnetic field at 77K and removing the external magnetic field, a good material with an average maximum value of 1.28T was obtained.
[0044]
Example 4
Each raw material powder of Dy 2 O 3 , Er 2 O 3 , BaO 2 and CuO is mixed so that the molar ratio of each metal element (Y: Ba: Cu) is (7: 7: 17: 24). 1.0% by mass of Ce was added to this mixed powder to produce a mixed raw material powder. This raw material powder was calcined in an oxygen stream at 870 ° C. Fifteen of the calcined powders were molded into a disk-shaped compact having a diameter of 50 mm and a thickness of 20 mm at a hydrostatic pressure of 2 ton / cm 2 .
[0045]
These were placed in a furnace at room temperature, and a seed crystal of La 1.79 Sr 1.19 Ba 0.02 Cu 2 O 5.9 system was used on the disk-shaped compact, and the seed crystal was aligned so that the normal of the surface of the disk almost coincided with the c-axis. Arranged. Thereafter, the temperature was raised to 1120 ° C. in the atmosphere over 8 hours and held for 1 hour. Thereafter, the temperature was lowered to 1005 ° C. over 30 minutes, and further cooled gradually to 970 ° C. over 110 hours to carry out crystal growth. Subsequently, it was cooled to room temperature in 24 hours. About the obtained 15 cylindrical bulk materials, both board surfaces were cut | disconnected, the surface layer was removed, and it was set as the bulk of thickness about 15mm. Subsequently, oxygen enrichment treatment was performed. In the oxygen enrichment treatment, the temperature was raised to 500 ° C. in 24 hours in an oxygen stream, and then gradually cooled from 450 ° C. to 400 ° C. over 100 hours. The temperature was further lowered from 400 ° C. to room temperature over 10 hours.
[0046]
All of the 15 crystals obtained were in the form of single crystals having the c-axis coincident with the normal of the board surface, similar to the seed crystal. When the trapped magnetic flux density was measured after cooling in a magnetic field at 77K and removing the external magnetic field, a good material with an average maximum value of 1.2 T was obtained.
[0050]
【The invention's effect】
The present invention provides a seed crystal having a high melting point and a production method using the seed crystal having a high melting point, and a system having a relatively high crystal growth temperature (Nd, Sm, Eu system, etc.) The bulk material production yield is greatly improved, and the mass production of high-quality superconducting bulk materials in large furnaces, where temperature distribution is relatively difficult, is also facilitated for the production of other systems. The industrial effect is enormous.
[Brief description of the drawings]
FIG. 1 is a view showing a crystal structure of (Nd 1-y Sr y ) 3 Cu 2 O 6-z .
[Explanation of symbols]
3 Sr partially substituted with Nd
4 Nd partially substituted with Sr
5 Pyramid block with 5 oxygens coordinated around Cu

Claims (5)

RE1Ba2Cu3O7-x系超電導体(ここでRE1はYを含む希土類元素の1種類又はその組み合わせ)を製造するための種結晶が、Sr3Ti2O7型の結晶構造を有することを特徴とする酸化物超電導材料の種結晶。The seed crystal for producing RE 1 Ba 2 Cu 3 O 7-x based superconductor (where RE 1 is one or a combination of rare earth elements including Y) has a crystal structure of Sr 3 Ti 2 O 7 type A seed crystal of an oxide superconducting material, comprising: RE1Ba2Cu3O7-x系超電導体(ここでRE1はYを含む希土類元素の1種類又はその組み合わせ)を製造するための種結晶が、(RE2 1-yMy)3Cu2O6-z(RE2はYを含む希土類元素の1種類またはその組み合わせ、またMはアルカリ土類金属から選ばれた1種類又はその組み合わせ)(但し0<y<1.0、1.35y-0.45<z<1.65y-0.55)であることを特徴とする酸化物超電導材料の種結晶。A seed crystal for producing a RE 1 Ba 2 Cu 3 O 7-x superconductor (where RE 1 is one or a combination of rare earth elements including Y) is (RE 2 1- y My ) 3 Cu 2 O 6-z (RE 2 is one or a combination of one or a combination of rare earth elements, and M is selected from alkaline earth metals including Y) (where 0 <y <1.0,1.35y- 0.45 <z <1.65y-0.55), a seed crystal of an oxide superconducting material. RE1Ba2Cu3O7-x系超電導体(ここでRE1はYを含む希土類元素の1種類又はその組み合わせ)を製造するための種結晶が、(Nd1-ySry)3Cu2O6-z(但しyの範囲が0.3≦y≦0.4または0.5≦y≦0.7、1.35y-0.45<z<1.65y-0.55)であることを特徴とする酸化物超電導材料の種結晶。A seed crystal for producing a RE 1 Ba 2 Cu 3 O 7-x superconductor (where RE 1 is one or a combination of rare earth elements including Y) is (Nd 1-y Sr y ) 3 Cu 2 O 6-z (wherein y is in the range 0.3 ≦ y ≦ 0.4 or 0.5 ≦ y ≦ 0.7, 1.35y-0.45 <z <1.65y-0.55). REBa2Cu3O7-x系超電導体(ここでREはYを含む希土類元素の1種類又はその組み合わせ)の原料成形体を溶融加熱処理し、これを冷却することによってREBa2Cu3O7-x相中にRE2BaCuO5相又はRE4Ba2Cu2O10相が分散した酸化物超電導体を製造する方法において、請求項1〜3の何れか1項に記載の種結晶を用いることを特徴とする酸化物超電導材料の製造方法。REBa 2 Cu 3 O 7-x based superconductor (where RE is one or a combination of rare earth elements including Y) is melt-heated and cooled to cool the REBa 2 Cu 3 O 7 Use of the seed crystal according to any one of claims 1 to 3 in a method for producing an oxide superconductor in which a RE 2 BaCuO 5 phase or a RE 4 Ba 2 Cu 2 O 10 phase is dispersed in a -x phase A method for producing an oxide superconducting material. 前記原料成形体上に種結晶を載置してから溶融加熱処理を行うことを特徴とする請求項4に記載の酸化物超電導材料の製造方法。  The method for producing an oxide superconducting material according to claim 4, wherein a melt heat treatment is performed after placing a seed crystal on the raw material compact.
JP2000213263A 1999-12-16 2000-07-13 Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same Expired - Fee Related JP4153651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000213263A JP4153651B2 (en) 1999-12-16 2000-07-13 Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35721599 1999-12-16
JP11-357215 1999-12-16
JP2000213263A JP4153651B2 (en) 1999-12-16 2000-07-13 Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same

Publications (2)

Publication Number Publication Date
JP2001233696A JP2001233696A (en) 2001-08-28
JP4153651B2 true JP4153651B2 (en) 2008-09-24

Family

ID=26580572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000213263A Expired - Fee Related JP4153651B2 (en) 1999-12-16 2000-07-13 Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same

Country Status (1)

Country Link
JP (1) JP4153651B2 (en)

Also Published As

Publication number Publication date
JP2001233696A (en) 2001-08-28

Similar Documents

Publication Publication Date Title
EP0562640B1 (en) Production of oxide superconductors having large magnetic levitation force
US7718573B2 (en) Method for producing oxide superconductor, oxide superconductor and substrate material for supporting precursor of the same
EP0800494B1 (en) LOW TEMPERATURE (T LOWER THAN 950 oC) PREPARATION OF MELT TEXTURE YBCO SUPERCONDUCTORS
US7655601B2 (en) Enhanced melt-textured growth
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
KR100336613B1 (en) A fabrication technique for single crystals of high temperature superconductor by top and bottom seeding method
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
WO1993010047A1 (en) Method of fabricating thallium-containing ceramic superconductors
US7964532B2 (en) RE123-based oxide superconductor and method of production of same
JP3854364B2 (en) Method for producing REBa2Cu3Ox-based superconductor
JP2550253B2 (en) Method for producing oxide high temperature superconductor
EP1411154B1 (en) Oxide high-critical temperature superconductor acicular crystal and its production method
JP3237952B2 (en) Manufacturing method of oxide superconducting material
JPH1112094A (en) Production of rare earth-barium-cuprate-based superconductor
JP3159764B2 (en) Manufacturing method of rare earth superconductor
JPH03112810A (en) Production of oxide superconducting film
Sastry et al. Synthesis and Processing of Doped Hg 1 Ba 2 Ca 2 Cu 3 O y Superconductors
JP3155334B2 (en) Oxide superconductor having high magnetic levitation force and method of manufacturing the same
JPH06187848A (en) Oxide superconducting wire and manufacture thereof
JPH05254834A (en) Oxide superconductor and production process thereof
JPH06211519A (en) Superconductor and its production
JPH06183730A (en) Production of oxide superconductive bulky material
JPH0585723A (en) Production of rare earth element-containing oxide superconductor
JPH11322331A (en) Superconductive bulk material and its production
JPH087680A (en) Manufacture of oxide superconductive wire rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080704

R151 Written notification of patent or utility model registration

Ref document number: 4153651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees